JPH0569052B2 - - Google Patents

Info

Publication number
JPH0569052B2
JPH0569052B2 JP7749588A JP7749588A JPH0569052B2 JP H0569052 B2 JPH0569052 B2 JP H0569052B2 JP 7749588 A JP7749588 A JP 7749588A JP 7749588 A JP7749588 A JP 7749588A JP H0569052 B2 JPH0569052 B2 JP H0569052B2
Authority
JP
Japan
Prior art keywords
metastable phase
heat treatment
ray diffraction
equiaxed
water glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7749588A
Other languages
Japanese (ja)
Other versions
JPH01249638A (en
Inventor
Takuaki Aoyama
Hiroshi Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SETO YOGYO GENRYO KK
Original Assignee
SETO YOGYO GENRYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SETO YOGYO GENRYO KK filed Critical SETO YOGYO GENRYO KK
Priority to JP7749588A priority Critical patent/JPH01249638A/en
Publication of JPH01249638A publication Critical patent/JPH01249638A/en
Publication of JPH0569052B2 publication Critical patent/JPH0569052B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は水ガラスの建築業界における建材の
不燃化あるいは難燃化、化学装置や暖熱装置に用
いられる水ガラス基材はパテの硬化剤、耐火耐熱
塗料、鉱物性の絶縁物質、含浸物質及び被覆物質
用の結合剤として利用されている。
[Detailed Description of the Invention] [Industrial Application Field] This invention applies to making water glass nonflammable or flame retardant as a building material in the construction industry, and for making water glass base materials used in chemical equipment and heating equipment as a putty hardening agent. It is used as a binder for fire-resistant and heat-resistant paints, mineral insulation materials, impregnating materials, and coating materials.

[従来の技術] 水ガラスは安価な無機接着剤であるが、硬化に
時間が掛かり、耐水性が良好でないことの理由
で、単味の使用には自ずから限度がある。上記の
欠点を改良するために種々の硬化剤の添加が行な
われており、不燃性無機硬化剤として古くから、
ケイ弗化ナトリウムが知られている。また縮合リ
ン酸アルミニウム(特公昭44−8977号)ホウ酸カ
ルシウム(特公昭49−10813号)第一リン酸の金
属塩を基材とするケイ弗化物(特公昭49−16253
号)等が硬化剤として用いられている。
[Prior Art] Although water glass is an inexpensive inorganic adhesive, its use as a single adhesive is naturally limited because it takes time to cure and its water resistance is poor. In order to improve the above-mentioned drawbacks, various hardening agents have been added.
Sodium silicofluoride is known. Also, condensed aluminum phosphate (Japanese Patent Publication No. 44-8977), calcium borate (Japanese Patent Publication No. 49-10813), and silicon fluoride based on metal salts of primary phosphoric acid (Japanese Patent Publication No. 49-16253)
No.) etc. are used as hardening agents.

