JPH057938B2 - - Google Patents

Info

Publication number
JPH057938B2
JPH057938B2 JP12090485A JP12090485A JPH057938B2 JP H057938 B2 JPH057938 B2 JP H057938B2 JP 12090485 A JP12090485 A JP 12090485A JP 12090485 A JP12090485 A JP 12090485A JP H057938 B2 JPH057938 B2 JP H057938B2
Authority
JP
Japan
Prior art keywords
ferromagnetic
shaft
magnet rotor
resin magnet
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12090485A
Other languages
Japanese (ja)
Other versions
JPS61280735A (en
Inventor
Katsuyuki Ishibashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12090485A priority Critical patent/JPS61280735A/en
Publication of JPS61280735A publication Critical patent/JPS61280735A/en
Publication of JPH057938B2 publication Critical patent/JPH057938B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 産業上の利用分野 本発明は家庭用機器の駆動源として用いる出力
数ワツトから、数十ワツトの永久磁石回転子型同
期電動機等の軸一体成形樹脂磁石回転子の製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention is directed to the production of shaft-integrated resin magnet rotors such as permanent magnet rotor type synchronous motors with outputs ranging from several watts to several tens of watts for use as drive sources for household appliances. It is about the method.

従来の技術 従来この種の永久磁石回転子型同期電動機の一
例として第7図に示す構造のものがある。この永
久磁石回転子型同期電動機は図示のように略コ字
状をした固定子鉄心の磁路片2に駆動コイル3を
挿着し、前記固定子鉄心1の磁極部6a,6b間
に配置され軸受体7にて軸5を有した永久磁石回
転子4を回転自由に軸支している。
BACKGROUND ART An example of a conventional permanent magnet rotor type synchronous motor of this type is one having a structure shown in FIG. As shown in the figure, this permanent magnet rotor type synchronous motor has a drive coil 3 inserted into a magnetic path piece 2 of a stator core having a substantially U-shape, and placed between magnetic pole parts 6a and 6b of the stator core 1. A permanent magnet rotor 4 having a shaft 5 is rotatably supported by a bearing body 7.

この同期電動機は構造が簡単で、かつ小型で比
較的大きな出力を得ることができ、小型オレンジ
絞りジユーサ等の家庭用機器の駆動源として用い
られている。そして前記永久磁石回転子4は、焼
結品より量産性がある安価な樹脂磁石回転子が採
用されている。
This synchronous motor has a simple structure, is compact, and can obtain a relatively large output, and is used as a drive source for household appliances such as small orange squeezers. As the permanent magnet rotor 4, a resin magnet rotor is used, which is cheaper and easier to mass produce than a sintered product.

この樹脂磁石回転子は合成樹脂とフエライト等
の強磁性粉末を混合したものであり、当然磁束密
度が焼結品より劣るため体積を増加させる必要が
あり直径も径大になる。このことは磁場配向成形
における空隙の増につながり、大きな磁場の強さ
を必要とする。しかし充分な配向成形を期すため
従来技術で可能な空隙に納まるように、回転子を
半割形状と成し、磁場配向成形を実施し、軸5と
ともに半割形状の4a,4bを貼合せて永久磁石
回転子4を形成していた。
This resin magnet rotor is made of a mixture of synthetic resin and ferromagnetic powder such as ferrite, and naturally the magnetic flux density is inferior to that of a sintered product, so it is necessary to increase the volume and the diameter also increases. This leads to an increase in air gaps in magnetic field orientation molding and requires a large magnetic field strength. However, in order to achieve sufficient orientation molding, the rotor was formed into a half-shape so that it could fit into the gap that was possible with the conventional technology, magnetic field orientation molding was performed, and the half-shape 4a and 4b were bonded together with the shaft 5. A permanent magnet rotor 4 was formed.

発明が解決しようとする問題点 しかし、この貼合せによる方法は生産性および
経済的には満足すべきものではなく、射出成形の
メリツトを十分に生かして、軸をも一体に成形す
る方法について数多くの実験研究をしてきた。
Problems to be Solved by the Invention However, this bonding method is not satisfactory in terms of productivity and economy, and there are many methods for integrally molding the shaft by making full use of the merits of injection molding. I have been doing experimental research.

