JPH0564724B2 - - Google Patents

Info

Publication number
JPH0564724B2
JPH0564724B2 JP60088951A JP8895185A JPH0564724B2 JP H0564724 B2 JPH0564724 B2 JP H0564724B2 JP 60088951 A JP60088951 A JP 60088951A JP 8895185 A JP8895185 A JP 8895185A JP H0564724 B2 JPH0564724 B2 JP H0564724B2
Authority
JP
Japan
Prior art keywords
sample
balance
volume
gas
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60088951A
Other languages
Japanese (ja)
Other versions
JPS61247925A (en
Inventor
Seiji Akeki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP8895185A priority Critical patent/JPS61247925A/en
Publication of JPS61247925A publication Critical patent/JPS61247925A/en
Publication of JPH0564724B2 publication Critical patent/JPH0564724B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の分野] 本発明は、物体の体積の測定に関するものであ
る。さらにくわしくは、天秤を内有する密封容器
内の気体密度を変化させ、密封容器内の(a)被測定
試料の質量もしくは重量と、(b)気体密度の変化量
に対応した被測定試料の質量もしくは重量の変化
量および、(c)気体密度の変化量を測定し、被測定
試料の体積を求めることを特徴とする体積測定方
法および天秤を内有する密封容器からなる体積測
定装置に関するものである。 また、本発明は、天秤をもちいて体積を求める
方法であるため、体積と同時に真空中で示す試料
の真の質量(以下、質量と略す)が求まることお
よび真空中で示す試料の真の密度ないしは比重
(以下、密度と略す)が求まる方法および装置に
も関するものである。 [発明の背景] 近年、国際的な単位の統一に関連し、計測方法
の合理化が進められている。このため、基本的な
長さ、質量、時間などの測定に関しては便利な計
測器が考案され、豊富に供給されているが、体積
測定に関する計測器はその進歩が遅れている。 [従来の技術および問題点] 従来の体積測定方法の主な例をJIS規格などに
例をとると、例えば次の方法などがある。 JIS R 3505 ガラス製化学用体積計 JIS K 0061 化学製品の比重測定方法 JIS Z 8804 液体比重測定方法 JIS Z 8807 固体 〃 JIS M 8716 鉄鉱石類(ペレツト)の見掛比重
および気孔率の測定方法 JIS M 8717 鉄鉱石類の真比重測定方法 JIS R 5201 セメントの物理試験方法 JIS A 1109 細骨材の比重および吸水試験方法 JIS A 1110 粗骨材の比重および吸水試験方法 特開昭51−67158 なお、比重ないし密度の測定には体積の測定を
伴つているので、同じ範囲とした。 これらの方法はそれぞれ特徴があり、特定の分
野では多く利用されているが、欠点として、迅
速に測定できるものは精度が不足し、精度が高
いものは煩雑で測定に時間を要する。汎用性に
乏しい。例えば液体用、固体用、粉体用など試料
に制限がある。試料を溶解しない液体が必要。
圧力を加える必要があり試料に制約がある。な
ど、それぞれ欠点をあげることができる。 そのため、大気中で一定の体積を示す試料であ
ればおおむね適応できる汎用性のある体積の測定
方法および装置の開発が望まれている。 [発明の目的] これらの要望に対処すべく検討を行なつた結
果、汎用性、迅速性および精度にすぐれる体積測
定方法として天秤、すなわち気体密度天秤もしく
は気体比重天秤と固体天秤とを利用し試料の体積
を直接測定することを目的とし、本発明を完成し
た。 [発明の要旨] 比重の測定方法は、古代から有名なアルキメデ
スの方法がある。これは密度および比重の測定方
法として現代にも利用され、JIS規格にも採用さ
れている。この原理は試料を液体の中に釣るし、
大気中とその液体中で示す見掛質量から密度を求
めるもので、換言すれば、液体中において受ける
試料の浮力と液体の密度から試料の体積を求め、
ひいては密度を求めるものであり、精度の良い測
定方法として多用されている。 しかし、試料を液体に浸す必要があるため、固
体試料にかぎられ、しかも試料を溶解しない液体
を準備し、その液体の密度をあらかじめ別の方法
で求めておく必要があり汎用性および迅速性に劣
るという欠点がある。 本発明は、アルキメデスの原理すなわち、「試
料を流体に浸漬するとその試料が占める体積に等
しい流体の質量の浮力を受ける」という原理の応
用に基くものである。アルキメデスの方法では、
質量測定を大気中−液体中で行なつたものを、大
気中−気体中の組合せとし、同時に気体の密度を
測定することにより試料の体積が求まることを見
い出し、本発明を完成した。 すなわち、本発明の方法は通常の方法で固体天
秤を用いて試料の見掛質量を測定したのち、気体
密度天秤もしくは気体比重天秤と固体天秤を内有
する密度容器内の気体の密度を変更し、試料の見
掛質量の変化ΔGを測定する。同時に気体密度の
変化Δρから試料の体積Vmを求めることを基礎と
している。すなわち、アルキメデスの原理から次
式が成立し体積が測定できる。 Vm=ΔG/Δρ (1) [発明の詳細な説明] 本発明は、天秤を内有する密度容器内の気体密
度を変化させ、密封容器内の(a)被測定試料の質量
もしくは重量と、(b)気体密度の変化量に対応した
被測定試料の質量もしくは重量の変化量および、
(c)気体密度の変化量を測定し、被測定試料の体積
を求めることを特徴とする体積測定方法および天
秤を内有する密度容器からなる体積測定装置に関
するものである。 さらに詳しくは、本発明は、気体密度の測定
に、気体密度天秤もしくは気体比重天秤を用い、
かつ被測定試料と反応しない気体を1種ないし2
種以上使用する体積測定方法と、天秤を内有する
密度容器からなり、天秤が、気体密度を測定する
気体密度天秤もしくは気体比重天秤と、被測定試
料の質量もしくは重量を測定する天秤である体積
測定装置に関するものである。 体積計算式 本発明の原理は(1)式に示されるが、実際の固体
天秤では、分銅、桿などの体積の影響があり、(1)
式がそのまま適応されない。そこで、〔1〕等桿
天秤、〔2〕テコ天秤および〔3〕地動天秤の場
合について本発明の測定理論計算式を、本発明の
一実施態様を示す概要図である第1図および第2
図に従つて、以下に示す。 〔1〕 天秤 第1図は、等桿天秤1と、気体密度天秤もしく
は気体比重天秤2(例えばLuxのガス天秤、
Taylorのガス天秤など)を用いた本発明の一実
施態様を示す概要図である。 被測定試料3の質量(浮力の影響を受けない真
空中で示す質量ないしは重量)をM、見掛質量
(大気中で示すところの浮力の影響を受けた質量
ないしは重量、すなわち通常の秤量値)をMaお
よび体積をVmとし、分銅の質量をG、見掛質量
をGa、体積をVg、密度をρgとし、天秤の置れて
いる容器内の気体密度をρとする。 等桿天秤1では、桿の左右が等しい長さである
ので、その体積、質量も左右対象であり、浮力の
影響は消去される。従つて、被測定試料3と分銅
4がバランスすれば次式が成立する。 Ma=Ga (2) アルキメデスの原理から、見掛質量は質量から
浮力を除いた値に等しい。 Ma=M−ρVm (3) Ga=G−ρVg (4) (2)〜(4)式より M=G+ρ(Vm−Vg) (5) 本発明の方法は、容器内の気体密度ρ1の時に示
す見掛の秤量値(分銅の読み)G1および分銅の
体積Vg1を読み取り、次いで気体密度をρ1からρ2
に変え、それぞれG2およびVg2を読み取るので、
(5)式から次式の式が成立する。 M=G1+ρ1(Vm−Vg1) (6) M=G2+ρ2(Vm−Vg2) (7) (7)式−(6)式 Vm=G2−G1/ρ1−ρ2+Vg1ρ1−Vg2ρ2/ρ1−ρ2(8
) この(8式)式から、Vmが求まる。 本発明の改良方法として、(G2−G1)≡ΔGの
測定、すなわち容器内の気体密度をρ1からρ2に変
えたときに生ずる分銅の読み値の差(浮力の差に
等しい)の測定に、測定系(第1図の6)に体積
変化を生じない測定方法、例えばライダー分銅の
位置変更、桿の傾斜角度、弾性力、電磁力、静電
容量、圧電効果などを採用すると、Vg1=Vg2
Vgとなるので、(8)式は Vm=Vg+ΔG/ρ1−ρ2 (9) となる。ここでρ1−ρ2=Δρとおくと次式となる。 Vm=Vg+ΔG/Δρ (10) すなわち、被測定試料の体積Vmは、分銅の体
積Vg、秤量の読み値の差ΔGおよび気体密度の差
Δρから(10)式を用いて求まり、実用的な方法とな
る。 〔2〕 テコ天秤 第2図はテコ天秤(不等比桿天秤)11と気体
密度天秤もしくは気体比重天秤2とを用いた本発
明の一実施態様を示す概要図である。なお、テコ
天秤は直示天秤、自動天秤および電子天秤などに
その機構が採用されている。テコ天秤11におい
て、その記号を前項の等桿天秤と同じとし、その
ほかにバランス用錘9の質量をW、その見掛質量
をWa、体積をVw、密度をρwとし、支点から重
心までの桿の長さをそれぞれla,lbとする。ただ
し、テコ天秤におけるGは秤量皿側の支点12に
かかる全合計質量とする。 なお、テコ天秤の釣り合いを求めるさいに桿の
体積、質量などの不等比からくる影響は常に一定
であるとして無視する(実用的な補正方法につい
て後述する)。 (イ) 試料をのせない場合 まず、試料をのせない状態において、容器内の
気体密度を変更したときに示す固体天秤の読みの
変化量ΔGを求める。テコ天秤の気体中での釣り
合いは、 Ga=lb/laWa (11) Ga=G−ρVg (12) Wa=W−ρVw (13) ∴G=ρVg+lb/la(W−ρVw) (14) 本発明の方法にもとづき気体の密度をρ1からρ2
に変更すると、微小変化量測定部6に表われる見
掛の指示値変化をΔG0とすると、 G=ρ1Vg+lb/la(W−ρ1Vw) (15) G=ρ2Vg+lb/la(W−ρ2Vw)ΔG0 (16) (16)式−(15)式 ΔG0=(Vg−lb/laVw)(ρ1−ρ2) (17) テコ天秤では次式が成立する。 (Vg−lb/laVw)=一定≡k (18) ∴ΔG0=k(ρ1−ρ2)=k・Δρ (19) すなわち、テコ天秤は試料を測定しない場合に
でも、ρ1からρ2の変化によりその差Δに比例した
ΔG0を生じる。 なお、実際には桿の体積などの影響が表われる
ので、kはρ1,ρ2の値により若干変化する。従つ
て、本発明のテコ天秤はk≒0すなわちΔG0≒0
となる装置を採用するのが好ましい。 すなわち、実用的な補正方法として、そのΔG
≒0に対する調節方法は(18)式においてk≒0
とすることは次の条件を満たせばよい。 k=Vg−lb/laVw≒0 (20) Vg≒lb/laVw (21) G/ρg≒lb/la・W/ρw (22) (21),(22)式の条件を満たすように、桿の
lb/laの比、分銅やバランス重錘の質量および見
掛体積を調節(空胴分銅とし、見掛密度を調整す
るなど)して、G,W,ρg,ρwを適正に選ぶと
ΔG≒0とすることができる。 (ロ) 試料をのせた場合 通常、テコ天秤による質量測定は、試料Mを秤
量皿にのせたのち、分銅4の中から試料Mに相当
する分銅5:Gmを除き、Wと釣り合いして測定
する。それゆえに、M,ρmに応じ、その都度体
積変化を生じている。気体中での釣り合いを考え
るとテコ天秤は置換秤量方法であるので、 Ma=Gma (23) Ma=M−ρVm (24) Gma=Gm−ρVgm (25) ∴M=Gm+ρ(Vm−Vgm) (26) すなわち、等桿天秤の(5)式と同形の式が桿られ
る。ただし、この場合のGmはバランスさすため
取り除いた分銅5の読み取り値であり、Ma,
Gmはそれぞれの見掛の質量(浮力の影響を含む
値)である。 本発明の方法では、気体密度をρ1からρ2に変化
させて試料Mの見掛質量の差ΔGを求める。しか
しテコ天秤ではM=0の場合にでもΔG0の差を生
じるので、目盛6に表われる見掛の質量差ΔGa
は、(10)式のΔGに相当する差をΔgとする次式とな
る。 ΔGa=ΔG0+Δg (27) ρ1からρ2に気体密度を変えた場合、(26)式か
ら次の式が成立する。 M=Gm+ρ1(Vm−Vgm) (28) M=Gm+ρ2(Vm−Vgm)Δg (29) (29)−(28)式 Vm=VgmΔg/Δρ (30) ただし、Δg=ΔGa−ΔG0=ΔGa−k・Δρ なお、k≒0のテコ天秤ではΔG0≒0、Δg=
ΔGaとなり(10)式と同形になる。 〔3〕 自動天秤 ここで述べる自動天秤は、電子天秤、トーシヨ
ンバランス、ばね秤り、ピエゾバランスなどのよ
うに、分銅の加除を行なわずに、桿の傾斜、電磁
力、弾性力、ピエゾ効果、圧力などを利用して質
量もしくは重量を測定する固体天秤を総称する。
すなわち、測定系には体積変化を生じない固体天
秤をさすものとする。 この自動天秤では、一般に重量を測定し重量=
質量(重力の加速度g′=一定)として示される。
ここでは重力=質量となるように検定されたもの
として指示値Gを質量とする。従つて次式が成立
する。 Ma=G (31) Ma=M−ρVm (32) ∴M=G+ρVm (33) 本発明の方法では、密封容器内の気体密度をρ1
からρ2に変えるので次式が成立する。 M=G1+ρ1Vm (34) M=G2+ρ2Vm (35) (35)−(34)式 (G2−G1)=Vm(ρ1−ρ2) Vm=ΔG/Δρ (36) 以上を総合すると表1のようになる。
