JPH0569079B2 - - Google Patents

Info

Publication number
JPH0569079B2
JPH0569079B2 JP24449788A JP24449788A JPH0569079B2 JP H0569079 B2 JPH0569079 B2 JP H0569079B2 JP 24449788 A JP24449788 A JP 24449788A JP 24449788 A JP24449788 A JP 24449788A JP H0569079 B2 JPH0569079 B2 JP H0569079B2
Authority
JP
Japan
Prior art keywords
alloy
crystal
seed crystal
orientation
mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP24449788A
Other languages
Japanese (ja)
Other versions
JPH0292888A (en
Inventor
Yoshio Oota
Yukya Nakagawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP24449788A priority Critical patent/JPH0292888A/en
Publication of JPH0292888A publication Critical patent/JPH0292888A/en
Publication of JPH0569079B2 publication Critical patent/JPH0569079B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、一方向に凝固精密鋳造法によるニツ
ケル基超合金単結晶の製造方法に関するものであ
る。 [従来の技術] ニツケル基超合金単結晶は、その高温強度が通
常の普通鋳造材に比べて著るしく優れていること
から、主に航空機用ガスタービンのエンジン部品
(動翼、静翼)に既に実用化されており、更に陸
舶ガスタービン、その他用途にも適用が考えられ
つつある。 ニツケル基超合金単結晶の製造には、通常一方
向凝固精密鋳造法のロストワツクス法が用いら
れ、その従来例の1つとして第5図に示したセレ
クタ方式は、鋳型aの下部に位置した水冷銅板
b、スタータブロツクcの上方にセレクタ(制限
回路)dを設け、溶解、鋳造を行つている。この
セレクタの形状としては、第6図イのらせん形
(Helix)、第6図ロのジグザグ形(Zigzag)、第
6図ハの角柱形(Right−Angle)等が用いられ
ている。 他の従来例として、第7図に示した種結晶方式
は、鋳型eの下部に位置した水冷銅板f上に、鋳
造合金と同一の合金を用いた種結晶gを組み込ん
で溶解、鋳造を行つている。 [発明が解決しようとする課題] しかしながら、ニツケル超合金はすべてに面心
に立法構造(FCC)を持ち、その結晶優先成長
方位は<100>である。従つて上述の従来例のセ
レクタ方式では原則的には<100>しか得られな
い。もし得られたとしてもその場合は何らかの不
具合による結果であつて再現性はないものであ
る。又、種結晶方式は、同一金属を使用するた
め、合金種が増えたりあるいは合金開発中の様な
場合には、その合金種の数だけ種結晶を準備する
必要があるため製造が繁雑となる。 本発明は、前記実情に鑑み、製造の繁雑さを無
くし多様な合金種の任意方位の単結晶部品が得ら
れる様にしたニツケル基超合金単結晶の製造方法
を提供することを目的としてなしたものである。 [課題を解決するための手段] 本発明は、単結晶化の容易な合金であらかじめ
単結晶品を製造し、該単結晶品から所望の方位に
種結晶を切り出し、該種結晶を鋳型内で方位を固
定し、前記種結晶と異なる合金を、一方向凝固精
密鋳造法により溶解、鋳造することを特徴とする
ものである。 [作用] 種結晶を鋳型内で方位を固定するために任意方
位の単結晶が得られ、又、製造する合金種が増え
ても種結晶は異なる合金でよいので準備が簡単に
なる。 [実施例] 以下本発明の実施例を添付図面を参照して説明
する。 単結晶の容易な合金(A合金)であらかじめ単
結晶品を製造し、該単結晶品から所望の方位に種
結晶を切り出す。次に、通常のロストワツクス法
により種結晶(A合金)をろう型模型に組み込
み、第1図イに示す様な鋳型1を製作し種結晶
(A合金)2を該鋳型1内で方位を固定する。こ
の際、ある程度の結晶方位のずれを許容する場合
は他の方法で固定してもよい。次いで、前記種結
晶(A合金)と異なる合金を押湯部3から製品部
4に注湯し一方向凝固精密鋳造法により溶解、鋳
造してニツケル基超合金単結晶を製造する。 なお、図中5は冷却板である。 種結晶(A合金)と異なる合金を用いて単結晶
を得るための鋳型方案及び鋳造条件をパラメータ
として試作試験を行い、得られた試験片のマクロ
組織、ミクロ組織及び背面ラウエ法による結晶方
位の測定を行つて単結晶化の可能なことを確認し
た。又、化学分析を行つて製品部における合金成
分の異常のないことを確認した。 第1図に試験に用いた各種鋳型方案を示す。ニ
に示すタイプは種結晶(A合金)に比べ注湯合金
の融点が高い場合には、種結晶はメルトダウンす
ることがあり好ましくない。ハに示すタイプは、
逆に注湯合金が種結晶より融点の低い場合に考慮
したが、途中に断熱材6を入れために同様に種結
晶がメルトダウンすることがあり好ましくない。
ロのタイプは、種結晶2径を製品部4に突出して
挿入した場合で、種結晶の周囲から他方位の結晶
成長をする場合があり好ましくない。イ、ホのタ
イプは、種結晶2を製品部4入口よりも大きくと
ること、又、種結晶2をあらかじめ鋳型1に組み
込んだ例で結晶方位のずれが少なく、且つ単結晶
化を達成することが出来る点で好ましいといえ
る。 種結晶(A合金)に他の合金を注湯し単結晶化
した試作例を第1表に示す。
[Industrial Field of Application] The present invention relates to a method for producing a nickel-based superalloy single crystal by a unidirectional solidification precision casting method. [Prior art] Nickel-based superalloy single crystals are mainly used in engine parts (moving blades, stationary blades) of aircraft gas turbines because their high-temperature strength is significantly superior to that of ordinary cast materials. It has already been put into practical use, and its application to land and ship gas turbines and other applications is also being considered. The lost wax method, which is a unidirectional solidification precision casting method, is normally used to manufacture single crystals of nickel-based superalloys.One of the conventional examples is the selector method shown in Figure 5, which uses a water-cooling method located at the bottom of the mold a. A selector (limiting circuit) d is provided above the copper plate b and starter block c to perform melting and casting. As the shape of this selector, the helix shape shown in FIG. 6A, the zigzag shape shown in FIG. 6B, the prismatic shape shown in FIG. 6C, etc. are used. Another conventional example is the seed crystal method shown in Fig. 7, in which a seed crystal g made of the same alloy as the casting alloy is incorporated onto a water-cooled copper plate f located at the bottom of a mold e, and melting and casting are carried out. It's on. [Problems to be Solved by the Invention] However, all nickel superalloys have a face-centered cubic structure (FCC), and their preferred crystal growth