樹脂磁石の磁気特性は強磁性粉末の混合量に比
例し、多量の強磁性粉末を含んだ混合物の溶融時
の粘度は高くなり流動性が低下する。樹脂磁石を
成形する場合、成形中に加熱状態で磁界を印加
し、強磁性粉末粒子を磁界の印加方向に、磁化容
易軸方向を揃える必要があり、樹脂磁石の成形方
法は通常の樹脂の射出成形法に比べて、流動性や
磁界印加等困難な点が多い。
The magnetic properties of a resin magnet are proportional to the amount of ferromagnetic powder mixed, and when a mixture containing a large amount of ferromagnetic powder is melted, the viscosity increases and the fluidity decreases. When molding resin magnets, it is necessary to apply a magnetic field in a heated state during molding and align the ferromagnetic powder particles with the direction of the magnetic field application and the axis of easy magnetization.The molding method for resin magnets is the usual resin injection method. Compared to molding methods, there are many difficulties such as fluidity and magnetic field application.

そして軸一体射出成形は、従来の半割形状での
射出成形に比べて一段と技術的困難な点を有して
いる。たとえば、半割形状の二倍の射出量を必要
とする点、磁界の空隙が二倍となり強力な磁界印
加を必要とする点、また貼合せ方式では任意に設
定できた軸径は射出圧力に耐え得るまで径大にせ
ざるを得ず、金型内での湯流れに影響を及ぼす
等々である。
Moreover, integral injection molding with a shaft is technically more difficult than conventional injection molding with a half-split shape. For example, the injection quantity is twice as large as that of the half-split shape, the magnetic field gap is doubled and a strong magnetic field is required to be applied, and the shaft diameter, which can be set arbitrarily in the bonding method, is affected by the injection pressure. The diameter has to be increased until it can endure, which affects the flow of the metal in the mold, etc.

第6図は実験に供した軸一体成形樹脂磁石回転
子製造装置の一例を示す説明図で、固定側部、
移動側部および突出部から成る。固定側部
および移動側部はそれぞれ強磁性体からなる固
定側取板11とキヤビテイプレート12、移動側
取付板13とコアプレート14とを強磁性体のス
ペーサーブロツク15で連結し、型締めときにお
いて内装する電磁石コイル16で発生する磁気の
閉回路を構造する。17,18は前記電磁石コイ
ル16に内装され固定側取付板11および移動側
取付板13からそれぞれ突設する強磁性体ブロツ
クであり、この対向する強磁性体ブロツク間に非
磁性体のキヤビテイ金型19とコア金型20とが
配置してある。突出部には突出板21にスプル
ーロツクピン22及び非磁性押出ピン23が連結
されている。24は射出成形前に配置する軸であ
る。なお前記キヤビテイ金型19及びコア金型2
0は射出成形時の強磁性粉末による損耗に対する
金型メンテナンス、前記軸の保持構造配置(図示
せず。また装置が縦型の場合は不要)、冷却水流
路構成等のため数ブロツクに分割して構成される
ことが多い。
FIG. 6 is an explanatory diagram showing an example of the shaft-integrated resin magnet rotor manufacturing apparatus used in the experiment, in which the fixed side part,
Consists of moving sides and protrusions. The fixed side part and the movable side part each connect a fixed side mounting plate 11 and a cavity plate 12 made of a ferromagnetic material, and a moving side mounting plate 13 and a core plate 14 with a spacer block 15 made of a ferromagnetic material. A closed magnetic circuit generated by the internal electromagnetic coil 16 is constructed. Reference numerals 17 and 18 denote ferromagnetic blocks that are installed inside the electromagnetic coil 16 and protrude from the fixed side mounting plate 11 and the movable side mounting plate 13, respectively, and a non-magnetic cavity mold is placed between the opposing ferromagnetic blocks. 19 and a core mold 20 are arranged. A sprue lock pin 22 and a non-magnetic push-out pin 23 are connected to a protrusion plate 21 in the protrusion. 24 is a shaft placed before injection molding. Note that the cavity mold 19 and the core mold 2
0 is divided into several blocks for maintenance of the mold to prevent wear and tear caused by ferromagnetic powder during injection molding, arrangement of the holding structure for the shaft (not shown, and unnecessary if the device is vertical), configuration of the cooling water flow path, etc. It is often composed of

次に第6図の装置により磁界を印加して軸一体
樹脂磁石回転子を射出成形する工程について説明
する。
Next, a process of injection molding a shaft-integrated resin magnet rotor by applying a magnetic field using the apparatus shown in FIG. 6 will be described.