[発明が解決しようとする課題] しかし上記従来の技術のうち、最も効果的な硬
化剤は、縮合リン酸アルミニウム(特公昭44−
8977号)であるが、そのX線回折図を第1図に示
す。横軸は走査角度2θを示し、単位はである。縦
軸はX線回折強度を表わす。図中1は等軸晶系
Al(PO33の回折ピークを、2は準安定相Al
(PO33の回折ピークを示す。対陰極はCuである。
この物質は等軸晶系Al(PO33と準安定相Al
(PO33との混合物であり、特公昭44−8977号に
記されたように、「第1段階で恒量になるまで最
高400℃に、第2段階で再び恒量となるまで最高
750℃に加熱する」事を特徴としているが、第1
段階の熱処理温度を変化した場合の生成物のX線
回折図を第2図に示す。第2図は水酸化アルミニ
ウムとリン酸のみで合成した縮合リン酸アルミニ
ウムの加熱処理温度の相違によるX線回折図であ
る。横軸は走査角度2θを示し、単位は°である。
縦軸はX線回折強度を表わす。図中は250℃、
は350℃、は400℃、は550℃加熱処理物を
表わし、1は等軸晶系Al(PO33の回折ピークを、
2は準安定相Al(PO33の回折ピークを示す。対
陰極はCuである。加熱処理温度400℃以上の場合
は等軸晶系Al(PO33のみとなり、準安定相Al
(PO33は消滅する。又加熱処理温度が250℃で
は、準安定相Al(PO33は合成できない。等軸晶
系Al(PO33と準安定相Al(PO33との硬化作用の
比較のために、次ぎの実験を行なつた。マイカ粉
300重量部、Al(PO3375重量部、水ガラス300重
量部、水60重量部を混合して、その泥しようを型
に流し(厚さ10mmの円柱状)、放置し硬化作用を
観察した。Al(PO33としては、等軸晶系と準安
定相を用いた。準安定相を用いた物は24時間以内
に硬化したが、等軸晶系の物は1週間経過しても
硬化現象は認められなかつた。等軸晶系メタリン
酸アルミニウムAl(PO33は硬化作用が全くなく、
準安定相メタリン酸アルミニウムAl(PO33が硬
化作用をもつことが分かつた。従つて加熱処理効
果により等軸晶系Al(PO33の生成を極力押さえ、
準安定相Al2(PO33の合成率を大にすることを目
的としている。
[Problems to be Solved by the Invention] However, among the above-mentioned conventional techniques, the most effective curing agent is condensed aluminum phosphate (Japanese Patent Publication No. 44-
8977), whose X-ray diffraction pattern is shown in FIG. The horizontal axis indicates the scanning angle 2θ, and the unit is . The vertical axis represents the X-ray diffraction intensity. 1 in the figure is equiaxed crystal system
2 is the diffraction peak of Al(PO3)3 , and 2 is the metastable phase Al.
Shows the diffraction peak of (PO 3 ) 3 . The anticathode is Cu.
This material consists of equiaxed crystal system Al( PO3 ) 3 and metastable phase Al
It is a mixture with (PO 3 ) 3 , and as stated in Japanese Patent Publication No. 44-8977, it is heated to a maximum temperature of 400℃ in the first stage until it reaches a constant weight, and in the second stage it is heated at a maximum temperature of 400℃ until it reaches a constant weight again.
It is characterized by "heating to 750℃", but the first
FIG. 2 shows the X-ray diffraction patterns of the product when the heat treatment temperature of the steps was varied. FIG. 2 is an X-ray diffraction diagram of condensed aluminum phosphate synthesized using only aluminum hydroxide and phosphoric acid at different heat treatment temperatures. The horizontal axis indicates the scanning angle 2θ, and the unit is °.
The vertical axis represents the X-ray diffraction intensity. In the figure, 250℃;
350℃, 400℃, 550℃ heat treatment, 1 is the diffraction peak of equiaxed Al(PO 3 ) 3 ,
2 shows the diffraction peak of the metastable phase Al(PO 3 ) 3 . The anticathode is Cu. When the heat treatment temperature is 400℃ or higher, only equiaxed Al( PO3 ) 3 is formed, and metastable Al
(PO 3 ) 3 disappears. Furthermore, when the heat treatment temperature is 250°C, metastable phase Al(PO 3 ) 3 cannot be synthesized. The following experiment was conducted to compare the hardening effects of equiaxed Al(PO 3 ) 3 and metastable Al(PO 3 ) 3 . mica powder
Mix 300 parts by weight, 75 parts by weight of Al(PO 3 ) 3 , 300 parts by weight of water glass, and 60 parts by weight of water, pour the slurry into a mold (cylindrical shape with a thickness of 10 mm), and leave it to harden. Observed. As Al(PO 3 ) 3 , equiaxed crystal system and metastable phase were used. The product using the metastable phase was cured within 24 hours, but the product using the equiaxed crystal system did not show any hardening phenomenon even after one week had passed. Equiaxed aluminum metaphosphate Al( PO3 ) 3 has no hardening effect,
It was found that the metastable phase aluminum metaphosphate Al(PO 3 ) 3 has a hardening effect. Therefore, the formation of equiaxed Al(PO 3 ) 3 is suppressed as much as possible by the heat treatment effect,
The purpose is to increase the synthesis rate of the metastable phase Al 2 (PO 3 ) 3 .