orientation is <100>. Therefore, in the conventional selector method described above, only <100> can be obtained in principle. Even if it were obtained, it would be due to some kind of defect and would not be reproducible. In addition, since the seed crystal method uses the same metal, if the number of alloy types increases or if an alloy is being developed, it is necessary to prepare seed crystals for the number of alloy types, making manufacturing complicated. . In view of the above-mentioned circumstances, the present invention has been made with the object of providing a method for producing a nickel-based superalloy single crystal, which eliminates the complexity of production and enables the production of single crystal parts of various alloy types with arbitrary orientations. It is something. [Means for Solving the Problems] The present invention involves manufacturing a single-crystal product in advance from an alloy that is easy to single-crystallize, cutting out a seed crystal in a desired orientation from the single-crystal product, and placing the seed crystal in a mold. The method is characterized in that the orientation is fixed and an alloy different from the seed crystal is melted and cast by a unidirectional solidification precision casting method. [Function] Since the orientation of the seed crystal is fixed in the mold, a single crystal with an arbitrary orientation can be obtained, and even if the number of alloy types to be manufactured increases, the seed crystal can be made of a different alloy, making preparation easier. [Examples] Examples of the present invention will be described below with reference to the accompanying drawings. A single-crystal product is manufactured in advance using an alloy that is easy to form as a single crystal (alloy A), and a seed crystal is cut out from the single-crystal product in a desired orientation. Next, the seed crystal (A alloy) is incorporated into the wax model using the usual lost wax method, a mold 1 as shown in Fig. 1A is manufactured, and the orientation of the seed crystal (A alloy) 2 is fixed within the mold 1. do. At this time, if a certain degree of crystal orientation deviation is allowed, other methods may be used to fix the crystal orientation. Next, an alloy different from the seed crystal (alloy A) is poured into the product part 4 from the feeder part 3, and is melted and cast by a unidirectional solidification precision casting method to produce a nickel-based superalloy single crystal. Note that 5 in the figure is a cooling plate. A prototype test was conducted using the mold design and casting conditions as parameters for obtaining a single crystal using a different alloy from the seed crystal (alloy A), and the macrostructure, microstructure, and crystal orientation of the obtained test piece were determined by the back Laue method. We conducted measurements and confirmed that single crystallization was possible. Additionally, chemical analysis was conducted to confirm that there were no abnormalities in the alloy components in the product. Figure 1 shows the various mold designs used in the test. The type shown in D is not preferable because the seed crystal may melt down if the pouring alloy has a higher melting point than the seed crystal (alloy A). The type shown in C is
On the other hand, although consideration has been given to the case where the pouring alloy has a lower melting point than the seed crystal, it is not preferable because the seed crystal may similarly melt down because the heat insulating material 6 is inserted in the middle.
Type (B) is a case where the diameter of the seed crystal 2 is inserted into the product part 4 so as to protrude, and this is not preferable since crystals may grow from the periphery of the seed crystal in the other direction. For types A and E, the seed crystal 2 is larger than the inlet of the product section 4, and the seed crystal 2 is incorporated in the mold 1 in advance to minimize deviation in crystal orientation and achieve single crystallization. It can be said that it is preferable in that it can be done. Table 1 shows a prototype example in which a seed crystal (alloy A) was poured with another alloy to form a single crystal.