まず移動側部全体が左側に移動し両金型1
9,20が開いた状態で軸24をコア金型20に
装着配置する。そして移動側部全体を右側に移
動させ型締めする。次に所定の温度で射出された
熱可塑性樹脂と強磁性粉末の混合物は固定側取付
板11に設けたノズル口25から固定側取付板1
1と固定側の強磁性体ブロツク17およびキヤビ
テイ金型19を貫通し、一部がコア金型20に達
し、さらにキヤビテイ金型19とコア金型20に
合わせ面を通つて成形体空間27に至る空洞通路
のスプルーランナ26を通り、成形体空間27に
充填される。その間に電磁コイル16からの誘導
磁束が、キヤビテイ金型19、コア金型20内の
混合物中を流れ、径方向2極異方性の軸一体樹脂
磁石回転子が成形される。成形体が冷却凝固後、
移動側部全体が左へ移動し、固定側部と離れ
る。一定距離に達すると突出板21が突き出てス
プルーロツクピン22がコア金型20部分のスプ
ルーランナ26に溜り凝固した混合物を、また非
磁性押出ピン23が成形体空間27に溜り凝固し
た混合物をそれぞれコア金型20より押し出し、
成形が完了する。
First, the entire moving side moves to the left and both molds 1
The shaft 24 is mounted on the core mold 20 with the shafts 9 and 20 open. Then, the entire movable side part is moved to the right side and the mold is clamped. Next, the mixture of thermoplastic resin and ferromagnetic powder injected at a predetermined temperature is passed through a nozzle port 25 provided on the fixed side mounting plate 11 to the fixed side mounting plate 11.
1, the fixed side ferromagnetic block 17 and the cavity mold 19, a part of it reaches the core mold 20, and further passes through the mating surfaces of the cavity mold 19 and the core mold 20 and enters the molded body space 27. It passes through the sprue runner 26 of the hollow passage leading to the molded body and fills the molded body space 27. During this time, the induced magnetic flux from the electromagnetic coil 16 flows through the mixture in the cavity mold 19 and the core mold 20, and a shaft-integrated resin magnet rotor with bipolar anisotropy in the radial direction is molded. After the molded body is cooled and solidified,
The entire moving side moves to the left and separates from the fixed side. When a certain distance is reached, the protruding plate 21 protrudes and the sprue lock pin 22 collects the solidified mixture in the sprue runner 26 of the core mold 20, and the non-magnetic extrusion pin 23 removes the solidified mixture in the molded body space 27. Extruded from the core mold 20,
Molding is completed.

次にこのようにして成形された軸一体樹脂磁石
回転子の配向状態を回転子外周の表面磁束密度分
布測定によりみたのが第5図である。横軸は回転
角θ、縦軸は表面磁束密度BでN、Sは極性を示
す。第6図のような装置で配向された成形体は、
第5図中点線で示す正弦波形分布になる筈である
が、実線で示すように磁束分布波形は乱れ、N極
S極位置からピークがずれたり、ピークが現われ
ず平坦あるいはクビレを生じたりする。この磁束
分布波形の乱れは前述のように軸一体成形樹脂磁
石回転子の磁界印加中での成形が従来の半割形状
成形品に比べて磁界空隙や射出量の大幅増加や、
軸配置による湯流れの影響など配向成形を困難に
している点によるものと思われる。この表面磁束
密度分布波形の乱れは、回転子の軸を介して波形
が非対称であり第7図に示す同期電動機の永久磁
石回転子としては実用に供し得ない。すなわちこ
の種の同期電動機は自己始動が困難であり、前記
表面磁束密度分布波形の乱れ、非対称が大きく影
響を及ぼしている。またこのような磁石回転子自
体の磁気的アンバランスは回転中の振動をも増大
させるものとなる。
Next, FIG. 5 shows the orientation state of the shaft-integrated resin magnet rotor molded in this manner by measuring the surface magnetic flux density distribution on the outer periphery of the rotor. The horizontal axis is the rotation angle θ, the vertical axis is the surface magnetic flux density B, and N and S indicate polarity. The molded body oriented with the apparatus shown in Fig. 6 is
The distribution is supposed to be a sinusoidal waveform as shown by the dotted line in the middle of Figure 5, but as shown by the solid line, the magnetic flux distribution waveform is distorted, and the peak deviates from the N and S pole positions, or the peak does not appear and becomes flat or curved. . As mentioned above, this disturbance in the magnetic flux distribution waveform is caused by a significant increase in the magnetic field gap and injection amount when molding the shaft-integrated resin magnet rotor while applying a magnetic field compared to conventional half-shaped molded products.
This seems to be due to the fact that oriented molding is difficult due to the influence of molten metal flow due to the shaft arrangement. This disturbance in the surface magnetic flux density distribution waveform is asymmetrical across the axis of the rotor, and cannot be put to practical use as a permanent magnet rotor of the synchronous motor shown in FIG. That is, this type of synchronous motor has difficulty in self-starting, and the disturbance and asymmetry of the surface magnetic flux density distribution waveform have a large influence. Further, such magnetic imbalance of the magnet rotor itself increases vibrations during rotation.