FIELD OF THE INVENTION The present invention relates to measuring the volume of objects. More specifically, by changing the gas density in the sealed container containing the balance, we will calculate (a) the mass or weight of the sample to be measured in the sealed container, and (b) the mass of the sample to be measured corresponding to the amount of change in gas density. or (c) a change in gas density to determine the volume of a sample to be measured, and a volume measuring device comprising a sealed container containing a balance. . Furthermore, since the present invention uses a balance to determine the volume, the true mass (hereinafter abbreviated as "mass") of the sample shown in vacuum can be found at the same time as the volume, and the true density of the sample shown in vacuum. The present invention also relates to a method and apparatus for determining specific gravity (hereinafter abbreviated as density). [Background of the Invention] In recent years, measurement methods have been streamlined in connection with the international unification of units. For this reason, convenient measuring instruments have been devised and abundantly available for basic measurements of length, mass, time, etc., but progress in measuring instruments for volume measurement has lagged behind. [Conventional Techniques and Problems] Taking the JIS standard as an example of the conventional volume measurement method, there are, for example, the following methods. JIS R 3505 Glass chemical volume meter JIS K 0061 Method for measuring the specific gravity of chemical products JIS Z 8804 Method for measuring the specific gravity of liquids JIS Z 8807 Solid JIS M 8716 Method for measuring the apparent specific gravity and porosity of iron ores (pellets) JIS M 8717 Method for measuring the true specific gravity of iron ores JIS R 5201 Physical test method for cement JIS A 1109 Method for testing the specific gravity and water absorption of fine aggregate JIS A 1110 Method for testing the specific gravity and water absorption of coarse aggregate JP 51-67158 Since the measurement of specific gravity or density is accompanied by the measurement of volume, they were set in the same range. Each of these methods has its own characteristics and is widely used in specific fields, but the drawbacks are that the methods that allow quick measurements lack precision, and the methods that are highly accurate are complicated and require time to measure. It lacks versatility. For example, there are restrictions on samples such as liquids, solids, and powders. A liquid that does not dissolve the sample is required.
It is necessary to apply pressure and there are restrictions on the sample. You can list the shortcomings of each. Therefore, it is desired to develop a versatile method and apparatus for measuring volume that can be applied to almost any sample that exhibits a constant volume in the atmosphere. [Purpose of the Invention] As a result of conducting studies to meet these demands, we have developed a method for measuring volume that is highly versatile, quick, and accurate, using a balance, that is, a gas density balance or gas specific gravity balance, and a solid balance. The present invention was completed with the aim of directly measuring the volume of a sample. [Summary of the Invention] A method for measuring specific gravity is Archimedes' method, which has been famous since ancient times. This is still used today as a method for measuring density and specific gravity, and is also adopted in the JIS standard. This principle involves suspending the sample in a liquid,
The density is determined from the apparent mass in the atmosphere and its liquid.In other words, the volume of the sample is determined from the buoyancy of the sample in the liquid and the density of the liquid.
In turn, it is used to determine density, and is often used as a highly accurate measurement method. However, since the sample needs to be immersed in a liquid, it is limited to solid samples, and it is also necessary to prepare a liquid that does not dissolve the sample and determine the density of the liquid in advance by another method, which reduces versatility and speed. It has the disadvantage of being inferior. The present invention is based on the application of Archimedes' principle, which states that when a sample is immersed in a fluid, it experiences a buoyancy force of a mass of the fluid equal to the volume occupied by the sample. In Archimedes' method,
The present invention was completed by discovering that the volume of a sample can be determined by combining mass measurement between air and liquid and simultaneously measuring the density of the gas. That is, the method of the present invention measures the apparent mass of a sample using a solid balance in the usual manner, and then changes the density of the gas in a density container containing a gas density balance or a gas specific gravity balance and a solid balance, Measure the change in apparent mass of the sample ΔG. At the same time, it is based on finding the sample volume Vm from the change in gas density Δρ. That is, the following equation is established based on Archimedes' principle, and the volume can be measured. Vm=ΔG/Δρ (1) [Detailed Description of the Invention] The present invention changes the gas density in a density container containing a balance, and changes the mass or weight of (a) the sample to be measured in the sealed container, and ( b) the amount of change in the mass or weight of the sample to be measured corresponding to the amount of change in gas density;
(c) The present invention relates to a volume measuring method characterized by measuring the amount of change in gas density and determining the volume of a sample to be measured, and a volume measuring device comprising a density container having a balance therein. More specifically, the present invention uses a gas density balance or a gas specific gravity balance to measure gas density,
and one or two gases that do not react with the sample to be measured.
Volume measurement method consists of a volume measurement method that uses more than one species, a density container containing a balance, and the balance is a gas density balance or gas specific gravity balance for measuring gas density, and a balance for measuring the mass or weight of the sample to be measured. It is related to the device. Volume calculation formula The principle of the present invention is shown in formula (1), but in actual solid balances, the volume of weights, rods, etc. has an influence, and (1)
The formula is not applied as is. Therefore, the measurement theory calculation formulas of the present invention for the cases of [1] equal rod balance, [2] lever balance, and [3] ground motion balance are shown in Figures 1 and 2, which are schematic diagrams showing one embodiment of the present invention.
According to the figure, it is shown below. [1] Balance Figure 1 shows an isobar balance 1 and a gas density balance or gas specific gravity balance 2 (for example, a Lux gas balance,