[問題点を解決するための手段] 準安定相AL(PO33の合成率を大にするため
に、種々の添加物の影響を調べた。添加物として
は、CaO、ZnO、MgO、ZrO2、Y2O3等を用い
た。CaO、ZnO、ZrO2、Y2O3等の添加の場合は、
第2図と同様で、加熱処理温度400℃以上の場合
は等軸晶系Al(PO33のみで、準安定相Al(PO33
をうるためには、400℃以下で熱処理を行なう必
要がある。MgO添加の場合は第3図に示す。第
3図は酸化マグネシウム添加の場合の加熱処理温
度の相違によるX線回折図を示す。横軸は走査角
度2θを示し、単位は°である。縦軸はX線回折強
度を表わす。図中、は250℃、は400℃、は
550℃加熱処理を表わし、1は等軸晶系Al(PO33
の回折ピークを、2は準安定相Al(PO33の回折
ピークを示す。対陰極はCuである。図示のよう
に加熱処理温度550℃でも準安定相Al(PO33は安
定に存在する。多少の等軸晶系Al(PO33を伴つ
ている。準安定相と等軸晶系との量比を見るため
に、加熱処理温度とX線回折強度比BC[準
安定相Al(PO33の面間隔5.48Åのピークの高さ
B、等軸晶系Al(PO33の面間隔4.34Åのピー
クの高さをICとする]との関係を第4図に示す。
第4図は第3図と同じ組成物で、等軸晶系と準安
定相のX線回折強度比BCと加熱処理温度の
関係を示す図である。横軸は加熱処理温度(℃)
を、縦軸はBCを表わす。第4図に示したよ
うにBCは400℃最大であるが、400℃より少
し上昇すると急激に減少し、500℃で最低となり、
500℃以上ではまた増加するが、700℃が極大であ
る。しかし、400℃以上では準安定相の純度、収
率上の問題があるので、本発明においては除外す
る。従つて準安定相Al(PO33の合成率を大にす
るためには、加熱処理温度400℃以下に保つ必要
がある。工業的にはMgO添加、加熱処理温度は
絶対に400℃以下に保つことである。MgO以外の
添加物又は不純物の影響により準安定相Al
(PO33の合成率が左右されることがある。
[Means for solving the problem] In order to increase the synthesis rate of the metastable phase AL(PO 3 ) 3 , the effects of various additives were investigated. CaO, ZnO, MgO, ZrO 2 , Y 2 O 3 and the like were used as additives. When adding CaO, ZnO, ZrO 2 , Y 2 O 3 , etc.,
As shown in Figure 2, when the heat treatment temperature is 400°C or higher, only the equiaxed crystal system Al(PO 3 ) 3 is formed, and the metastable phase Al(PO 3 ) 3 is formed.
In order to obtain this, it is necessary to perform heat treatment at a temperature below 400°C. The case of MgO addition is shown in Figure 3. FIG. 3 shows X-ray diffraction patterns depending on the heat treatment temperature when magnesium oxide is added. The horizontal axis indicates the scanning angle 2θ, and the unit is °. The vertical axis represents the X-ray diffraction intensity. In the figure, is 250℃, is 400℃, is
550℃ heat treatment, 1 indicates equiaxed Al(PO 3 ) 3
2 shows the diffraction peak of the metastable phase Al(PO 3 ) 3 . The anticathode is Cu. As shown in the figure, the metastable phase Al(PO 3 ) 3 exists stably even at a heat treatment temperature of 550°C. It is accompanied by some equiaxed Al(PO 3 ) 3 . In order to see the amount ratio of the metastable phase and the equiaxed crystal system, the heat treatment temperature and the X-ray diffraction intensity ratio B / C [the height of the peak at the interplanar spacing of 5.48 Å in the metastable phase Al(PO3)3 ] B , and the height of the peak of the equiaxed Al(PO 3 ) 3 at the interplanar spacing of 4.34 Å is I C ] is shown in FIG.
FIG. 4 shows the relationship between the X-ray diffraction intensity ratio B / C of the equiaxed crystal system and the metastable phase and the heat treatment temperature for the same composition as in FIG. 3. The horizontal axis is the heat treatment temperature (℃)
, and the vertical axis represents B / C . As shown in Figure 4, B / C is at its maximum at 400°C, but when it rises a little above 400°C, it rapidly decreases, and reaches its lowest at 500°C.
It increases again at temperatures above 500℃, but reaches a maximum at 700℃. However, temperatures above 400°C pose problems in the purity and yield of the metastable phase, and are therefore excluded in the present invention. Therefore, in order to increase the synthesis rate of the metastable phase Al(PO 3 ) 3 , it is necessary to maintain the heat treatment temperature at 400° C. or lower. Industrially, MgO addition and heat treatment temperatures must be kept below 400°C. Metastable Al due to the influence of additives or impurities other than MgO
The synthesis rate of (PO 3 ) 3 may be affected.

[作用] 上記のように、縮合リン酸アルミニウムには等
軸晶系Al(PO33と準安定相Al(PO33との両者が
存在し、硬化作用に有効なのは準安定相Al
(PO33であることが分かる。準安定相を合成す
るためには、MgOを添加した酸化アルミニウム
不可欠であり、しかも加熱処理温度は絶対に400
℃以下にすれば、純度99%以上の準安定相Al
(PO33を高収率でうることができる。
[Function] As mentioned above, condensed aluminum phosphate has both the equiaxed crystal system Al(PO 3 ) 3 and the metastable phase Al(PO 3 ) 3 , and it is the metastable phase Al that is effective for the hardening effect.
It turns out that (PO 3 ) 3 . To synthesize the metastable phase, MgO-added aluminum oxide is essential, and the heat treatment temperature must be 400°C.
If the temperature is below ℃, a metastable phase Al with a purity of 99% or more is produced.
(PO 3 ) 3 can be obtained in high yield.