問題点を解決するための手段 そして、上記問題点、すなわち軸一体成形樹脂
磁石回転子の表面磁束密度分布波形の乱れをなく
し軸を介して対称波形にする点を解決する本発明
の技術的な手段は、前記電磁石コイルに内装した
強磁性体ブロツクからキヤビテイ金型、コア金型
を貫通して成形体に達する強磁性体のピンを立設
して成形するものである。
Means for Solving the Problems The technical aspects of the present invention solve the above-mentioned problems, that is, the point of eliminating disturbances in the surface magnetic flux density distribution waveform of the shaft-integrated resin magnet rotor and making it a symmetrical waveform through the shaft. The method is to form a ferromagnetic pin by standing upright from a ferromagnetic block housed in the electromagnetic coil, passing through a cavity mold and a core mold to reach the molded body.

作 用 この技術的手段による作用は次のようになる。
すなわち、電磁石コイルに内装した強磁性体ブロ
ツクから非磁性体で構成するキヤビテイ金型、コ
ア金型を貫通し成形体である回転子の両極部に達
する強磁性ピンを設けたため、電磁石コイルから
の磁束を誘導集中させて、磁石回転子の両極部に
磁束密度分布波形のピークを正しく位置させ、か
つ波形の乱れをなくし同期電動機の永久磁石回転
子として供し得るようになるのである。
Effect The effect of this technical means is as follows.
In other words, we installed ferromagnetic pins that penetrate the ferromagnetic block built into the electromagnetic coil, the cavity mold made of non-magnetic material, and the core mold to reach both poles of the rotor, which is a molded body. By guiding and concentrating the magnetic flux, the peaks of the magnetic flux density distribution waveform can be correctly located at both poles of the magnet rotor, and waveform disturbances can be eliminated, allowing the rotor to be used as a permanent magnet rotor for a synchronous motor.

実施例 以下、本発明の一実施例を添付図面にもとづい
て説明する。第1図は本発明の一実施例を示す。
第2図は第1図のA−A断面図を示す。そして第
1図、第2図で第6図と同一部材は同一符号を付
した。
Embodiment Hereinafter, an embodiment of the present invention will be described based on the accompanying drawings. FIG. 1 shows an embodiment of the invention.
FIG. 2 shows a sectional view taken along line AA in FIG. The same members in FIGS. 1 and 2 as in FIG. 6 are given the same reference numerals.

