JPH0571521B2 - - Google Patents

Info

Publication number
JPH0571521B2
JPH0571521B2 JP62052863A JP5286387A JPH0571521B2 JP H0571521 B2 JPH0571521 B2 JP H0571521B2 JP 62052863 A JP62052863 A JP 62052863A JP 5286387 A JP5286387 A JP 5286387A JP H0571521 B2 JPH0571521 B2 JP H0571521B2
Authority
JP
Japan
Prior art keywords
component
generating agent
weight
hydrogen gas
gas generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62052863A
Other languages
Japanese (ja)
Other versions
JPS63222001A (en
Inventor
Taiji Kamiguchi
Fumito Nakajima
Naruhito Takamoto
Hiroshi Ishizaka
Hiroshi Nagahisa
Seiichi Kondo
Toshisuke Minbu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP62052863A priority Critical patent/JPS63222001A/en
Publication of JPS63222001A publication Critical patent/JPS63222001A/en
Publication of JPH0571521B2 publication Critical patent/JPH0571521B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Description

【発明の詳細な説明】[Detailed description of the invention]

<産業上の利用分野> この発明は海水と接触し水素ガスの気泡を発生
する水素ガス発生剤に関する。 <従来の技術> 従来信号用気球の充填ガスあるいは燃料電池等
に用いられるH2の発生剤として水素化硼素ナト
リウム(NaBH4)と、塩化コバルト(CoCl2)、
塩化ニツケル(NiCl2)塩化ロジウム(RhCl2
あるいは酸化白金系触媒等との混合物、特に
NaBH4とCoCl2との混合物が1940年代から現在
に到るまで使用されている。(引用文献よ
り。引用文献名称はこの明細書の末尾に記載す
る。) 例えばNaBH4と5〜10wt%の無水CoCl2との
2成分からなる固体状H2発生剤の約1.5gを通常
の水5〜800倍量と接触させると、凡そ10分間と
いう短時間でH2を多量に生成する。(引用文献
)この反応は下記の(1)、(2)式により進行すると
考えられており、(引用文献)NaBH41モル当
たり約4モル(発生剤1Kg当たり約2.2m3)とい
多量のH2を効率良く発生するものである。 2NaBH4+CoCl2+3H2O →6.25H2+0.5Co2B+2NaCl+1.5HBO2 ……(1) NaBH4+2H2O→4H2+NaBo2 ……(2) <発明が解決しようとする問題点> しかし、本願発明者等は、前述の反応における
H2O源として海水を使用すると、H2の発生が著
しく抑制されることを認めた。即ち、水道水、蒸
留水等、通常の水が入手できない状態では、前述
のH2発生剤が使用できないことが判明した。 この問題点を解決する手段としては、(1)従来の
H2発生剤とともに、通常の水を常に携帯する手
段(2)例えばNaBH4水溶液とCoCl2水溶液を別々
に携帯して、使用時に混合する手段等が容易に考
えられる。しかし、携帯する重量あるいはH2
生剤としての容積が大きくなるなど、実用的観点
から考えても非常に不便であり、またこれを用い
るH2発生装置も複雑なものになる。 <発明の目的> この発明は海水と反応して多量の水素ガスを発
生する薬品を提供することを目的とする。 <手段の概要> 要するにこの発明は周期表a族の元素とb
族の元素との水素錯化合物と、標準電極電位が亜
鉛イオン(Zn2+)より貴な遷移金属元素の化合
物の一種以上と、硬水を軟化する薬品の一種以上
とよりなる水素ガス発生剤であることを特徴とす
る。 <問題を解決するための手段> 本願発明者等は、NaBH4と海水との反応を詳
細に検討し、種々の塩分の海水をH2O源として
も容易にH2を発生する新規なH2発生剤を見出し
本願発明を完成したものである。 すなわち、周期表a族の元素とb族の元素
との水素錯化合物の一たる第1成分としての
NaBH4に、第2成分として標準電極電位が亜鉛
イオンより貴な(Zn2++2e-=Zn、Eo=−
0.763V)(引用文献)遷移金属元素の化合物又
は白金属金属を含む化合物のうちの一種又は二種
以上と、硬水を軟化する薬品の一たる第3成分と
しての硼酸、酸化硼素あるいは硬水軟化剤から選
ばれた一種又は二種以上とからなるH2発生剤を
用いることにより、上記目的が達成される。 また、上記手段は、第1成分のNaBH4を類似
の水素化合物である水素化硼素リチウム
(LiBH4)又は水素化硼素カリウム(KBH4)あ
るいは水素化アルミニウムリチウム(LiAlH4
とした場合にも有効である。 <実施例> 個々の実施例の記述に先き立ち、以下にこれら
を総括して述べる。 このH2発生剤における第2成分としては、マ
ンガン、鉄、コバルト、ニツケル、銅、パナジウ
ム、ルテニウム、ロジムウ、パラジウム、オスミ
ウム、イリジウム、白金等のハロゲン化物、硫酸
塩、硝酸塩、酢酸塩、水酸化物、酸化物などが使
用できるが、特に、塩化ロジウム(RhCl3)、塩
化ルテニム(RuCl3)、塩化白金(PtCl4)、塩化
コバルト(CoCl2)、臭化コバルト(CoBr2)、ヨ
ウ化コバルト(CoI2)、硫酸コバルト(CoSO4)、
酢酸コバルト(Co(CH3COO)2)、水酸化コバル
ト(Co(OH)2)、塩化ニツケル(NiCl2)硝酸ニ
ツケル(Ni(NO32、酸化オスミウム(OsO4)等
が有効である。即ち標準電極電位が亜鉛イオンよ
り貴なる遷移金属元素の化合物である。尚、塩化
亜鉛(ZnCl2)も有効であつたが、塩化第一クロ
ム(CrCl2)ではほとんど効果が認められなかつ
た。亜鉛イオンの標準電極電(Zn2++2e=Zn、
E0=−0.763V)より、2価のクロムイオン
(Cr2++2e=Cr、E0=−0.79V)の標準電極電位
の方がより卑である。従つて本H2発生剤におけ
る第2成分としては、亜鉛イオンの標準電極電位
より貴な金属イオンの化合物が有効と考えられ
る。また、第2成分としては、パラジウム炭素、
パラジウム黒、白金黒等の貴金族触媒も有効であ
る。 更に第3成分の硼酸としてはオルト硼酸
(H3BO3)、メタ硼酸(HBO2)が有効であり、硬
水軟化剤としては、炭酸ナトリウム(Na2CO3
リン酸三ナトリウム(Na3PO4)メタリン酸ナト
リウム((NaPO3)n:n>3)メタリン酸カリ
ウム((KPO3)n)、エチレンジアミン四酢酸
(EDTA)、ニトリロトリ酢酸(NTA)あるいは
蓚酸、酒石酸等及びその塩類など海水中のカルシ
ウムイオンを不溶性の化合物として沈澱される
か、キレート化合物を生成し、上記イオンの妨害
作用を封じるものが有効である。 実施例 1(第1表、第2表参照) 所定量のNaBH4、無水CoCl2およびH3BO3
温度25℃、相対湿度20%のドライボツクス内で乳
鉢を用い十分に混合し、NaBH465〜95重量%、
無水CoCl25重量%、H3BO30〜30重量%のH2
生剤を調製した。 このようにして得られたH2発生剤1.0gを反応
器としての内容量50mlのガラス製梨型フラスコ中
に充てんしたのち、実海水3mlを添加して生成す
るH2を湿式ガスメータにより経時的に測定し、
第1表に示す結果を得た。なお表中の初期水温と
は添加した毎水の温度であり最高水温は反応中に
測定された海水温度の最大値である。 実験番号1に示したように、H2発生剤中に
H3BO3が存在しないと、H2の生成は著しく抑制
される。これに対しH3BO3量の増加に従いH2
生成速度が早くなる。また、本実施例では反応の
進行に伴い反応熱による水温の上昇が認められ
た。 比較、参考のため第2表に本例の実験番号1の
組成のH2発生剤を用い、標準海水、蒸留水、水
道水及び例えば蒸留水にNaClを2.72重量%溶解
せしめた溶液(表中ではNaCl2.72%H2Oと記す)
等を3ml添加した場合の実験結果を示した。蒸留
水、水道水あるいはNaCl2.72%H2O等において
は、H2発生剤中にH3BO3を含むなくても、従来
の公知技術と同様、短時間で効率的にH2を生成
する。これに対し、標準海水あるいはCaSO4又は
CaCl2を蒸留水に溶解したものでは、H2の生成が
著しく抑制されることが認められた。また塩化バ
リウム(BaCl2)の0.2%溶液でもCaSO4溶液と同
様にH2の生成が著しく抑制された。 さらに、実現番号1の組成のH2発生剤にPHを