1 is a schematic diagram showing an embodiment of the present invention using a gas balance (such as a Taylor gas balance). M is the mass of the sample to be measured 3 (the mass or weight shown in a vacuum not affected by buoyancy), and the apparent mass (the mass or weight shown in the atmosphere affected by buoyancy, that is, the normal weighing value) Let Ma and the volume be Vm, the mass of the weight is G, the apparent mass is Ga, the volume is Vg, the density is ρg, and the density of the gas in the container in which the balance is placed is ρ. In the equal rod balance 1, the left and right sides of the rod are of equal length, so the volume and mass are also symmetrical, and the influence of buoyancy is eliminated. Therefore, if the sample to be measured 3 and the weight 4 are balanced, the following equation holds true. Ma=Ga (2) From Archimedes' principle, apparent mass is equal to mass minus buoyancy. Ma=M−ρVm (3) Ga=G−ρVg (4) From equations (2) to (4), M=G+ρ(Vm−Vg) ( 5 ) The method of the present invention Read the apparent weight value (weight reading) G 1 and the volume of the weight Vg 1 , then calculate the gas density from ρ 1 to ρ 2
and read G 2 and Vg 2 respectively, so
From equation (5), the following equation is established. M=G 11 (Vm−Vg 1 ) (6) M=G 22 (Vm−Vg 2 ) (7) Equation (7) − Equation (6) Vm=G 2 −G 11 − ρ 2 +Vg 1 ρ 1 −Vg 2 ρ 21 −ρ 2 (8
) From this equation (8), Vm can be found. An improved method of the invention is the measurement of (G 2 − G 1 )≡ΔG, i.e. the difference in weight readings (equal to the difference in buoyancy) when changing the gas density in the container from ρ 1 to ρ 2 . When measuring methods that do not cause volume changes in the measurement system (6 in Figure 1), such as changing the position of the lidar weight, inclination angle of the rod, elastic force, electromagnetic force, capacitance, piezoelectric effect, etc. , Vg 1 = Vg 2
Vg, so equation (8) becomes Vm=Vg+ΔG/ρ 1 −ρ 2 (9). Here, by setting ρ 1 −ρ 2 =Δρ, the following equation is obtained. Vm=Vg+ΔG/Δρ (10) In other words, the volume Vm of the sample to be measured can be found from the volume Vg of the weight, the difference ΔG in the weighing readings, and the difference Δρ in the gas density using equation (10), which is a practical method. becomes. [2] Lever Balance FIG. 2 is a schematic diagram showing an embodiment of the present invention using a lever balance (unequal ratio rod balance) 11 and a gas density balance or gas specific gravity balance 2. The mechanism of lever balances is used in direct reading balances, automatic balances, electronic balances, etc. In the lever balance 11, its symbol is the same as that of the equal rod balance in the previous section, and in addition, the mass of the balance weight 9 is W, its apparent mass is Wa, its volume is Vw, its density is ρw, and the length of the rod from the fulcrum to the center of gravity is Let the lengths of be la and lb, respectively. However, G in the lever balance is the total mass applied to the fulcrum 12 on the weighing pan side. Note that when finding the balance of the lever balance, the effects of unequal ratios such as the volume and mass of the rod are ignored, assuming that they are always constant (a practical correction method will be described later). (b) When no sample is placed First, with no sample placed, determine the amount of change ΔG in the solid balance reading when changing the gas density in the container. The balance of the lever balance in gas is: Ga=lb/laWa (11) Ga=G−ρVg (12) Wa=W−ρVw (13) ∴G=ρVg+lb/la (W−ρVw) (14) This invention The density of the gas is calculated from ρ 1 to ρ 2 based on the method of
When changing to _ W−ρ 2 Vw)ΔG 0 (16) Equation (16) − Equation (15) ΔG 0 = (Vg−lb/laVw)(ρ 1 −ρ 2 ) (17) The following equation holds true for the lever balance. (Vg - lb / laVw) = constant≡k (18) ∴ΔG 0 = k (ρ 1 - ρ 2 ) = k・Δρ (19) In other words, even when the sample is not measured, the lever balance changes the value from ρ 1 to ρ. A change in 2 produces ΔG 0 proportional to the difference Δ. Note that since the influence of the volume of the rod etc. appears in reality, k changes slightly depending on the values of ρ 1 and ρ 2 . Therefore, the lever balance of the present invention has k≒0, that is, ΔG 0 ≒0
It is preferable to adopt a device that satisfies the following. In other words, as a practical correction method, the ΔG
The adjustment method for ≒0 is k≒0 in equation (18).
This can be done by satisfying the following conditions. k=Vg−lb/laVw≒0 (20) Vg≒lb/laVw (21) G/ρg≒lb/la・W/ρw (22) The rod is of
By adjusting the ratio of lb/la, the mass and apparent volume of the weight and balance weight (by using a hollow weight and adjusting the apparent density, etc.) and selecting G, W, ρg, and ρw appropriately, ΔG≒ It can be set to 0. (b) When a sample is placed on it Normally, when measuring the mass using a lever balance, after placing the sample M on the weighing pan, remove the weight 5:Gm that corresponds to the sample M from the weights 4, balance it with W, and measure it. do. Therefore, the volume changes each time depending on M and ρm. Considering the balance in gas, the lever balance is a displacement weighing method, so Ma=Gma (23) Ma=M−ρVm (24) Gma=Gm−ρVgm (25) ∴M=Gm+ρ(Vm−Vgm) ( 26) In other words, an equation of the same form as equation (5) of the isobad balance is obtained. However, Gm in this case is the reading of weight 5, which was removed for balance, and Ma,
Gm is each apparent mass (a value that includes the effect of buoyancy). In the method of the present invention, the difference in apparent mass ΔG of the sample M is determined by changing the gas density from ρ 1 to ρ 2 . However, with a lever balance, a difference of ΔG 0 occurs even when M=0, so the apparent mass difference ΔGa appearing on scale 6
is the following equation, where Δg is the difference corresponding to ΔG in equation (10). ΔGa=ΔG 0 +Δg (27) When the gas density is changed from ρ 1 to ρ 2 , the following equation holds from equation (26). M=Gm+ρ 1 (Vm−Vgm) (28) M=Gm+ρ 2 (Vm−Vgm)Δg (29) Equation (29)−(28) Vm=VgmΔg/Δρ (30) However, Δg=ΔGa−ΔG 0 = ΔGa−k・Δρ In addition, in the lever balance with k≒0, ΔG 0 ≒0, Δg=
ΔGa, which is isomorphic to equation (10). [3] Automatic balances The automatic balances described here are different from electronic balances, torsion balances, spring balances, piezo balances, etc., which do not add or subtract weights, but instead use the inclination of a rod, electromagnetic force, elastic force, and piezo effect. , a general term for solid balances that measure mass or weight using pressure, etc.
In other words, the measurement system is a solid balance that does not cause volume changes. This automatic balance generally measures weight, and weight =
It is expressed as mass (acceleration of gravity g′ = constant).
Here, the indicated value G is assumed to be mass, assuming that gravity is verified to be equal to mass. Therefore, the following equation holds. Ma=G (31) Ma=M−ρVm (32) ∴M=G+ρVm (33) In the method of the present invention, the gas density in the sealed container is ρ 1
Since we change from to ρ 2 , the following equation holds true. M=G 11 Vm (34) M=G 22 Vm (35) Equation (35)-(34) (G 2 − G 1 )=Vm (ρ 1 −ρ 2 ) Vm=ΔG/Δρ ( 36) The above results are summarized in Table 1.