第1図および第2図において、電磁石コイル1
6に内装した強磁性体ブロツク17および18に
は非磁性体キヤビテイ金型19およびコア金型2
0を貫通して成形体空間27に達する強磁性ピン
30が対向位置に複数個配設されている。31は
これら強磁性ピン30と同列に位置する押出ピン
で強磁性材で構成する。これらの強磁性ピン30
および31は第2図で明らかなように回転子外周
の機械角で180゜の磁極中心に配置し軸24を介し
て対向させている。第3図は成形体の斜視図を示
し、軸24をインサート一体成形した樹脂磁石回
転子33のNS磁極の中心位置に強磁性ピン30,
31のピン跡34が位置しているこを示す。この
強磁性ピンは軸方向の磁極中心上Bの範囲に必要
に応じて多数個配置できる。強磁性ピンの配置個
数を増やせば、ピン間の磁極中心の磁束密度が引
き上げられ軸方向B全体として平均磁束密度は高
くなる。もし非磁性キヤピテイ金型19およびコ
ア金型20が前述のように細分割されずに少なく
とも成形体空間周辺が一体金型であれば、強磁性
ピンを軸方向に多数箇配置する代りにピン径の幅
で軸方向長さ略Bの短形断面の強磁性ブロツク
(図示せず)を配置すれば、さらにB方向磁極中
心の磁束密度は均一化される。
In FIGS. 1 and 2, electromagnetic coil 1
A non-magnetic cavity mold 19 and a core mold 2 are installed in the ferromagnetic blocks 17 and 18 housed in
A plurality of ferromagnetic pins 30 are arranged at opposing positions to penetrate through the molded body space 27 and reach the molded body space 27. Reference numeral 31 denotes an extruded pin located in the same row as these ferromagnetic pins 30, and is made of a ferromagnetic material. These ferromagnetic pins 30
As is clear from FIG. 2, numerals 31 and 31 are arranged at the center of the magnetic poles at a mechanical angle of 180 degrees on the outer periphery of the rotor, and are opposed to each other with the shaft 24 interposed therebetween. FIG. 3 shows a perspective view of the molded body, in which a ferromagnetic pin 30,
31 pin marks 34 are located. A large number of these ferromagnetic pins can be arranged in a range B above the center of the magnetic pole in the axial direction as required. If the number of ferromagnetic pins is increased, the magnetic flux density at the center of the magnetic poles between the pins is increased, and the average magnetic flux density in the axial direction B as a whole becomes higher. If the non-magnetic capitivity mold 19 and the core mold 20 are not subdivided as described above and are integral molds at least around the molded body space, instead of arranging a large number of ferromagnetic pins in the axial direction, the pin diameter By arranging a ferromagnetic block (not shown) having a rectangular cross section with a width of approximately B and an axial length of approximately B, the magnetic flux density at the center of the magnetic pole in the B direction can be further made uniform.

次に強磁性ピン配置による作用を説明する。第
4図は従来の第5図に対応する本発明の構成によ
り製造し、軸24を一体成形した樹脂磁石回転子
33の外周表面磁束密度分布波形を示す。第4図
で明らかなように機械角で180゜対向する位置に強
磁性ピン30,31によつて電磁石コイル16か
らの磁束を強制誘導集中させた結果、従来より一
段と急峻なピークを正しく磁極中央に発生させる
ことができ、かつこのピークにつられて波形の乱
れが本来の正弦波形(点線で示す)に極めて近似
させることができるため、軸24を介して両極の
対称性が得られる。この結果第7図に示す同期電
動機の永久磁石回転子として使用できるようにな
つた。
Next, the effect of the ferromagnetic pin arrangement will be explained. FIG. 4 shows a magnetic flux density distribution waveform on the outer circumferential surface of a resin magnet rotor 33 manufactured by the structure of the present invention corresponding to the conventional structure shown in FIG. 5, and in which the shaft 24 is integrally molded. As is clear from Fig. 4, the magnetic flux from the electromagnetic coil 16 is forcibly induced and concentrated using the ferromagnetic pins 30 and 31 at positions facing each other at a mechanical angle of 180 degrees. Since the waveform disturbance can be made to closely approximate the original sinusoidal waveform (indicated by the dotted line) along this peak, bipolar symmetry is obtained through the axis 24. As a result, it became possible to use it as a permanent magnet rotor of a synchronous motor shown in FIG.