2.2〜10.3の範囲で変化させた実海水を3ml添加
したが、第1表の実現番号1と同様な結果であつ
た。
<Industrial Application Field> This invention relates to a hydrogen gas generating agent that generates hydrogen gas bubbles when it comes into contact with seawater. <Prior art > Sodium borohydride (NaBH 4 ), cobalt chloride (CoCl 2 ),
Nickel chloride (NiCl 2 ) Rhodium chloride (RhCl 2 )
Or a mixture with platinum oxide catalyst etc., especially
A mixture of NaBH 4 and CoCl 2 has been used since the 1940s to the present. (From the cited document. The name of the cited document is listed at the end of this specification.) For example, approximately 1.5 g of a solid H 2 generator consisting of two components, NaBH 4 and 5 to 10 wt% anhydrous CoCl 2 , is When brought into contact with 5 to 800 times the amount of water, a large amount of H 2 is produced in a short period of about 10 minutes. (Cited document) This reaction is thought to proceed according to the following equations (1) and (2), and (Cited document) A large amount of about 4 mol per 1 mol of NaBH 4 (about 2.2 m 3 per 1 kg of generator) is generated. It generates H 2 efficiently. 2NaBH 4 +CoCl 2 +3H 2 O →6.25H 2 +0.5Co 2 B+2NaCl+1.5HBO 2 ...(1) NaBH 4 +2H 2 O→4H 2 +NaBo 2 ...(2) <Problem to be solved by the invention> However , the inventors of the present application have discovered that in the above reaction,
It was observed that the use of seawater as the H2O source significantly suppressed H2 generation. That is, it has been found that the above-mentioned H 2 generator cannot be used in a situation where ordinary water such as tap water or distilled water is not available. As a means to solve this problem, (1) conventional
A means of always carrying regular water together with the H 2 generator (2) For example, it is easy to consider a means of carrying an aqueous NaBH 4 solution and an aqueous CoCl 2 solution separately and mixing them at the time of use. However, it is very inconvenient from a practical point of view, such as the weight to be carried and the volume of the H 2 generating agent, and the H 2 generating device using it also becomes complicated. <Object of the invention> The object of the invention is to provide a chemical that reacts with seawater and generates a large amount of hydrogen gas. <Summary of Means> In short, this invention uses elements of group a of the periodic table and group b of the periodic table.
A hydrogen gas generating agent consisting of a hydrogen complex compound with a group element, one or more compounds of transition metal elements whose standard electrode potential is nobler than zinc ion (Zn 2+ ), and one or more chemicals that soften hard water. characterized by something. <Means for solving the problem> The inventors of the present application have studied in detail the reaction between NaBH 4 and seawater, and have developed a novel H2O that easily generates H2 using seawater of various salinities as a H2O source. 2 generator was discovered and the present invention was completed. That is, as the first component of a hydrogen complex compound of an element of group A and an element of group B of the periodic table.
NaBH 4 has a second component whose standard electrode potential is more noble than that of zinc ions (Zn 2+ +2e - = Zn, Eo = -
0.763V) (Cited document) One or more compounds of transition metal elements or compounds containing platinum metals, and boric acid, boron oxide, or a hard water softener as a third component of a hard water softening agent. The above object can be achieved by using an H 2 generator consisting of one or more selected from the following. In addition, the above means replaces NaBH 4 as the first component with a similar hydrogen compound such as lithium borohydride (LiBH 4 ), potassium borohydride (KBH 4 ), or lithium aluminum hydride (LiAlH 4 ).