【表】 合金種(B、C)により影響を受けるが単結晶
化は可能である。この差は合金種による単結晶化
の難易性によるものである。 種結晶(A合金)及び製品部(B合金)の結晶
方位<111>の試作時の濃度変化例を第2図、第
3図イ,ロ、第4図イ,ロに示す。 測定位置を特定するためビツカースマークをつ
け、その位置に対応してEPMA線分析結果を示
している。元素分析は、A合金、B合金の濃度差
の比較的大きいTa及びMoの例を示している。こ
れにより、写真で黒く腐食されている部分は種結
晶が固相のままで、その真上ビツカースマーク
〜の範囲で両合金の濃度変化があり、溶融位置
(Fusion Line)であることが分る。又、種結晶
から製品部への細い通路部では濃度変化は既にほ
とんど無くB合金組成とほぼ同等であつた。 通常の同一合金を用いた種結晶方式の場合に
は、この様な溶融位置の確認をすることも難し
く、異合金を使う方式では、種結晶と鋳造した合
金の溶融位置を容易に確認することが出来るた
め、鋳造条件の選定にも非常に便利である。 単結晶専用合金は、従来の既存合金(Alloy
454、CMSX−2,NASAIR100等)から更に高
温強度化指向した合金や軽量性、耐食性を指向し
た合金が出現する一方、合金開発も盛んに行われ
多様化しつつある。単結晶合金の使用あるいは選
定に際し、<100>以外の他方位の各種特性を評価
する必要があり、簡便に他方位の各種合金の単結
晶材を作成することが望まれるが、本発明により
各種合金の任意方位の単結晶を提供することが出
来る。 異合金を使用することによる単結晶品の懸念
は、合金成分の変動であるが、化学成分分析によ
つて製品側への成分変動は全く見られないことを
確認した。 又、単結晶化を困難にすると考えられるMo、
W、Re等を含む合金群に対してもあらかじめ単
結晶の容易な合金を種結晶に用いることにより他
方位結晶を得ることが出来る。更に、種結晶をあ
らかじめ鋳型に組み込むことにより結晶方位を精
度良く制御することも可能である。 [発明の効果] 従来のセレクタ方式では<100>以外の単結晶
化は原理的にも不可能であり、又、同一合金種結
晶方式は合金種が増し多数の他方位単結晶を得た
い場合に種の準備に時間を要し非常に不便である
が、本発明によれば、非常に容易に他方位単結晶
が得られ、且つ省力化が可能である等の優れた効
果を奏し得る。
[Table] Although it is affected by the alloy type (B, C), single crystallization is possible. This difference is due to the difficulty of single crystallization depending on the alloy type. Examples of concentration changes in the crystal orientation <111> of the seed crystal (alloy A) and the product part (alloy B) during trial production are shown in Fig. 2, Fig. 3 A and B, and Fig. 4 A and B. A Bitkers mark is attached to identify the measurement position, and the EPMA line analysis results are shown corresponding to that position. Elemental analysis shows an example of Ta and Mo having a relatively large concentration difference between alloy A and alloy B. As a result, the black corroded part in the photograph shows that the seed crystal remains in a solid phase, and there is a change in the concentration of both alloys in the range from the Bitker's mark directly above it, indicating that this is the fusion line. Ru. In addition, there was almost no change in concentration in the narrow passage from the seed crystal to the product, and the composition was almost the same as that of alloy B. In the case of the normal seed crystal method using the same alloy, it is difficult to confirm the melting position like this, but in the case of the method using different alloys, it is easy to confirm the melting position of the seed crystal and the cast alloy. This makes it very convenient for selecting casting conditions. Alloys exclusively for single crystals are conventional existing alloys (Alloy