発明の効果 前記実施例の説明より明らかなように本発明は
軸を一体にインサート成形して樹脂磁石回転子を
製造するにあたり、電磁石コイルに内装した強磁
性体ブロツクから非磁性体から成るキヤビテイ金
型およびコア金型を貫通して成形体に達する強磁
性ピンを対向して複数個立設し、電磁石コイルか
らの磁束を前記強磁性ピンを通して成形体、すな
わち樹脂磁石回転子の両磁極中心に強制誘導集中
させて成形することにより、軸一体インサート樹
脂磁石回転子の外周表面磁束分布の乱れを解消し
正しく両磁極にピークを形成し、軸を介してNS
極の磁束密度分布の対称性を有するものが得ら
れ、従来の半割形成形品を貼合せる方式での作業
工数によるデメリツトを一掃することができ、生
産性が向上し、かつコスト的にも極めて有利に軸
一体成形樹脂磁石回転子が製造できて、その効果
は大である。
Effects of the Invention As is clear from the description of the embodiments described above, the present invention is advantageous in producing a resin magnet rotor by integrally insert-molding a shaft. A plurality of ferromagnetic pins that pass through the mold and the core mold and reach the molded object are installed in an opposing manner, and the magnetic flux from the electromagnetic coil is directed through the ferromagnetic pins to the center of both magnetic poles of the molded object, that is, the resin magnet rotor. By concentrating forced induction and molding, the disturbance in the magnetic flux distribution on the outer circumferential surface of the shaft-integrated insert resin magnet rotor is eliminated, peaks are formed correctly at both magnetic poles, and NS is transmitted through the shaft.
It is possible to obtain a product with a symmetrical magnetic flux density distribution at the pole, which eliminates the disadvantages of the conventional method of bonding half-split molded products due to the number of man-hours required, improving productivity and reducing costs. A shaft-integrated molded resin magnet rotor can be manufactured very advantageously, and its effects are great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の軸一体成形樹脂磁石回転子の
製造方法の一実施例に用いるための軸一体成形樹
脂磁石回転子製造装置の断面図、第2図は第1図
のA−A断面図、第3図は成形体の斜視図、第4
図は回転子外周の表面磁束密度分布図、第5図は
従来装置で成形した回転子外周の表面磁束密度分
布図、第6図は一般的な従来の軸一体成形樹脂磁
石回転子製造装置のモデル断面図、第7図は永久
磁石回転子型同期電動機の構成例を示す平面図で
ある。 ……固定側部、……移動側部、……突出
部、16……電磁石コイル、17,18……強磁
性体ブロツク、19……非磁性体キヤビテイ金
型、20……非磁性体コア金型、24……軸、2
7……成形体空間、30……強磁性体ピン、31
……強磁性押出ピン、33……樹脂磁石回転子、
34……強磁性ピン跡。
FIG. 1 is a cross-sectional view of an apparatus for manufacturing a shaft-integrated resin magnet rotor used in an embodiment of the method for manufacturing a shaft-integrated resin magnet rotor of the present invention, and FIG. 2 is a cross-sectional view taken along the line A-A in FIG. 1. Figure 3 is a perspective view of the molded body, Figure 4 is a perspective view of the molded body.
The figure is a surface magnetic flux density distribution diagram on the outer periphery of a rotor, Figure 5 is a surface magnetic flux density distribution diagram on the outer periphery of a rotor molded using conventional equipment, and Figure 6 is a diagram of a general conventional shaft-integrated molded resin magnet rotor manufacturing equipment. The model sectional view and FIG. 7 are plan views showing an example of the configuration of a permanent magnet rotor type synchronous motor. ...Fixed side part, ...Movable side part, ...Protrusion part, 16...Electromagnetic coil, 17, 18...Ferromagnetic block, 19...Nonmagnetic cavity mold, 20...Nonmagnetic core Mold, 24...Shaft, 2
7...Molded object space, 30...Ferromagnetic pin, 31
...Ferromagnetic extrusion pin, 33...Resin magnet rotor,
34...Ferromagnetic pin trace.

Claims (1)