It is also effective when <Examples> Prior to describing individual examples, these will be summarized below. The second component in this H 2 generator includes halides, sulfates, nitrates, acetates, and hydroxides such as manganese, iron, cobalt, nickel, copper, panadium, ruthenium, rhodium, palladium, osmium, iridium, and platinum. Rhodium chloride (RhCl 3 ), ruthenium chloride (RuCl 3 ), platinum chloride (PtCl 4 ), cobalt chloride (CoCl 2 ), cobalt bromide (CoBr 2 ), and iodide can be used. Cobalt (CoI 2 ), Cobalt sulfate (CoSO 4 ),
Cobalt acetate (Co(CH 3 COO) 2 ), cobalt hydroxide (Co(OH) 2 ), nickel chloride (NiCl 2 ), nickel nitrate (Ni(NO 3 ) 2 ) , osmium oxide (OsO 4 ), etc. are effective. In other words, it is a compound of a transition metal element whose standard electrode potential is nobler than that of zinc ion. Zinc chloride (ZnCl 2 ) was also effective, but chromium chloride (CrCl 2 ) had almost no effect. .Standard electrode voltage of zinc ion (Zn 2+ +2e=Zn,
The standard electrode potential of divalent chromium ion (Cr 2+ +2e=Cr, E 0 =-0.79V) is more base than E 0 =-0.763V). Therefore, a compound of metal ions nobler than the standard electrode potential of zinc ions is considered to be effective as the second component in the present H 2 generator. Further, as the second component, palladium carbon,
Noble metal group catalysts such as palladium black and platinum black are also effective. Furthermore, as the third component of boric acid, orthoboric acid (H 3 BO 3 ) and metaboric acid (HBO 2 ) are effective, and as a water softener, sodium carbonate (Na 2 CO 3 ) is effective.
trisodium phosphate (Na 3 PO 4 ), sodium metaphosphate ((NaPO 3 ) n: n>3), potassium metaphosphate ((KPO 3 ) n), ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA) or oxalic acid, Effective are compounds that precipitate calcium ions in seawater as insoluble compounds, such as tartaric acid and its salts, or produce chelate compounds to block the interfering effects of the ions. Example 1 (See Tables 1 and 2) Predetermined amounts of NaBH 4 , anhydrous CoCl 2 and H 3 BO 3 were thoroughly mixed using a mortar in a dry box at a temperature of 25°C and a relative humidity of 20%. 4 65-95% by weight,
A H2 generator was prepared with 5% by weight of anhydrous CoCl2 and 0-30% by weight of H3BO3 . After filling 1.0 g of the H 2 generator obtained in this way into a glass pear-shaped flask with an internal capacity of 50 ml as a reactor, 3 ml of actual seawater was added and the generated H 2 was measured over time using a wet gas meter. Measured to
The results shown in Table 1 were obtained. Note that the initial water temperature in the table is the temperature of each water added, and the maximum water temperature is the maximum value of seawater temperature measured during the reaction. As shown in experiment number 1, in the H2 generator
In the absence of H 3 BO 3 , H 2 production is significantly suppressed. On the other hand, as the amount of H 3 BO 3 increases, the rate of H 2 production becomes faster. Furthermore, in this example, as the reaction progressed, an increase in water temperature due to reaction heat was observed. For comparison and reference, Table 2 shows a solution of 2.72% by weight NaCl dissolved in standard seawater, distilled water, tap water, and, for example, distilled water, using the H 2 generator having the composition of experiment number 1 of this example. Here, it is written as NaCl2.72%H 2 O)
The experimental results were shown when 3 ml of the following were added. In distilled water, tap water, NaCl2.72% H 2 O, etc., H 2 can be generated efficiently in a short time as with conventional known technology even if the H 2 generating agent does not contain H 3 BO 3 . do. In contrast, standard seawater or CaSO4 or
It was observed that when CaCl 2 was dissolved in distilled water, the production of H 2 was significantly suppressed. Furthermore, a 0.2% solution of barium chloride (BaCl 2 ) also significantly suppressed H 2 production, similar to the CaSO 4 solution. Furthermore, PH is added to the H 2 generator with the composition of realization number 1.
Although 3 ml of actual seawater varied in the range of 2.2 to 10.3 was added, the result was similar to that of realization number 1 in Table 1.