【表】【table】

【表】 本発明の方法は、表1の計算式からわかるよう
にΔGおよびΔρの測定ポイントであり、検出感度
の高い固体天秤の使用が必要である。この検出感
度は体積測定の有効数値を3ケタとし、試料の密
度を1〜2g/cm3とし、最少検出量/秤量(以
下、精度比と略す)の値で示すと、イ.気体の組
合せを空気−炭酸ガスまたは空気−ヘリウムガス
の場合には約10-6〜10-7(精度比0.1mg/100〜200
g)、ロ.空気−SFガスの場合には10-5〜10-6
(精度比1mg/100〜200g)、ハ.空気1気圧−空
気10気圧の組合せの場合には、10-5〜10-6(精度
比1mg/100〜200g)となり、現状の高感度の固
体天秤を使用すれば容易である。 以下、補足として、質量および密度の測定方法
ならびに体積測定に関する事項をのべる。 質量および密度の測定方法 表1の体積計算式から、固体天秤を用いて体積
が測定できるので、同時に秤量した見掛質量から
真の質量が求められる。 この質量測定方法の計算式は次式となる。 等桿天秤 (10)式を(6)式に代入する M=G1+ρ1ΔG/Δρ (37) テコ天秤 (30)式を(28)式に代入する M=Gm+ρ1ΔG/Δρ (38) 自動天秤 (36)式を(35)式に代入する M=G1+ρ1ΔG/Δρ (39) すなわち、試料と釣り合つた分銅の質量G1
いしGm、その時の気体密度ρ1および試料と分銅
との体積差ΔG/ΔρないしΔg/Δρの値から試料の質
量M が求まる。 試料の密度ρmは、本発明の方法により試料の
体積Vmおよび質量Mが求まるので、次式により
試料の密度(真空中の密度)ρmが求まる。 ρm=M/Vm (40) 測定に関する補足 気体密度の変更方法 密封容器内の気体密度を変更する方法は、気体
の種類を変更する方法(ガス置換方法)が最も好
ましい。これは実施が容易なことおよび測定系の
圧力を一定に保つことができるので、圧力変化に
よつて、体積変化を生じる試料が測定できるから
である。このことは、容器に入つたガス(例え
ば、ゴム風船、ガラス中空球など)の体積、ひい
ては質量、密度が測定でき、さらには試料ガスの
圧力を測定すれば平均分子量を求めることができ
る。 気体の種類は、試料と反応、吸着現象を生じな
いガスとし、その組合せが、そのガス密度が大き
く異なるものほど好ましい。また、液化ガスとし
て使用が容易なものがよい。この種類として、空
気、炭酸ガス、プロパン、ブタン、6弗化硫黄、
水素、ヘリウムなどの周期表零属の不活性ガス、
窒素、酸素、弗化塩化炭化水素などがある。安全
性および取扱いの点から空気−炭素ガスないしは
ヘリウムガスの組合せを推奨する。 さらに、密封容器内の気体密度を変更する方法
としては、圧力または温度を変化する方法があ
る。この方法は容易に類推できるので、実施例を
省略した。 気体密度の測定方法の別方法 気体密度を測定する方法に気体密度天秤(ガス
比重天秤)の使用を骨子としたが、他の方法でも
さしつかえない。 この例として、体積既知の標準試料をもちいる
方法がある。これは、この標準試料と被測定試料
とを平行して秤量するものである。すなわち、標
準試料を用いることで通常の固体天秤を気体密度
天秤として使用することになる。この場合の計算
式は標準試料の体積をVms、これと秤量したと
きにバランスする分銅の体積をVgs、気体密度を
ρ1からρ2に変更したときにバランスする分銅の質
量の変化量をΔGsとすると、試料の体積を測定す
る際に必要な気体密度の変化量Δρは(10)式を変形
した次式で求まる。 Δρ=ΔGs/Vms−Vgs (41) ただし、Vms≠Vgs(ρms≠ρgs) 同様に、質量の測定にあたつても体積Vmsお
よび質量Msが既知の標準試料を用いることによ
り実施できる。すなわち、質量測定に必要な気体
密度ρ1は次式になる。 ρ1=Ms−Gs/Vms−Vgs (42) 標準試料は固体天秤の分銅であつてもよく、固
体天秤の分銅の一つまたはそれ以上を密度の大き
く異なる分銅とする方法、またテコ天秤にあつて
は、テコ分銅を体積既知とする方法が好ましい。 なお、標準試料は、その密度が小さいものほど
好ましい。例えば体積200ml、質量100gのガラス
球を標準試料として用い、固体天秤の分銅の密度
8.0g/cm3、気体密度変更を空気−炭酸ガス系の
ガス置換方法で操作すると、(41)式のΔGsは
0.1153gとなり、市販されている固体天秤で十分
な精度が得られる(25℃、1気圧)。 その他 一般に試料の体積および密度は温度および圧力
で変化するので、固体天秤は秤量中に一定の温度
および圧力に保つ必要があり、温度調節および圧
力調節装置を付加することが好ましい。その簡易
方法として、固体天秤の秤量機構を金属ブロツク
の中におさめ、温度変化および温度むらを少なく
する方法がある。この方法は外部からの電磁力な
どの影響を小さくすることおよび、気体置換の場
合、気体の置換量が少く迅速置換が可能になるな
ど好ましい方法である。 本発明の方法および装置は、従来の固体天秤機
構をそのまま応用し、体積の測定が可能になるも
のであるが、試料の秤量、気体置換、読み取り、
演算および表示などにサーボ機構、計算機などを
導入し、自動化を行なうことが好ましい。 試料が粉体、液体など流体の場合には試料容器
が必要となる。この場合は、体積、質量が既知の
容器を用い、計算によつて容器を除いた試料の体
積、質量を求める。なお、試料容器の密度を固体
天秤の分銅と同一にすればΔGに試料容器の体積
の影響が表われなくなり、測定誤差の減少および
迅速化の効果があり好ましい。 実施例として、等桿天秤およびテコ天秤を使用
した例を以下に示す。なお、自動天秤はこれらの
例から容易に類推できるので省略した。 [実施例] 〔1〕 実施例1、比較例1 実施例 1 固体天秤は、秤量200g、感量1.0mg、最少検出
量0.1mgの等桿天秤(島津製作所−化学天秤11形)
および分銅200g〜0.1g(密度8.40g/cm3、を用
い、さらに密封容器内の気体を置換するため、ポ
リエチレン袋(第1図、第2図の7に相当)の中
に固体天秤を乾燥剤とともに入れた装置を用い
た。この密封容器内の気体密度の変更は、密封容
器内の気体種類を変更する方法とし、まず被測定
試料を大気中で秤量したのち、炭酸ガスをポリエ
チレン袋の底部より導入しつつ上部を大気に開放
放出して置換する方法で行なつた。 実施例1として、試料イ:純マグネシウム塊
(概約寸法55.1mm×42.5mm×38.4mm立方体、純度
99.97%)の体積を測定した。 なお、気体密度の変化量Δρの測定は、標準試
料を用いる方法とし、標準試料として体積Vms
=115.75cm3、質量Ms=149.9955gの密栓をほどこ
した中空のガラス瓶を用いた。 〔測定操作〕 測定操作は、まず固体天秤の水準および零点を
あわしたのち、大気中で試料イおよび標準試料を
それぞれ秤量し、見掛質量GおよびGsを求めた。 つづいて、密封容器内の気体を空気から炭素ガ
スに前記の方法で置換し、ふたたび秤量して炭酸
ガス中で示す見掛質量G2およびGs2を求めた。 この間の測定操作時間は8分であつた。なお、
密封容器内の温度は25.2℃、大気圧755mmHgであ
つた。 この測定の結果、試料イG1=156.1125g、G2
=156.0684g、標準試料Gs1=149.8809、Gs2
149.8202gを得た。なお、炭酸ガス置換による零
点移動は無視出来る程度であつた。 〔体積の計算〕 計算は、まず標準試料の測定値から(41)式を
用いて気体密度差Δρを求めた。ただし、0.1g未
満の測定値は分銅によらずに、ライダーの移動お
よび静止点の移動量(振幅の値から求める方法)
から求めたものであり、分銅の体積変化を伴つて
いないので、VgおよびVgsの値の計算は0.1g以
上の分銅の読み値を用いて計算した(分銅の密度
8.40g/cm3)。 Δρ=149.8809−149.8202/115.75−149.8/8.40 =0.000620g/cm3 試料イの体積Vmは、(10)式を用いて計算した。 ∴Vm=156.1/8.40+156.1125−156.0684/0.00062 =89.71cm3 〔質量および密度の計算〕 質量(真空中における質量)Mは(42)式およ
び(37)式を用い、密度(真空中における密度)
ρmは(40)式を用いて求めた。 ρ1=149.9955−149.8809/115.75−149.8/8.40=0.00
117g/cm3 ∴m=156.1125+0.00117×156.1125−156.0684/0.000
62 =156.1957g ∴ρm=156.1957/89.71=1.741g/cm3 比較例 1 比較例1として、試料イを用い、JIS M 8807
−1976固体比重測定方法第4項に準じて、水中で
秤量する方法で体積Vm、質量Mおよび密度ρm
を求めた。なお、試料イを水中で秤量する際にあ
らかじめ、水に浸漬して減圧脱気し気泡を生じな
くなつてから秤量した。この間の測定操作時間
は、120分であつた。 なお、質量Mは大気中で示す見掛質量Gの値か
ら浮力の補正(理科年表431−1985に記載の方法)
を行なつて求めた。 試料イの測定結果はVm=89.77cm3、M=
156.1968gおよびρm=1.740g/cm3であつた。 〔2〕 実施例2、比較例2 実施例 2 実施例2として、試料ロ:豊浦標準砂を用いた
以外は、実施例1と同じ方法で測定した。ただ
し、試料ロは粉体であるため、体積16.49cm3、質
量44.5125gのアルミ角皿(11×16.5×2.5cm)を
容器として用い、試料ロとの合量で秤量し、容器
の値を除く方法で行なつた。測定時間は20分間で
あつた。 この測定結果は、試料ロはVm=55.65cm3、M=
146.9227g、ρm=2.64g/cm3であつた。 比較例 2 比較例2として、試料ロを用いて、JIS R
5201セメントの物理試験方法第6項に準じ、ルシ
ヤテリエ比重瓶を用いる方法で体積を測定した。
測定時間は18時間を要した。なお試料ロは粉体で
あり、またルシヤテリエ比重瓶の目盛の関係から
実施例2と同一量とすることができず、測定値か
ら質量を同一となる値に換算した。 この測定結果は、Vm=55.9cm3、ρm=2.63g/
cm3であつた。 〔3〕,〔4〕 実施例3,4比較例3,4 実施例 3,4 実施例3として、試料ハ:上部を切断した100
mlメスシリンダーおよび実施例4として、試料
ニ:純水約100mlを用い、炭酸ガスをブタンガス
に代替した以外は、実施例1と同じ方法で測定し
た。ただし、試料ニは液体であるので、試料ハを
容器として用い、実施例2と同様な方法を行なつ
た。測定時間は10分間であつた。なお、密封容器
内の温度は大気の場合25.2℃、ブタンガスの場合
24.6℃、気圧は755mmHgであつた。この測定結果
は、試料ハVm=43.15cm3、M=97.5230g、ρm=
2.26g/cm3、試料ニVm=100.16cm3、M=100.0603
g、ρm=0.999g/cm3であつた。 比較例 3,4 比較例3として試料ハおよび比較例4として試
料ニを用いた。まず、試料ハを比較例イと同じ方
法で測定しようとしたが、水中釣り下げに天秤装
置の改造を必要としたので、測定を中止した。試
料ニは体積測定のみを行ない、容器とした試料ニ
のメスシリンダー目盛から読み取つた。 その測定結果は、試料ニVm=100.0cm3 〔5〕〜〔8〕 実施例5〜8、比較例5〜8 実施例 5〜8 固体天秤は、秤量160g、感量1mg、最少目盛
0.1mgのテコ天秤方法の直示天秤(メトラー製
H10T形、分銅密度8.4g/cm3)を用いた。実施例
5〜8として、それぞれ試料ホ:純マグネシウム
塊(試料イを用いた)、試料ヘ:約50gの黄銅塊
(分銅)、試料ト:外径約24mmのガラス球および試
料チ:外径約31mmの空気の入つた中空ガラス球を
用いた以外は実施例1と同じ方法で各試料を測定
した。この測定時間は14分間であつた。 ただし、テコ天秤であるため、気体密度の変更
によつて固体天秤の零点移動を生じるので、この
移動量ΔGの値を測定し、計算式、(30)式、
(38)式および(40)式を用いた。 この測定結果は次の通りであつた。 試料ホ Vm=89.76cm3、M=156.1955g ρm= 1.740g/cm3 試料ヘ Vm= 5.95cm3、M= 49.9994g ρm= 8.40g/cm3 試料ト Vm= 7.77cm3、M= 17.3550g ρm= 2.23g/cm3 試料チ Vm=15.50cm3、M= 19.2774g ρm= 1.24g/cm3 比較例 5〜8 比較例5〜8として、実施例5〜8にそれぞれ
対応した試料を比較例1に示す方法で測定した。
この測定時間は述べ180分であつた。 その測定結果は次の通りであつた。ただし、試
料ホと試料イは同一のものである。 試料ホ Vm=87.77cm3、M=156.1968g ρm= 1.740g/cm3 試料ヘ Vm= 5.91cm3、M= 49.9993g ρm= 8.46g/cm3 試料ト Vm= 7.80cm3、M= 17.3550g ρm= 2.23g/cm3 試料チ Vm=15.46cm3、M= 19.2774g ρm= 1.25g/cm3 実施例 9 実施例8に用いた試料チは、中空のガラス球で
あり、空気を密封したものである。実施例9では
試料チの中空ガラス球内に捕集し密封した空気の
体積を測定した。 試料チのガラスは試料トと同一素地から製造し
たものであり、密度2.23g/cm3である。また試料
のチのガラス部分の質量は19.2673gである。し
たがつて、容器とした中空ガラス球のガラス部分
の体積は19.2673÷2.23=8.64cm3である。実施例8
の方法で試料チの全体積は15.50cm3と測定された
ので、中空ガラス球内の捕集空気の体積は15.50
=8.64=6.78cm3である。 なお、密封した空気の密度は(19.2774−