[実施例] 320gの水酸化アルミニウム(又は210gの酸化
アルミニウム)と18〜34gの酸化マグネシウムを
均一に混合した粉末を、1300gのリン酸(85%)
中に攪はんしながら加え、加熱溶解させた後、蒸
発、濃縮を行ない乾固させる。溶液の加熱温度
は、溶液が沸騰しない様に、徐々に温度を上げな
がら行なう。乾固物は110℃で十分に乾燥した後、
空気の流通をよくし、中まで反応させるため、粗
粉砕し、380℃で恒量になるまで約3時間加熱し、
放冷後細粉砕して硬化剤として用いる。この際に
得られた物質のX線回折図を第5図に示す。第5
図は本発明実施例の準安定相メタリン酸アルミニ
ウムAl(PO33のX線回折図である。横軸は走査
角度2θを示し、単位は°である。縦軸はX線回折
強度を表わす。図中2は準安定相Al(PO33の回
折ピークを示す。対陰極はCuである。図示のよ
うに準安定相Al(PO33のみで、等軸晶系Al
(PO33はほとんど認められない。
[Example] A powder obtained by uniformly mixing 320 g of aluminum hydroxide (or 210 g of aluminum oxide) and 18 to 34 g of magnesium oxide was mixed with 1300 g of phosphoric acid (85%).
Add to the solution while stirring, heat to dissolve, and then evaporate and concentrate to dryness. The heating temperature of the solution is carried out while gradually increasing the temperature so that the solution does not boil. After drying the dry matter thoroughly at 110℃,
In order to improve air circulation and allow the reaction to take place inside, it is coarsely ground and heated at 380°C for about 3 hours until it reaches a constant weight.
After cooling, it is finely ground and used as a hardening agent. The X-ray diffraction pattern of the substance obtained at this time is shown in FIG. Fifth
The figure is an X-ray diffraction diagram of metastable phase aluminum metaphosphate Al(PO 3 ) 3 in an example of the present invention. The horizontal axis indicates the scanning angle 2θ, and the unit is °. The vertical axis represents the X-ray diffraction intensity. In the figure, 2 indicates the diffraction peak of the metastable phase Al(PO 3 ) 3 . The anticathode is Cu. As shown in the figure, there is only metastable phase Al( PO3 ) 3 , and equiaxed Al
(PO 3 ) 3 is rarely observed.

[発明の効果] この発明は、以上説明したように、簡単に、安
価に作ることができ、硬化作用も非常に良好であ
る。次ぎにレジライト−水ガラス系についての硬
化作用を第6図に示す。第6図はレジライト−水
ガラス系についての硬化作用を示す図である。レ
ジライトは無定形シリカと準安定相メタリン酸ア
ルミニウムAl(PO33の1:1(重量比)の物であ
る。横軸はレジライトの重量%を、縦軸は硬化時
間(単位は日)を示す。レジライト20%、水ガラ
ス濃度30%が一番効果がある。
[Effects of the Invention] As explained above, the present invention can be manufactured easily and inexpensively, and has a very good curing effect. Next, FIG. 6 shows the hardening effect of the regilite-water glass system. FIG. 6 is a diagram showing the hardening effect of the regilite-water glass system. Resilite is a 1:1 (weight ratio) of amorphous silica and metastable phase aluminum metaphosphate Al(PO 3 ) 3 . The horizontal axis shows the weight percent of Regilite, and the vertical axis shows the curing time (in days). A concentration of 20% Regilight and 30% water glass is most effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は特公昭44−8977号の縮合リン酸アルミ
ニウムのX線回折図である。第2図は水酸化アル
ミニウムとリン酸のみで合成した縮合リン酸アル
ミニウムの加熱処理温度の相違によるX線回折図
を示す。第3図は酸化マグネシウム添加の場合の
加熱処理温度の相違によるX線回折図を示す。第
4図は第3図と同じ組成物で、等軸晶系と準安定
相のX線回折強度比BCと加熱処理温度の関
係を示す図である。第5図は本発明実施例の準安
定相メタリン酸アルミニウムAl(PO33のX線回
折図である。第6図はレジライト−水ガラス系に
ついての硬化作用を示す図である。
Figure 1 is an X-ray diffraction diagram of condensed aluminum phosphate published in Japanese Patent Publication No. 44-8977. FIG. 2 shows X-ray diffraction patterns of condensed aluminum phosphate synthesized using only aluminum hydroxide and phosphoric acid at different heat treatment temperatures. FIG. 3 shows X-ray diffraction patterns depending on the heat treatment temperature when magnesium oxide is added. FIG. 4 is a diagram showing the relationship between the X-ray diffraction intensity ratio B / C of the equiaxed crystal system and the metastable phase and the heat treatment temperature for the same composition as in FIG. 3. FIG. 5 is an X-ray diffraction diagram of metastable phase aluminum metaphosphate Al(PO 3 ) 3 in an example of the present invention. FIG. 6 is a diagram showing the hardening effect of the regilite-water glass system.