【表】【table】

【表】【table】

【表】 実施例 2(第3表参照) 実施例1と同様な方法で調製したNaBH460〜
100重量%、無水CoCl20〜30重量%、H3BO30又
は10重量%のH2発生剤1.0gに15℃の実海水3ml
を添加した場合の結果を第3表に示した。尚本実
験では反応器を冷却して実施例1で認められた反
応熱による水温の上昇を防いだ。いずれの無水
CoCl2含量においてもH3BO3の存在によりH2
生成が促進される。
[Table] Example 2 (see Table 3) NaBH 4 60~ prepared in the same manner as Example 1
100% by weight, anhydrous CoCl 2 0-30% by weight, H 3 BO 3 0 or 10% by weight of H 2 generator 1.0 g to 3 ml of real seawater at 15°C
Table 3 shows the results when adding . In this experiment, the reactor was cooled to prevent the rise in water temperature caused by the reaction heat observed in Example 1. Any anhydrous
Even in the CoCl 2 content, the presence of H 3 BO 3 promotes H 2 production.

【表】【table】

【表】 実施例 3(第4表参照) 実施例1と同様な方法で調製したNaBH480重
量%、無水CoCl210重量%及びH3BO3以外の第3
成分が10重量%よりなる第3表の実験番号24に相
当するH2発生剤1.0gに15℃の実海水3mlを添加
し実施例2と同様反応器を冷却しつつ反応させた
場合の結果を第4表に示した。硬水軟化剤として
用いられている化合物の存在下では、例1〜例2
で示したH3BO3の場合と同様にH2の生成を著し
く促進したが、硬水軟化作用が小さいと考えられ
る酢酸ナトリウム(CH3COONa)硫酸ナトリウ
ム(Na2SO4)ではほとんど効果が認められなか
つた。 実施例 4(第5表参照) 実施例1と同様な方法で調製したNaBH4が80
重量%、無水CoCl2以外の前記の第2成分が10重
量%、第3成分としてメタリン酸ナトリウム
((NaPO4o)が10重量%よりなるH2発生剤1.0g
に実海水3mlを添加し実施例2と同様反応器を冷
却しつつ反応させた場合の結果を第5
[Table] Example 3 (see Table 4) 80% by weight of NaBH 4 prepared in the same manner as in Example 1, 10% by weight of anhydrous CoCl 2 and a third material other than H 3 BO 3
Results when 3 ml of actual seawater at 15°C was added to 1.0 g of the H 2 generator corresponding to Experiment No. 24 in Table 3 containing 10% by weight, and the reaction was carried out while cooling the reactor as in Example 2. are shown in Table 4. In the presence of compounds used as water softeners, Examples 1 to 2
As in the case of H 3 BO 3 shown in , H 2 production was significantly promoted, but sodium acetate (CH 3 COONa) and sodium sulfate (Na 2 SO 4 ), which are thought to have little water softening effect, had little effect. I couldn't help it. Example 4 (see Table 5) NaBH 4 prepared in the same manner as in Example 1 was 80
1.0 g of an H 2 generator consisting of 10% by weight of the second component other than anhydrous CoCl 2 and 10% by weight of sodium metaphosphate ((NaPO 4 ) o ) as the third component.
The results obtained when 3 ml of actual seawater was added to the water and reacted while cooling the reactor as in Example 2 are shown in the fifth example.

【表】【table】

【表】 表に示した。全水素生成量は1.82〜1.86/gで
あつた。CrCl2以外の第2成分において、H3BO3
あるいは(NaPO4oの添加効果が顕著である。
なお、(NaPO4oを含まないものでは反応終了時
間が3〜5倍であつた。
[Table] Shown in the table. The total amount of hydrogen produced was 1.82-1.86/g. In the second component other than CrCl 2 , H 3 BO 3
Alternatively, the effect of adding (NaPO 4 ) o is significant.
In addition, the reaction completion time was 3 to 5 times longer in the case where (NaPO 4 ) o was not included.