19.2673)÷.78=0.00147g/cm3である。 [発明の効果] 本発明は、気体密度天秤もしくは気体比重天秤
と固体天秤を使用するので測定操作は単純であ
り、気体中で測定するため、試料が固体、液体お
よび気体であつてもよく、大気中で一定の体積を
示す試料であれば、いずれも適応できる汎用性を
有し、高精度の迅速測定が可能である等の優れた
体積測定方法および体積測定装置を提供するもの
である。 さらに、本発明により真空中で示す「真の質
量」が容易に求まる。通常この値は容易に求まら
ないため、大気中で測定した見掛の質量をそのま
ま質量として慣用されている。 計量法では簡易近似式(注)で浮力の補正をす
るか、正確度を要求されるものは真空天秤を用い
て測定されている。 さらに、本発明の大きな効果は、体積および質
量が同時に求まるので、重要な物性値である密度
が高精度でただちに計算できることである。 (注) 理科年表 物17 P.431(1985) 万有百科大辞典 16巻 P.495(1976) 小学館などに記載されている。
[Table] As can be seen from the calculation formula in Table 1, the method of the present invention requires the measurement points of ΔG and Δρ, and requires the use of a solid-state balance with high detection sensitivity. This detection sensitivity is expressed by the value of minimum detection amount/weighing amount (hereinafter abbreviated as accuracy ratio), assuming that the effective value of volume measurement is 3 digits, the density of the sample is 1 to 2 g/cm 3 , and the value is: i. When the gas combination is air-carbon dioxide or air-helium gas, it is approximately 10 -6 to 10 -7 (accuracy ratio 0.1 mg/100 to 200).
g), b. Air - 10 -5 to 10 -6 for SF gas
(accuracy ratio 1mg/100~200g), c. In the case of a combination of 1 atm of air and 10 atm of air, the result is 10 -5 to 10 -6 (accuracy ratio of 1 mg/100 to 200 g), which is easy if the current high-sensitivity solid balance is used. Below, as supplementary information, we will discuss methods for measuring mass and density, as well as matters related to volume measurement. Method for Measuring Mass and Density Since the volume can be measured using a solid balance from the volume calculation formula in Table 1, the true mass can be determined from the apparent mass weighed at the same time. The calculation formula for this mass measurement method is as follows. Equal rod balance Substitute equation (10) into equation (6) M=G 11 ΔG/Δρ (37) Lever balance Substitute equation (30) into equation (28) M=Gm+ρ 1 ΔG/Δρ (38 ) Automatic balance Substitute equation (36) into equation (35) M=G 11 ΔG/Δρ (39) In other words, the mass of the weight balanced with the sample G 1 to Gm, the gas density ρ 1 at that time, and the sample The mass M of the sample can be determined from the volume difference ΔG/Δρ or Δg/Δρ between the weight and the weight. Since the volume Vm and mass M of the sample are determined by the method of the present invention, the density ρm of the sample (density in vacuum) is determined by the following equation. ρm=M/Vm (40) Supplementary information regarding measurement Method for changing gas density The most preferable method for changing the gas density in a sealed container is to change the type of gas (gas replacement method). This is because it is easy to implement and the pressure in the measurement system can be kept constant, so that samples that change in volume due to pressure changes can be measured. This means that the volume, mass, and density of a gas contained in a container (for example, a rubber balloon, a glass hollow sphere, etc.) can be measured, and the average molecular weight can also be determined by measuring the pressure of the sample gas. The type of gas should be a gas that does not react with the sample or cause an adsorption phenomenon, and the combination is preferably one in which the gas densities are significantly different. Also, it is preferable to use a liquefied gas that is easy to use. These types include air, carbon dioxide, propane, butane, sulfur hexafluoride,
Inert gases in group 0 of the periodic table, such as hydrogen and helium,
These include nitrogen, oxygen, and fluorochlorinated hydrocarbons. From the viewpoint of safety and handling, a combination of air and carbon gas or helium gas is recommended. Furthermore, as a method of changing the gas density within the sealed container, there is a method of changing pressure or temperature. Since this method can be easily inferred, the examples are omitted. Alternative Methods for Measuring Gas Density Although the main method for measuring gas density is to use a gas density balance (gas specific gravity balance), other methods may also be used. An example of this is a method using a standard sample of known volume. This is to weigh the standard sample and the sample to be measured in parallel. That is, by using a standard sample, a normal solid balance can be used as a gas density balance. In this case, the calculation formula is: Vms is the volume of the standard sample, Vgs is the volume of the weight that balances when weighed with this, and ΔGs is the amount of change in the mass of the weight that balances when the gas density is changed from ρ 1 to ρ 2 . Then, the amount of change Δρ in gas density required when measuring the volume of the sample is determined by the following equation, which is a modification of equation (10). Δρ=ΔGs/Vms−Vgs (41) However, Vms≠Vgs (ρms≠ρgs) Similarly, mass measurement can be carried out by using a standard sample whose volume Vms and mass Ms are known. That is, the gas density ρ 1 required for mass measurement is expressed as follows. ρ 1 = Ms − Gs / Vms − Vgs (42) The standard sample may be a weight of a solid balance, and one or more of the weights of a solid balance may be weights with widely different densities, or a lever balance may be used. In this case, it is preferable to use a method in which the volume of the lever weight is known. Note that the smaller the density of the standard sample, the more preferable it is. For example, if a glass bulb with a volume of 200 ml and a mass of 100 g is used as a standard sample, the density of the weight of a solid balance is
8.0g/cm 3 , and when the gas density is changed using the air-carbon dioxide system gas replacement method, ΔGs in equation (41) becomes