454, CMSX-2, NASAIR100, etc.), alloys oriented toward higher temperature strength, light weight, and corrosion resistance are emerging, and alloy development is also actively conducted and diversified. When using or selecting a single crystal alloy, it is necessary to evaluate various properties of the other side other than <100>, and it is desired to easily create single crystal materials of various alloys of the other side. A single crystal of the alloy with any orientation can be provided. A concern with single-crystal products due to the use of different alloys is the variation in alloy composition, but chemical composition analysis confirmed that no compositional variation was observed in the product. In addition, Mo, which is thought to make single crystallization difficult,
Even for alloys containing W, Re, etc., it is possible to obtain crystals in other orientations by using an alloy that is easy to form as a single crystal as a seed crystal. Furthermore, it is also possible to precisely control the crystal orientation by incorporating a seed crystal into the mold in advance. [Effect of the invention] With the conventional selector method, it is theoretically impossible to produce single crystals other than <100>, and with the same alloy seed crystal method, when the number of alloy species increases and a large number of other-oriented single crystals are desired to be obtained, However, according to the present invention, it is very easy to obtain a monocrystalline single crystal, and it is possible to save labor, which is very inconvenient.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図イ,ロ,ハ,ニ,ホは何れも本発明を実
施する際に用いる各種の鋳型方案を示す縦断面
図、第2図は種結晶(A合金)及び製品部(B合
金)の結晶方位<111>の試作時の濃度変化例を
示す金属のマクロ組織写真、第3図イは第2図の
イ部分を拡大した金属のマクロ組織写真、第3図
ロは第2図のロ部分を拡大した金属のマクロ組織
写真、第4図イは第3図イのEPMA線分析を示
す図、第4図ロは第3図ロのEPMA線分析を示
す図、第5図はロストワツクス法を実施する際に
従来採用されているセレクタ方式を示す縦断面
図、第6図イ,ロ,ハは第5図に示すセレクタの
形状を表わす斜視図、第7図は従来採用されてい
る種結晶方式を示す縦断面図である。 図中1は鋳型、2は種結晶、3は押湯部、4は
製品部、5は冷却板を示す。
Figure 1 A, B, C, D, and H are longitudinal sectional views showing various mold designs used in carrying out the present invention, and Figure 2 is a seed crystal (A alloy) and a product part (B alloy). Figure 3A is a macrostructure photograph of the metal showing an example of concentration change during trial production with crystal orientation <111>. Figure 4 (a) is a photograph showing the EPMA line analysis of Figure 3 (a), Figure 4 (b) is a view showing the EPMA line analysis of Figure 3 (b), and Figure 5 is a lost wax. Fig. 6 is a vertical cross-sectional view showing the selector method conventionally adopted when carrying out the method, Figure 6 A, B, and C are perspective views showing the shape of the selector shown in Fig. 5, and Fig. 7 is the conventionally adopted FIG. 3 is a vertical cross-sectional view showing a seed crystal method. In the figure, 1 is a mold, 2 is a seed crystal, 3 is a feeder section, 4 is a product section, and 5 is a cooling plate.