【表】【table】

【表】 実施例 5(第6表参照) NaBH480重量%、無水CoCl210重量%、
H3BO310重量%よりなる第3表の実験番号24と
同様の組成のH2発生剤に、0〜50℃の海水を10
ml添加し、それぞれの温度に保ちつつ反応を行つ
た結果を、第6表に示した。0℃という低温にお
いて、反応終了時間が長くなるものの、全H2
成量に変化はなく、低温域の海水中でも有効な
H2発生剤となり得る。
[Table] Example 5 (see Table 6) NaBH 4 80% by weight, anhydrous CoCl 2 10% by weight,
Add 10% of seawater at 0 to 50°C to an H2 generator with the same composition as Experiment No. 24 in Table 3 , which consists of 10% by weight of H3BO3 .
Table 6 shows the results obtained by adding 1.0 ml of each sample and carrying out the reaction while maintaining the respective temperatures. Although the reaction completion time becomes longer at a low temperature of 0°C, there is no change in the total amount of H2 produced, making it effective even in seawater at low temperatures.
Can be an H2 generator.

【表】【table】

【表】 実施例 6(第7表参照) 実施例5の組成のH2発生剤30gを窒素雰囲気
下、容量100mlのボールミルを用い調製したのち、
約1.0gを分取して、内径10mmφの筒型成型器を
用い、圧縮圧力を変化させて、円柱状の錠剤を調
整した。この錠剤を用い実施例5と同様の方法で
15℃の実海水10mlを添加した場合の結果を第7表
に示した。錠剤とすることによりH2発生剤の嵩
密度が高くなり、H2発生剤単位体積当りのH2
成量が増加するとともに、H2の生成も促進され
ることが認められた。
[Table] Example 6 (See Table 7) After preparing 30 g of H 2 generator having the composition of Example 5 using a ball mill with a capacity of 100 ml in a nitrogen atmosphere,
Approximately 1.0 g was taken out, and a cylindrical tablet was prepared by varying the compression pressure using a cylindrical molding device with an inner diameter of 10 mmφ. This tablet was used in the same manner as in Example 5.
Table 7 shows the results when 10 ml of real seawater at 15°C was added. It was found that by forming into a tablet, the bulk density of the H 2 generator increases, the amount of H 2 produced per unit volume of the H 2 generator increases, and the production of H 2 is also promoted.

【表】 実施例 7(第8表参照) 実施例5の同様の組成のH2発生剤1g又は200
gを1ml〜1m3の15℃の実海水中に投入した場合
の結果を第8表に示した。尚、実海水量に相応す
る反応器を用いた。実海水量とH2発生剤の比が
1ml/gと小さい場合、H2の生成が途中で停止
する。本実施例及び上述の実施例からして、H2
を効率良く生成するには、H2発生剤に対して約
3倍量の海水があれば良いと言える。
[Table] Example 7 (see Table 8) 1 g or 200 H 2 generator with the same composition as in Example 5
Table 8 shows the results when 1 ml to 1 m 3 of actual seawater at 15° C. was charged with 1 ml to 1 m 3 of actual seawater. Note that a reactor corresponding to the actual amount of seawater was used. If the ratio between the actual amount of seawater and the H 2 generator is as small as 1 ml/g, H 2 generation will stop midway. From this example and the above examples, H 2
To efficiently generate H 2 , it is sufficient to use approximately three times the amount of seawater as the amount of H 2 generating agent.

【表】 実施例 8(第9表参照) 実施例5のH2発生剤において、NaBH4
LiBH4又はKBH4あるいはLiAlH480重量%とし、
他は同様なH2発生剤を乾燥窒素下で調整し、実
施例5と同様な方法で15℃の海水10mlに添加した
結果を第9表に示した。いずれの場合もNaBH4
の場合と同様効率良くH2を生成した。 なお、H3BO3を含まないものでは反応終了時
間がLiBH4の場合で3倍、KBH4では10倍、
LiAlH4においては1.5倍であつた。
[Table] Example 8 (see Table 9) In the H 2 generator of Example 5, NaBH 4 was
LiBH 4 or KBH 4 or LiAlH 4 80% by weight,
An otherwise similar H 2 generator was prepared under dry nitrogen and added to 10 ml of seawater at 15° C. in the same manner as in Example 5. The results are shown in Table 9. In both cases NaBH 4
H 2 was generated as efficiently as in the case of . In addition, for those that do not contain H 3 BO 3 , the reaction completion time is 3 times longer for LiBH 4 , 10 times longer for KBH 4 ,
In LiAlH 4 , it was 1.5 times.

【表】 実施例 9(第10表参照) 実施例1における第1表の実験番号4と同様の
H2発生剤に、実施例1の比較参考例で示した
CaSO4、CaCl2あるいはBaCl2を蒸留水に溶解し
た液3mlを実施例1と同様の方法により添加した
場合の結果を第10表に示した。 本実験に用いた溶液はドイツ硬度50〜60に相当
する硬水である。本例の結果と実施例1における
比較参考例の場合を対比すると、本発明になる
H2発生剤は海水のみならず、硬度の高い硬水に
おいても有効なことが明らかである。
[Table] Example 9 (see Table 10) Similar experiment number 4 in Table 1 in Example 1
The H 2 generator shown in the comparative reference example of Example 1
Table 10 shows the results when 3 ml of a solution of CaSO 4 , CaCl 2 or BaCl 2 dissolved in distilled water was added in the same manner as in Example 1. The solution used in this experiment was hard water corresponding to a German hardness of 50 to 60. Comparing the results of this example with the comparative reference example of Example 1, the present invention is obtained.
It is clear that H 2 generators are effective not only in seawater but also in highly hard water.