The weight is 0.1153g, and sufficient accuracy can be obtained using a commercially available solid balance (25°C, 1 atm). Others Generally, the volume and density of a sample change with temperature and pressure, so it is necessary to maintain a solid-state balance at a constant temperature and pressure during weighing, and it is preferable to add a temperature control and pressure control device. One simple method is to house the weighing mechanism of a solid-state balance in a metal block to reduce temperature changes and temperature unevenness. This method is preferable because it reduces the influence of external electromagnetic force, etc., and in the case of gas replacement, the amount of gas replaced is small and rapid replacement is possible. The method and device of the present invention can directly apply a conventional solid-state balance mechanism to measure volume.
It is preferable to automate calculations and display by introducing a servo mechanism, a computer, etc. If the sample is a fluid such as powder or liquid, a sample container is required. In this case, use a container whose volume and mass are known, and calculate the volume and mass of the sample excluding the container. Note that it is preferable to make the density of the sample container the same as the weight of the solid balance, since the influence of the volume of the sample container will not appear on ΔG, which will reduce measurement errors and speed up the measurement. As an example, an example using an equal rod balance and a lever balance is shown below. Note that automatic balances are omitted because they can be easily inferred from these examples. [Example] [1] Example 1, Comparative Example 1 Example 1 The solid balance is an isobad balance (Shimadzu Corporation - chemical balance type 11) with a weighing capacity of 200 g, a sensitivity of 1.0 mg, and a minimum detection amount of 0.1 mg.
and a weight of 200 g to 0.1 g (density 8.40 g/cm 3 ), and dry the solid balance in a polyethylene bag (corresponding to 7 in Figures 1 and 2) to replace the gas in the sealed container. The gas density in the sealed container was changed by changing the type of gas in the sealed container.First, the sample to be measured was weighed in the atmosphere, and then carbon dioxide was poured into a polyethylene bag. The replacement was carried out by introducing from the bottom and releasing the upper part to the atmosphere.As Example 1, Sample A: Pure magnesium block (approximate dimensions 55.1 mm x 42.5 mm x 38.4 mm cube, purity
99.97%) volume was measured. The amount of change in gas density Δρ is measured using a standard sample, and the volume Vms is used as the standard sample.
= 115.75 cm 3 , mass Ms = 149.9955 g, and a hollow glass bottle with a tightly stopper was used. [Measurement operation] In the measurement operation, first, the level and zero point of the solid balance were adjusted, and then sample A and the standard sample were each weighed in the atmosphere to determine the apparent masses G and Gs. Subsequently, the gas in the sealed container was replaced from air to carbon gas by the method described above, and it was weighed again to determine the apparent masses G 2 and Gs 2 in carbon dioxide gas. The measurement operation time during this period was 8 minutes. In addition,
The temperature inside the sealed container was 25.2°C and the atmospheric pressure was 755 mmHg. As a result of this measurement, sample I G 1 = 156.1125 g, G 2
= 156.0684g, standard sample Gs 1 = 149.8809, Gs 2 =
149.8202g was obtained. Note that the shift of the zero point due to carbon dioxide gas replacement was negligible. [Volume calculation] First, the gas density difference Δρ was calculated from the measured values of the standard sample using equation (41). However, measurements of less than 0.1g are determined by the amount of movement of the rider and the movement of the stationary point (method determined from the amplitude value), regardless of the weight.
The values of Vg and Vgs were calculated using the readings of weights of 0.1 g or more (the density of the weight
8.40g/ cm3 ). Δρ=149.8809−149.8202/115.75−149.8/8.40=0.000620 g/cm 3 The volume Vm of sample A was calculated using equation (10). ∴Vm=156.1/8.40+156.1125−156.0684/0.00062 =89.71cm 3 [Calculation of mass and density] Mass (mass in vacuum) M is calculated using equations (42) and (37). density)
ρm was determined using equation (40). ρ 1 = 149.9955−149.8809/115.75−149.8/8.40=0.00
117g/ cm3 ∴m=156.1125+0.00117×156.1125−156.0684/0.000
62 = 156.1957g ∴ρm = 156.1957/89.71 = 1.741g/cm 3 Comparative Example 1 As Comparative Example 1, using sample A, JIS M 8807
-1976 Volume Vm, mass M and density ρm by weighing in water in accordance with Section 4 of Solid Specific Gravity Measurement Method
I asked for Note that when sample A was weighed in water, it was first immersed in water, degassed under reduced pressure, and weighed after no air bubbles were formed. The measurement operation time during this period was 120 minutes. In addition, the mass M is corrected for buoyancy from the value of the apparent mass G shown in the atmosphere (method described in Rika Nendo 431-1985).
I did this and found out. The measurement results for sample A are Vm=89.77cm 3 , M=
It was 156.1968 g and ρm = 1.740 g/cm 3 . [2] Example 2, Comparative Example 2 Example 2 As Example 2, measurement was performed in the same manner as in Example 1, except that sample B: Toyoura standard sand was used. However, since sample RO is a powder, use an aluminum square plate (11 x 16.5 x 2.5 cm) with a volume of 16.49 cm 3 and a mass of 44.5125 g as a container, weigh the total amount with sample RO, and calculate the value of the container. I did it by removing it. The measurement time was 20 minutes. This measurement result shows that Vm=55.65cm 3 and M=
It was 146.9227 g, ρm = 2.64 g/cm 3 . Comparative example 2 As comparative example 2, using sample RO, JIS R
The volume was measured using a Les Chatellier pycnometer in accordance with Section 6 of Physical Test Methods for 5201 Cement.
The measurement time required 18 hours. Note that sample B was a powder, and due to the scale of the Lusciatelier pycnometer, it was not possible to make it the same amount as in Example 2, so the mass was converted to the same value from the measured value. The measurement results are Vm=55.9cm 3 , ρm=2.63g/