【特許請求の範囲】 1 固定部側と移動部側とからなる軸一体成形樹
脂磁石回転子の製造装置には、電磁石コイルを外
装した強磁性体ブロツクを突設対向させ、この強
磁性体ブロツクの間に非磁性体のキヤビテイ金型
とコア金型を設け、この両金型間に成形空間を形
成して軸を配置した後、熱可塑性樹脂と強磁性粉
末の混合物を加熱状態で磁界を印加しながら射出
成形により前記成形体空間に充填して軸一体成形
樹脂磁石を製造するにあたり、前記両強磁性体ブ
ロツクからそれぞれキヤビテイ金型およびコア金
型を貫通して成形体空間内の成形体に達する強磁
性ピンを成形体の軸方向に複数個対向して立設
し、電磁石コイルからの磁束を強磁性ピンを通し
て成形体の一部に誘導し集中させ成形体に磁極を
形成するように成形することを特徴とする軸一体
成形樹脂磁石回転子の製造方法。 2 複数本の強磁性ピンを軸方向に連続した一体
の強磁性ブロツクとした特許請求の範囲第1項記
載の軸一体成形樹脂磁石回転子の製造方法。
[Scope of Claims] 1. In a manufacturing device for a resin magnet rotor integrally molded with a shaft, which consists of a fixed part side and a movable part side, ferromagnetic blocks having electromagnetic coils on the outside are protruded and opposed to each other, and the ferromagnetic blocks are A cavity mold and a core mold made of non-magnetic material are provided between the molds, and after forming a molding space between the two molds and arranging the shaft, a mixture of thermoplastic resin and ferromagnetic powder is heated and exposed to a magnetic field. When manufacturing a shaft-integrated resin magnet by filling the molded body space by injection molding while applying an electric current, the molded body in the molded body space is passed from both ferromagnetic blocks through the cavity mold and the core mold, respectively. A plurality of ferromagnetic pins reaching up to A method for manufacturing a shaft-integrated resin magnet rotor, characterized by molding. 2. A method for manufacturing a shaft-integrated resin magnet rotor according to claim 1, wherein a plurality of ferromagnetic pins are formed into an integral ferromagnetic block continuous in the axial direction.
JP12090485A 1985-06-04 1985-06-04 Manufacture of resin-molded magnet rotor with unified shaft Granted JPS61280735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12090485A JPS61280735A (en) 1985-06-04 1985-06-04 Manufacture of resin-molded magnet rotor with unified shaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12090485A JPS61280735A (en) 1985-06-04 1985-06-04 Manufacture of resin-molded magnet rotor with unified shaft

Publications (2)

Publication Number Publication Date
JPS61280735A JPS61280735A (en) 1986-12-11
JPH057938B2 true JPH057938B2 (en) 1993-01-29

Family

ID=14797872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12090485A Granted JPS61280735A (en) 1985-06-04 1985-06-04 Manufacture of resin-molded magnet rotor with unified shaft

Country Status (1)

Country Link
JP (1) JPS61280735A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2527322B2 (en) * 1987-03-02 1996-08-21 長野日本電産 株式会社 Method for manufacturing magnet for ring-shaped rotor of DC motor
KR102164255B1 (en) 2017-07-11 2020-10-12 주식회사 엘지화학 Fixing equipment for rechargeable battery test
CN109863638B (en) * 2017-07-11 2022-03-04 株式会社Lg化学 Fixing device for secondary battery test

Also Published As

Publication number Publication date
JPS61280735A (en) 1986-12-11

Similar Documents

Publication Publication Date Title
US5181971A (en) Magnet and method of manufacturing the same
CN108736605B (en) Bonded magnet injection molding device and bonded magnet injection molding method
US4441875A (en) Mold apparatus for forming article under influence of magnetic field
US4954800A (en) Magnet and method of manufacturing the same
JPS5737803A (en) Manufacture of anisotropic magnet
JPH057938B2 (en)
JP6575202B2 (en) Internal magnet type rotor manufacturing equipment
JP2017034763A (en) Manufacturing device for magnet-inclusion type rotor
JPS588571B2 (en) Simultaneous orientation magnetization method in injection molding
JPH01275113A (en) Manufacturing device for rotary plastic magnet
JPH0382350A (en) Electric motor field rotor and manufacture thereof
JPH0439214B2 (en)
JPH0523307Y2 (en)
JPH027856A (en) Manufacturing device for rotor of rotary electric machine
JPS6211212A (en) Injection molding die for manufacturing plastic magnet
JP2563436B2 (en) Magnet roll manufacturing method
JPH0395901A (en) Manufacture of magnet roller
JPS6213015A (en) Manufacture of magnet
JPH0138903Y2 (en)
JPS629922A (en) Injection molding machine for anisotropic resin magnet
JPH0220131B2 (en)
JPS62251109A (en) Molding orientation device
JPS6333379B2 (en)
JPH0529122B2 (en)
JPS58218858A (en) Manufacture of permanent magnet for rotary machine