【表】 <作用> 本発明になるH2発生剤の組成は、第1成分の
NaBH4等が60〜90重量%、特に70〜85重量%が
望ましく、第2成分(例えばCoCl2、NiCl2等)
が3〜30重量%、特に5〜25重量%が適当であ
り、第3成分(H3BO3、NaCO3等)が5〜20重
量%の範囲が好しい。第2及び第3成分が少なす
ぎると、H2の生成速度が著しく遅くなり効果が
なく、一方多すぎるとH2発生剤中のNaBH4の割
合が少なくなるため、H2発生剤単位重量もしく
は単位体積当りの全H2生成量が減少し実用的で
ない。 上述のH2発生剤はNaBH4等の水素化物、第2
成分及び第3成分を、窒素もしくはアルゴン等の
不活性ガス、乾燥空気等の雰囲気で、ボールミル
あるいはフラシユミル等で混合することにより調
整されるが、全体の粒度を0.5mm以下にすること
が好しい。粒度が大きいと、第3成分の添加効果
が減じることがある。これらの方法で調製された
H2発生剤は、そのままの粉体状態としても使用
できるが、圧縮成型することにより錠剤として良
い。特に、H2の発生装置の容積に制約がある場
合、錠剤とすることによりH2発生剤の嵩密度が
高くなり単位容積当りの全H2生成量が増加する
ため好適である。なお、圧縮成型に際し、離型剤
として黒鉛あるいはステアリン酸亜鉛等を1〜
3wt%添加しても良い。 本発明におけるH2発生剤を、例えば海水に投
入するか、あるいはH2発生剤に海水を注入する
場合におけるH2発生剤に対する海水量の割合は
重量比で2以上で充分である。 なお、例中のH2生成量は次式によつて計算し
た値である。 Vs=273/273+t×Pa+Pn−Pv/760 ここで、 Vs:H2生成量() V:湿式ガスメータでの測定値() t:湿式ガスメータにおける温度(℃) Pa:大気圧(mmHg) Pn:湿式ガスメータにおけるゲージ圧(mmHg) Pv:t℃における飽和水蒸気圧(mmHg) また全H2生成量はH2の生成が認められなくな
るまでのH2生成量の積算値をH2発生剤の重量基
準で示したものであり、反応終了時間とはH2
生成が認められなくなれまでの反応時間である。 さらに、標準海水とは、蒸留水965gに下記の
塩類を合計35.0g溶解したものである。 NaCl:27.213g MgCl2:3.807g MgSO4:1.658g CaSO4:1.260g K2SO4:0.863g CaCO3:0.123g MgBr2:0.076g 実海水とは太平洋沿岸より採取した海水であり
PHは15℃で7.8のものである。 <効果> 本発明によれば、海水あるいはCa2+濃度の高
い硬水を対象としても容易にH2を生成するH2
生剤が得られるので、従来技術では困難な地域で
広く使用できる効果がある。 (記) 引用文献 J.Am.Chen.Soc.、75、215(1953) Ing.Eng.Chen.52(3)、211(1960) J.Chem.Soc.Dalton Trans.、1985、307 改訂3版 化学便覧 基礎編、p473
(1984)
[Table] <Function> The composition of the H 2 generator according to the present invention is as follows:
60 to 90% by weight, especially 70 to 85% by weight of NaBH 4 etc. is desirable, and the second component (e.g. CoCl 2 , NiCl 2 etc.)
is suitably 3 to 30% by weight, particularly 5 to 25% by weight, and the third component (H 3 BO 3 , NaCO 3 , etc.) is preferably in the range of 5 to 20% by weight. If the second and third components are too small, the H 2 production rate will be extremely slow and there will be no effect, while if they are too large, the proportion of NaBH 4 in the H 2 generator will decrease, resulting in a reduction in the H 2 generator unit weight or The total amount of H 2 produced per unit volume decreases, making it impractical. The H2 generator mentioned above is a hydride such as NaBH4 ,
It is adjusted by mixing the components and the third component in a ball mill or flush mill in an atmosphere of inert gas such as nitrogen or argon, dry air, etc., but it is preferable that the overall particle size is 0.5 mm or less. . If the particle size is large, the effect of adding the third component may be reduced. prepared by these methods
The H 2 generator can be used as it is in powder form, but it can also be made into tablets by compression molding. Particularly, when there is a restriction on the capacity of the H 2 generator, forming the H 2 generator into a tablet is preferable because it increases the bulk density of the H 2 generator and increases the total amount of H 2 produced per unit volume. In addition, during compression molding, use graphite or zinc stearate as a mold release agent.
3wt% may be added. In the present invention, when the H 2 generating agent is poured into seawater, or when seawater is injected into the H 2 generating agent, a weight ratio of 2 or more is sufficient for the ratio of seawater to the H 2 generating agent. Note that the amount of H 2 produced in the example is a value calculated using the following formula. V s = 273/273 + t×P a +P n −P v /760 where, V s : H 2 production amount ( ) V : Measured value with wet gas meter ( ) t : Temperature in wet gas meter (°C) P a : Atmospheric pressure (mmHg) P n : Gauge pressure in wet gas meter (mmHg) P v : Saturated water vapor pressure at t°C (mmHg) The total amount of H 2 produced is the amount of H 2 produced until H 2 production is no longer recognized. The integrated value is shown based on the weight of the H 2 generating agent, and the reaction completion time is the reaction time until no H 2 generation is observed. Furthermore, standard seawater is a total of 35.0g of the following salts dissolved in 965g of distilled water. NaCl: 27.213g MgCl 2 : 3.807g MgSO 4 : 1.658g CaSO 4 : 1.260g K 2 SO 4 : 0.863g CaCO 3 : 0.123g MgBr 2 : 0.076g Actual seawater is seawater collected from the Pacific coast.
The pH is 7.8 at 15℃. <Effects> According to the present invention, an H 2 generator that easily generates H 2 even in seawater or hard water with a high Ca 2+ concentration can be obtained, so it can be used widely in areas where conventional technology is difficult. be. (Note) References J.Am.Chen.Soc., 75, 215 (1953) Ing.Eng.Chen.52(3), 211 (1960) J.Chem.Soc.Dalton Trans., 1985, 307 Rev. 3 Edition Chemistry Handbook Basic Edition, p473
(1984)