It was warm at cm3 . [3], [4] Examples 3, 4 Comparative Examples 3, 4 Examples 3, 4 As Example 3, sample C: 100 pieces with the upper part cut off.
Measurement was performed in the same manner as in Example 1, except that a ml graduated cylinder and Example 4 used sample 2: about 100 ml of pure water and replaced carbon dioxide gas with butane gas. However, since Sample D is a liquid, the same method as in Example 2 was carried out using Sample C as a container. The measurement time was 10 minutes. The temperature inside the sealed container is 25.2℃ in the case of air, and 25.2℃ in the case of butane gas.
The temperature was 24.6°C and the atmospheric pressure was 755mmHg. The measurement results are as follows: Sample Vm = 43.15cm 3 , M = 97.5230g, ρm =
2.26g/cm 3 , Sample Ni Vm=100.16cm 3 , M=100.0603
g, ρm=0.999 g/cm 3 . Comparative Examples 3 and 4 Sample C was used as Comparative Example 3, and sample D was used as Comparative Example 4. First, an attempt was made to measure Sample C using the same method as Comparative Example A, but the measurement was discontinued because it required modification of the balance device to lower the sample underwater. For sample 2, only the volume was measured, and the volume was read from the graduated cylinder scale of sample 2, which was used as a container. The measurement results are as follows: Sample size Vm = 100.0 cm 3 [5] to [8] Examples 5 to 8, Comparative Examples 5 to 8 Examples 5 to 8 The solid balance has a weighing capacity of 160 g, a sensitivity of 1 mg, and a minimum scale.
0.1mg lever balance direct indicator balance (manufactured by Mettler)
H10T type weight density 8.4 g/cm 3 ) was used. As Examples 5 to 8, sample E: pure magnesium ingot (sample A was used), sample H: about 50 g of brass ingot (weight), sample G: glass bulb with outer diameter of about 24 mm, and sample H: outer diameter Each sample was measured in the same manner as in Example 1, except that a hollow glass bulb containing approximately 31 mm of air was used. The measurement time was 14 minutes. However, since it is a lever balance, changing the gas density will cause the zero point of the solid balance to move, so the value of this movement amount ΔG is measured and the calculation formula, equation (30),
Equations (38) and (40) were used. The results of this measurement were as follows. Sample Vm = 89.76cm 3 , M = 156.1955g ρm = 1.740g/cm 3rd sample Vm = 5.95cm 3 , M = 49.9994g ρm = 8.40g/cm 3rd sample Vm = 7.77cm 3 , M = 17.3550g ρm = 2.23g/cm 3 sample samples Vm = 15.50cm 3 , M = 19.2774g ρm = 1.24g/cm 3 Comparative Examples 5-8 As Comparative Examples 5-8, samples corresponding to Examples 5-8 were compared. It was measured by the method shown in Example 1.
The measurement time was 180 minutes. The measurement results were as follows. However, sample E and sample B are the same. Sample Vm = 87.77cm 3 , M = 156.1968g ρm = 1.740g/cm 3rd sample Vm = 5.91cm 3 , M = 49.9993g ρm = 8.46g/cm 3rd sample Vm = 7.80cm 3 , M = 17.3550g ρm = 2.23g/cm 3 Sample chip Vm = 15.46cm 3 , M = 19.2774g ρm = 1.25g/cm 3Example 9 The sample chip used in Example 8 was a hollow glass bulb with air sealed. It is something. In Example 9, the volume of air collected and sealed inside the hollow glass bulb of sample 1 was measured. The glass of sample 1 was manufactured from the same material as that of sample 3, and had a density of 2.23 g/cm 3 . The mass of the glass part of the sample is 19.2673g. Therefore, the volume of the glass part of the hollow glass bulb used as a container is 19.2673÷2.23=8.64cm 3 . Example 8
Since the total volume of the sample was measured to be 15.50 cm 3 using the method described above, the volume of trapped air inside the hollow glass bulb was 15.50 cm3.
=8.64= 6.78cm3 . The density of sealed air is (19.2774−
19.2673)÷. 78=0.00147g/ cm3 . [Effects of the Invention] The present invention uses a gas density balance or a gas specific gravity balance and a solid balance, so the measurement operation is simple, and since the measurement is performed in a gas, the sample may be solid, liquid, or gas. The present invention provides an excellent volume measurement method and volume measurement device that is versatile enough to be applicable to any sample that exhibits a fixed volume in the atmosphere, and capable of high-accuracy, rapid measurement. Furthermore, according to the present invention, the "true mass" shown in vacuum can be easily determined. Since this value is usually not easily determined, the apparent mass measured in the atmosphere is commonly used as the mass. In the measurement method, buoyancy is corrected using a simple approximation formula (Note), or measurements that require accuracy are measured using a vacuum balance. Furthermore, a great effect of the present invention is that since volume and mass are determined simultaneously, density, which is an important physical property value, can be calculated immediately with high precision. (Note) Science Chronology Mono 17 P.431 (1985) Banyu Encyclopedia Volume 16 P.495 (1976) Listed in Shogakukan, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は等桿天秤と、気体密度天秤もしくは気
体比重天秤を用いた本発明の一実施態様を示す概
要図である。第2図はテコ天秤(不等比桿天秤)
と気体密度天秤もしくは気体比重天秤とを用いた
本発明の一実施態様を示す概要図である。 1……等桿天秤、2……気体密度天秤もしくは
気体比重天秤、3……被測定試料ないしは標準試
料、4……分銅、5……被測定試料の質量に相当
する分銅、6……微小変化量測定部、7……密封
容器、8……気体置換用通気パイプ、9……バラ
ンス用錘、10……バランス用錘、11……テコ
天秤(不等比桿天秤)、12……支点。
FIG. 1 is a schematic diagram showing an embodiment of the present invention using an isoblast balance and a gas density balance or a gas specific gravity balance. Figure 2 is a lever balance (unequal ratio balance)
FIG. 2 is a schematic diagram showing an embodiment of the present invention using a gas density balance or a gas specific gravity balance. 1... Equal rod balance, 2... Gas density balance or gas specific gravity balance, 3... Sample to be measured or standard sample, 4... Weight, 5... Weight equivalent to the mass of the sample to be measured, 6... Minute Change measurement unit, 7... Sealed container, 8... Ventilation pipe for gas replacement, 9... Balance weight, 10... Balance weight, 11... Lever balance (unequal ratio balance), 12... fulcrum.