Claims (1)

【特許請求の範囲】[Claims] 1 単結晶化の容易な合金であらかじめ単結晶品
を製造し、該単結晶品から所望の方位に種結晶を
切り出し、該種結晶を鋳型内で方位を固定し、前
記種結晶と異なる合金を、一方向凝固精密鋳造法
により溶解、鋳造することを特徴とするニツケル
基超合金単結晶の製造方法。
1. A single-crystal product is manufactured in advance from an alloy that is easy to single-crystallize, a seed crystal is cut out from the single-crystal product in a desired orientation, the orientation of the seed crystal is fixed in a mold, and an alloy different from the seed crystal is produced. , a method for producing a single crystal of a nickel-based superalloy, characterized by melting and casting by a unidirectional solidification precision casting method.
JP24449788A 1988-09-30 1988-09-30 Production of single crystal of nickel-based superalloy Granted JPH0292888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24449788A JPH0292888A (en) 1988-09-30 1988-09-30 Production of single crystal of nickel-based superalloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24449788A JPH0292888A (en) 1988-09-30 1988-09-30 Production of single crystal of nickel-based superalloy

Publications (2)

Publication Number Publication Date
JPH0292888A JPH0292888A (en) 1990-04-03
JPH0569079B2 true JPH0569079B2 (en) 1993-09-30

Family

ID=17119548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24449788A Granted JPH0292888A (en) 1988-09-30 1988-09-30 Production of single crystal of nickel-based superalloy

Country Status (1)

Country Link
JP (1) JPH0292888A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9878889B2 (en) 2010-08-17 2018-01-30 Jlg Industries, Inc. Mast lift using multi-stage mast module

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4344917C2 (en) * 1993-01-07 1999-04-22 Tdk Corp Tape cassette
GB0012185D0 (en) * 2000-05-20 2000-07-12 Rolls Royce Plc Single crystal seed alloy
US7575038B2 (en) * 2001-06-11 2009-08-18 Howmet Research Corporation Single crystal seed
GB0406102D0 (en) * 2004-03-18 2004-04-21 Rolls Royce Plc A casting method
EP3065901B1 (en) * 2013-11-04 2021-07-14 Raytheon Technologies Corporation Method for preparation of a superalloy having a crystallographic texture controlled microstructure by electron beam melting
US11198175B2 (en) 2019-10-04 2021-12-14 Raytheon Technologies Corporation Arcuate seed casting method
US11383295B2 (en) 2019-10-04 2022-07-12 Raytheon Technologies Corporation Arcuate seed casting method
US11377753B2 (en) 2019-10-04 2022-07-05 Raytheon Technologies Corporation Arcuate seed casting method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9878889B2 (en) 2010-08-17 2018-01-30 Jlg Industries, Inc. Mast lift using multi-stage mast module

Also Published As

Publication number Publication date
JPH0292888A (en) 1990-04-03

Similar Documents

Publication Publication Date Title
EP0246082B1 (en) Single crystal super alloy materials
Hallensleben et al. On the evolution of cast microstructures during processing of single crystal Ni-base superalloys using a Bridgman seed technique
US7810547B2 (en) Single crystal seed
Wills et al. A comparative study of solidification features in nickel-base superalloys: microstructural evolution and microsegregation
JP2003529677A (en) Heat resistant structural member and method of manufacturing the same
JPH0569079B2 (en)
US9144842B2 (en) Unidirectional solidification process and apparatus and single-crystal seed therefor
Han et al. Investigation on freckle formation and evolution of single-crystal nickel-based superalloy specimens with different thicknesses and abrupt cross-section changes
GB2037200A (en) Epitaxial solidification
US4289570A (en) Seed and method for epitaxial solidification
JP2002045960A (en) Method for casting amorphous alloy
JP2010075999A (en) Unidirectionally-solidification process and casting formed thereby
KR980000704A (en) How to Form Product Extensions by Casting with Ceramic Molds
US5312584A (en) Moldless/coreless single crystal castings of nickel-aluminide
Vdovin Improving the quality of the manufacturing process of turbine blades of the gas turbine engine
EP1093872B1 (en) Controlling grain spacing in directional solidified castings
CN112899786B (en) Component design method of nickel-based single-crystal superalloy seed alloy and nickel-based single-crystal superalloy seed alloy
US5916384A (en) Process for the preparation of nickel base superalloys by brazing a plurality of molded cavities
EP0059549A2 (en) Method of casting an article
JPH0119992B2 (en)
EP0100150A2 (en) Single crystal metal airfoil
JPH0120951B2 (en)
RU2492025C1 (en) Method of producing monocrystalline articles from refractory nickel alloys with preset crystal-lattice orientation
Volz et al. Castability and Recrystallization Behavior of γ′-Strengthened Co-Base Superalloys
Wang et al. Microstructure evolution and tensile property of a first-generation single crystal superalloy fabricated by laser melting deposition

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term