Claims (1)

【特許請求の範囲】 1 周期表a族の元素とb族の元素との錯金
属水素化合物と、標準電極電位が亜鉛イオン
(Zn2+)より貴なる遷移金属元素の化合物の一種
以上と、硬水を軟化する薬品の一種以上となるこ
とを特徴とする水素ガス発生剤。 2 周期表a族の元素はLi、Na、Kのいずれ
かとし、b族の元素はBまたはAlのいずれか
とし、遷移元素はMn、Fe、Co、Ni、V、Cu、
Rh、Pd、Ru、Cs、Ir、Ptのいずれかとすること
を特徴とする特許請求の範囲第1項記載の水素ガ
ス発生剤。 3 硬水を海水とし、軟化剤を硼酸、酸化硼素、
リン酸塩、ニトリロトリ酢酸、蓚酸、酒石酸及び
その塩類のいずれかとすることを特徴とする特許
請求の範囲第1項記載の水素ガス発生剤。 4 周期表a族の元素とb族の元素との水素
錯化合物たる第1成分が60〜90重量%、亜鉛イオ
ンより貴なる遷移金属元素の金属イオンの化合物
たる第2成分が5重量%以上、硬水を軟化する薬
品たる第3成分が5重量%以上よりなることを特
徴とする特許請求の範囲第1項記載の水素ガス発
生剤。 5 第1成分、第2成分、第3成分のいずれもの
粒度が0.5mm以下であることを特徴とする特許請
求の範囲第1項ないし第4項のいずれかに記載の
水素ガス発生剤。 6 第1成分、第2成分、第3成分の混合物を錠
剤に形成したことを特徴とする特許請求の範囲第
1項ないし第4項のいずれかに記載の水素ガス発
生剤。 7 圧縮成型に際し、離型剤を1〜3重量%加え
ることを特徴とする特許請求の範囲第6項記載の
水素ガス発生剤。
[Scope of Claims] 1. A complex metal hydride compound of an element of group A and an element of group B of the periodic table, and one or more compounds of a transition metal element whose standard electrode potential is nobler than zinc ion (Zn 2+ ); A hydrogen gas generating agent characterized by being one or more types of chemicals that soften hard water. 2 The elements of Group A of the periodic table are Li, Na, K, the elements of Group B are B or Al, and the transition elements are Mn, Fe, Co, Ni, V, Cu,
The hydrogen gas generating agent according to claim 1, characterized in that it is Rh, Pd, Ru, Cs, Ir, or Pt. 3 The hard water is seawater, and the softening agent is boric acid, boron oxide,
The hydrogen gas generating agent according to claim 1, characterized in that it is any one of phosphate, nitrilotriacetic acid, oxalic acid, tartaric acid, and salts thereof. 4 60 to 90% by weight of the first component, which is a hydrogen complex compound of an element in group A of the periodic table and an element in group B, and 5% by weight or more of the second component, which is a compound of a metal ion of a transition metal element nobler than zinc ion. 2. The hydrogen gas generating agent according to claim 1, wherein the third component, which is a chemical that softens hard water, is comprised of 5% by weight or more. 5. The hydrogen gas generating agent according to any one of claims 1 to 4, wherein each of the first component, second component, and third component has a particle size of 0.5 mm or less. 6. The hydrogen gas generating agent according to any one of claims 1 to 4, characterized in that a mixture of the first component, second component, and third component is formed into a tablet. 7. The hydrogen gas generating agent according to claim 6, wherein 1 to 3% by weight of a mold release agent is added during compression molding.
JP62052863A 1987-03-10 1987-03-10 Hydrogen gas generating agent Granted JPS63222001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62052863A JPS63222001A (en) 1987-03-10 1987-03-10 Hydrogen gas generating agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62052863A JPS63222001A (en) 1987-03-10 1987-03-10 Hydrogen gas generating agent