Claims (1)

【特許請求の範囲】 1 天秤を内有する密封容器内の気体密度を変化
させ、密封容器内の(a)被測定試料の質量もしくは
重量と、(b)気体密度の変化量に対応した被測定試
料の質量もしくは重量の変化量および、(c)気体密
度の変化量を測定し、被測定試料の体積を求める
ことを特徴とする体積測定方法。 2 気体密度の測定に、気体密度天秤もしくは気
体比重天秤を用いる特許請求の範囲第1項記載の
方法。 3 被測定試料と反応しない気体を1種ないし2
種以上使用する特許請求の範囲第1項もしくは第
2項記載の方法。 4 天秤が、(a)被測定試料の質量もしくは重量
と、密封容器内の気体密度もしくは気体比重とを
測定する能力のある天秤、または(b)被測定試料の
質量もしくは重量を測定する天秤と、密封容器内
の気体密度もしくは気体比重を測定する天秤との
2個の天秤であり、該(a)または(b)の天秤と、該(a)
または(b)の天秤を密封可能に内有する容器とから
なる体積測定装置。
[Scope of Claims] 1. Change the gas density in a sealed container containing a balance, and change the amount of (a) the mass or weight of a sample to be measured in the sealed container, and (b) the amount of change in the gas density to be measured. A volume measurement method characterized by determining the volume of a sample to be measured by measuring the mass or amount of change in weight of the sample and (c) the amount of change in gas density. 2. The method according to claim 1, wherein a gas density balance or a gas specific gravity balance is used to measure the gas density. 3 One or two gases that do not react with the sample to be measured
The method according to claim 1 or 2, wherein more than one species is used. 4. The balance is (a) a balance capable of measuring the mass or weight of the sample to be measured and the gas density or gas specific gravity in a sealed container, or (b) a balance capable of measuring the mass or weight of the sample to be measured. , a balance for measuring gas density or gas specific gravity in a sealed container, and the balance (a) or (b) and the (a)
or (b) a volume measuring device consisting of a container containing the balance in a sealable manner.
JP8895185A 1985-04-26 1985-04-26 Method and instrument for measuring volume Granted JPS61247925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8895185A JPS61247925A (en) 1985-04-26 1985-04-26 Method and instrument for measuring volume

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8895185A JPS61247925A (en) 1985-04-26 1985-04-26 Method and instrument for measuring volume

Publications (2)

Publication Number Publication Date
JPS61247925A JPS61247925A (en) 1986-11-05
JPH0564724B2 true JPH0564724B2 (en) 1993-09-16

Family

ID=13957171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8895185A Granted JPS61247925A (en) 1985-04-26 1985-04-26 Method and instrument for measuring volume

Country Status (1)

Country Link
JP (1) JPS61247925A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4899289B2 (en) 2003-04-07 2012-03-21 セイコーエプソン株式会社 Aqueous ink composition and method for producing the same
WO2006137750A1 (en) * 2005-06-24 2006-12-28 Mercer Stainless Limited Measuring fat content of meat

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55103425A (en) * 1979-02-03 1980-08-07 Isamu Tanahashi Measuring method for absolute capacity and attached water amount of solid matter attached by surface water
JPS5821124A (en) * 1981-07-29 1983-02-07 Sumitomo Rubber Ind Ltd Measuring device for volume and specific gravity of rubber test piece or the like

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55103425A (en) * 1979-02-03 1980-08-07 Isamu Tanahashi Measuring method for absolute capacity and attached water amount of solid matter attached by surface water
JPS5821124A (en) * 1981-07-29 1983-02-07 Sumitomo Rubber Ind Ltd Measuring device for volume and specific gravity of rubber test piece or the like

Also Published As

Publication number Publication date
JPS61247925A (en) 1986-11-05

Similar Documents

Publication Publication Date Title
Dymond et al. p, ϱ, T behaviour for n-hexane+ n-hexadecane in the range 298 to 373 K and 0.1 to 500 MPa
Morse On evaporation from the surface of a solid sphere. Preliminary note
Czanderna et al. Sensitive Quartz Beam Microbalance
EP0265535B1 (en) Method for measuring volume
Fujii Precision density measurements of solid materials by hydrostatic weighing
Fahey et al. Effect of pressure on the apparent specific volume of proteins
JPH0564724B2 (en)
Dreisbach et al. Adsorption equilibria of CO/H 2 with a magnetic suspension balance: Purely gravimetric measurement
Patterson et al. Comparative measurement of the density of mercury
US3908467A (en) Density measuring apparatus, with plurality of pivoted float indicators of differing buoyancies
Hidnert et al. Density of solids and liquids
US6443007B1 (en) Fluid for measuring volume, density and related properties of solid bodies
Hales et al. An apparatus for accurate measurement of liquid and vapour densities on the saturation line, up to the critical temperature
Lederman et al. The adsorption of nitrogen-methane on molecular sieves
US703753A (en) Instrument for indicating the pressure of gas.
Steele CIX.—An accurate method of measuring the compressibilities of vapours
Casado et al. The limiting densities of vapours
Germann et al. Accurate Low-Pressure Gage
Kohlrausch An Introduction to Physical Measurements: With Appendices on Absolute Electrical Measurements, Etc
US3462830A (en) Method of making a magnetometer
SU798494A1 (en) Hydrostatic balance
US442962A (en) August eiciiiiorx
RU2199092C2 (en) Hydraulic compensation balance ( variants )
Satterly The Application of the Barometer in Physics and Chemistry
RU1810797C (en) Mercury pore meter