Claims (1)

【特許請求の範囲】[Claims] 1 水ガラス用硬化剤としてAl2O3:MgO:
P2O5=1:0.2:3(モル比)となるように、酸化
アルミニウム均一混合物をリン酸に加熱溶解した
後、蒸発、濃縮、乾固させ、乾固物を粉砕した
後、恒量になるまで200〜400℃に熱処理して、準
安定相のメタリン酸アルミニウムを得ることを特
徴とする水ガラス用硬化剤の製法。
1 Al 2 O 3 :MgO as a hardening agent for water glass:
A homogeneous aluminum oxide mixture was heated and dissolved in phosphoric acid so that P 2 O 5 = 1:0.2:3 (molar ratio), then evaporated, concentrated, and dried. 1. A method for producing a hardening agent for water glass, which comprises heat-treating at 200 to 400° C. until aluminum metaphosphate is in a metastable phase.
JP7749588A 1988-03-30 1988-03-30 Production of hardener for water glass Granted JPH01249638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7749588A JPH01249638A (en) 1988-03-30 1988-03-30 Production of hardener for water glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7749588A JPH01249638A (en) 1988-03-30 1988-03-30 Production of hardener for water glass

Publications (2)

Publication Number Publication Date
JPH01249638A JPH01249638A (en) 1989-10-04
JPH0569052B2 true JPH0569052B2 (en) 1993-09-30

Family

ID=13635559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7749588A Granted JPH01249638A (en) 1988-03-30 1988-03-30 Production of hardener for water glass

Country Status (1)

Country Link
JP (1) JPH01249638A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0403713B1 (en) 2004-08-30 2021-01-12 Universidade Estadual De Campinas - Unicamp manufacturing process of a white pigment based on the synthesis of hollow particles of aluminum orthophosphate or polyphosphate
US7763359B2 (en) 2004-08-30 2010-07-27 Bunge Fertilizantes S.A. Aluminum phosphate, polyphosphate and metaphosphate particles and their use as pigments in paints and method of making same
US9023145B2 (en) 2008-02-12 2015-05-05 Bunge Amorphic Solutions Llc Aluminum phosphate or polyphosphate compositions
US9371454B2 (en) 2010-10-15 2016-06-21 Bunge Amorphic Solutions Llc Coating compositions with anticorrosion properties
US9005355B2 (en) 2010-10-15 2015-04-14 Bunge Amorphic Solutions Llc Coating compositions with anticorrosion properties

Also Published As

Publication number Publication date
JPH01249638A (en) 1989-10-04

Similar Documents

Publication Publication Date Title
US4436555A (en) Magnesium phosphate glass cements with ceramic-type properties
US3923534A (en) Cold-setting refractory compositions
EP0614858A1 (en) Geopolymer-modified, gypsum-based construction material
US3899342A (en) Complex phosphates
US4203773A (en) Lightweight silicate aggregate
JPH04260610A (en) Production of modified disodium silicate
JPS5864207A (en) Manufacture of water glass cement hardening agent
JPH0357045B2 (en)
US2114692A (en) Coating process
JPH0569052B2 (en)
US4396723A (en) Lightweight silicate aggregate
EP0236617B1 (en) Phosphate solutions and their use as binders
US4046581A (en) Refractory binder
US4332912A (en) Sulfur-aggregate compositions and methods for preparing
US2127952A (en) Process of making reacted plaster
JP6913572B2 (en) Manufacturing method of inorganic lightweight material
US3411927A (en) Processing of asphalt and lightweight aggregate composition
JPS5927735B2 (en) Cement rapid hardening composition
SU1002265A1 (en) Method for producing clinker for white portland cement
US4010294A (en) Complex phosphates
JPS6241743A (en) Manufacture of dry powder containing hard volatile organic compound
RU2065423C1 (en) Method for producing thermal insulating material
SU1252319A1 (en) Binder
US1851844A (en) Process of preserving caustic materials
JPH03279421A (en) Production of alumina-based short fiber

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20080930

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20080930