Publications (2)

Publication Number Publication Date
JPS63222001A JPS63222001A (en) 1988-09-14
JPH0571521B2 true JPH0571521B2 (en) 1993-10-07

Family

ID=12926705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62052863A Granted JPS63222001A (en) 1987-03-10 1987-03-10 Hydrogen gas generating agent

Country Status (1)

Country Link
JP (1) JPS63222001A (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02126289U (en) * 1989-03-28 1990-10-17
GB9700168D0 (en) * 1997-01-07 1997-02-26 British Nuclear Fuels Plc Hydrogen gas generation
JP4534278B2 (en) * 1999-10-07 2010-09-01 トヨタ自動車株式会社 Fuel cell device
DE10012794A1 (en) * 2000-03-16 2001-09-20 Studiengesellschaft Kohle Mbh Process for the reversible storage of hydrogen comprises using reversible hydrogen-storage materials containing mixtures of aluminum metal with alkali metals and/or alkali metal hydrides
JP4843845B2 (en) * 2000-07-03 2011-12-21 トヨタ自動車株式会社 Fuel cell system and control method thereof
GB0021386D0 (en) * 2000-09-01 2000-10-18 Secr Defence Hydrogen source
JP4752104B2 (en) * 2000-10-19 2011-08-17 トヨタ自動車株式会社 Hydrogen gas generation system
JP2002317980A (en) * 2001-04-16 2002-10-31 Seijiro Suda Method and apparatus for generating clean humid air
US7641889B1 (en) * 2003-05-14 2010-01-05 Lynntech Power Systems, Ltd. Hydrogen generator
JP2006298670A (en) * 2005-04-18 2006-11-02 Sony Corp Method and apparatus for generating hydrogen and method and system for generating electrochemical energy
US7309479B2 (en) * 2005-06-29 2007-12-18 Samsung Engineering Co., Ltd. Cobalt oxide catalysts
FR2922542B1 (en) * 2007-10-22 2010-01-01 Snpe Materiaux Energetiques BOROHYDRIDE FOAM (S); PROCESS FOR PRODUCING; GENERATION OF HYDROGEN AND FUEL CELLS USING THE SAME
TWI392644B (en) * 2008-12-10 2013-04-11 Univ Nat Central The method of sodium borohydride reacting with water to produce hydrogen
JP5099923B2 (en) * 2009-03-13 2012-12-19 財團法人工業技術研究院 SOLID HYDROGEN FUEL AND METHOD FOR PRODUCING THE SAME AND METHOD FOR USING THE SAME
TWI408099B (en) * 2009-03-13 2013-09-11 Ind Tech Res Inst Solid hydrogen fuel and methods for manufacturing and using the same
JP5381513B2 (en) * 2009-08-28 2014-01-08 株式会社豊田中央研究所 Mixture and method for producing the same, method for producing hydrogen gas, and hydrogen generator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5572524A (en) * 1978-11-24 1980-05-31 Eikichi Sasaki Apparatus for removing block of stone midway and exhausting excavated grit and mud

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5572524A (en) * 1978-11-24 1980-05-31 Eikichi Sasaki Apparatus for removing block of stone midway and exhausting excavated grit and mud

Also Published As

Publication number Publication date
JPS63222001A (en) 1988-09-14

Similar Documents

Publication Publication Date Title
JPH0571521B2 (en)
CA2576588C (en) Method for generation of hydrogen gas from borohydride
US6358488B1 (en) Method for generation of hydrogen gas
KR101132678B1 (en) Method for generation of hydrogen gas
Schlesinger et al. Sodium borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen1
Su et al. Ruthenium immobilized on Al 2 O 3 pellets as a catalyst for hydrogen generation from hydrolysis and methanolysis of sodium borohydride
Wang et al. Metal BNH hydrogen-storage compound: Development and perspectives
US20080172932A1 (en) Compositions and methods for hydrogen generation
US3405068A (en) Gas generation
JPWO2008132986A1 (en) HYDROGEN GENERATOR, MANUFACTURING METHOD, AND HYDROGEN GENERATOR
US2623812A (en) Production of hydrogen
JP5162567B2 (en) Solid hydrogen fuel having polymer matrix and method for producing the same
EP1829820A1 (en) Method for obtaining hydrogen
Khrussanova et al. Hydriding of mechanically alloyed mixtures of magnesium with MnO2, Fe2O3 and NiO
JP2007145680A (en) Hydrogen generating material and hydrogen generating method
JP2009195903A (en) Destabilized catalytic borohydride for reversibly adsorbing hydrogen
JP4187970B2 (en) Hydrogen generation method
EP3235783B1 (en) Hydrogen-generating compositions for a fuel cell and fuel cell system using the same
JP2009195903A5 (en)
KR20090009190A (en) Synthesis of alh3 and structurally related phases
WO2006009927A1 (en) Combination metal-based and hydride-based hydrogen sources and processes for producing hydrogen
JP4666527B2 (en) Boron hydride fuel formulation
Gibb Hydrides.
JP2006143537A (en) Manufacturing method for tetrahydroborate
US4287169A (en) Water dissociation method and material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees