JPH0564318B2 - - Google Patents

Info

Publication number
JPH0564318B2
JPH0564318B2 JP16920583A JP16920583A JPH0564318B2 JP H0564318 B2 JPH0564318 B2 JP H0564318B2 JP 16920583 A JP16920583 A JP 16920583A JP 16920583 A JP16920583 A JP 16920583A JP H0564318 B2 JPH0564318 B2 JP H0564318B2
Authority
JP
Japan
Prior art keywords
waste
liquid organic
organic waste
decomposition
radioactive liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16920583A
Other languages
Japanese (ja)
Other versions
JPS6061697A (en
Inventor
Kazuo Unoki
Toshio Ichihashi
Akira Hasegawa
Tatsuaki Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP16920583A priority Critical patent/JPS6061697A/en
Publication of JPS6061697A publication Critical patent/JPS6061697A/en
Publication of JPH0564318B2 publication Critical patent/JPH0564318B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Treatment Of Sludge (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は原子力発電所等の放射性物質取扱い施
設で発生する放射性液体有機廃棄物の分解処理方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for decomposing radioactive liquid organic waste generated in facilities handling radioactive materials such as nuclear power plants.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

原子力発電所等の放射性物質取扱い施設では
種々の廃棄物が発生するが、その中に放射性液体
有機廃棄物がある。例えば使用済核燃料の再生処
理のために使用する有機溶媒等である。このよう
な放射性液体有機廃棄物については、未だその処
理方法が確立されていない。例えば前記有機溶媒
中にはリン酸トリn−ブチル(TBP)などの有
機リン酸エステルが含まれているが、この廃棄
TBPは現在未処理のまま施設内のタンク中に貯
蔵されている。このように未処理のままでは貯蔵
タンクの腐食が発生とするという問題があり、し
かもその発生量は今後増加することが予想されて
いるので、早急に安全な処理方法を開発する必要
に追られている。
Facilities that handle radioactive materials such as nuclear power plants generate various kinds of waste, one of which is radioactive liquid organic waste. For example, it is an organic solvent used for reprocessing spent nuclear fuel. A treatment method for such radioactive liquid organic waste has not yet been established. For example, the organic solvent contains organic phosphate esters such as tri-n-butyl phosphate (TBP), but this
TBP is currently stored untreated in tanks within the facility. If left untreated, storage tanks will suffer from corrosion, and the amount of corrosion is expected to increase in the future, so there is an urgent need to develop a safe treatment method. ing.

これらの放射性液体有機廃棄物の処理に関して
は、従来から焼却法、熱分解法、化学分解法、回
収再使用法、固化法など種々の方法が検討されて
いる。
Regarding the treatment of these radioactive liquid organic wastes, various methods such as incineration, thermal decomposition, chemical decomposition, recovery and reuse, and solidification have been studied.

このうち焼却法は文字通り廃棄物をそのまま焼
却炉中で焼却する方法であつて、多くの方式が検
討されている。しかし焼却の場合には、リンやハ
ロゲンを含むような廃棄物には適用することが困
難であり、また燃焼発生ガス中に放射能が移行す
る可能性が大きいので、排ガス処理に特別の設備
が必要になる等の問題がある。
Among these methods, the incineration method literally incinerates waste in an incinerator, and many methods are being considered. However, in the case of incineration, it is difficult to apply it to wastes that contain phosphorus or halogens, and there is a high possibility that radioactivity will be transferred to the combustion gas, so special equipment is required for exhaust gas treatment. There are problems such as the need for

熱分解法は酸素を遮断した状態で高温に加熱し
て非酸化的に分解させる方法であり、例えば炉内
に噴霧させた液体有機廃棄物を水蒸気と共に700
℃に加熱する方法(特開昭54−14700号)や、液
体有機廃棄物中に水酸化カルシウム等のアルカリ
を懸濁させて5000℃の超高温で分解させる方法
(特開昭57−52900号)などが検討されている。後
者の方法では特にリンやハロゲンを含む廃棄物で
も適用可能であるという利点はあるが、5000℃の
超高温で処理するため、炉の材質が問題になる。
さらに、いずれの方法においても焼却法と同様に
放射能の廃ガス中への移行の問題がある。
The pyrolysis method is a non-oxidative method of decomposing liquid organic waste by heating it to a high temperature in the absence of oxygen.
℃ (Japanese Patent Application Laid-Open No. 54-14700), and a method of suspending alkali such as calcium hydroxide in liquid organic waste and decomposing it at an extremely high temperature of 5000℃ (Japanese Patent Application Laid-Open No. 57-52900). ) etc. are being considered. The latter method has the advantage of being applicable to wastes that contain phosphorus and halogens, but since it is processed at ultra-high temperatures of 5,000°C, the material of the furnace becomes an issue.
Furthermore, both methods have the same problem as the incineration method, in which radioactivity is transferred into the waste gas.

化学分解法は、TBPなどのリンを含む廃棄物
を80%以上の濃硫酸と110〜150℃に加熱すること
により、無機物であるリン酸とリンを含まない易
燃性有機化合物に分解する方法である(昭和54年
日本原子力学会年会J14)。しかしこの方法では、
分解に要する時間が10〜24時間と長く、また分解
生成有機物をリン酸から分離し、別に燃焼処理す
る工程が必要になり、システムが複雑になる。
The chemical decomposition method is a method in which waste containing phosphorus such as TBP is decomposed into phosphoric acid, which is an inorganic substance, and flammable organic compounds that do not contain phosphorus, by heating it with concentrated sulfuric acid of 80% or more to 110 to 150°C. (Annual Meeting J14 of the Atomic Energy Society of Japan, 1978). But with this method,
The time required for decomposition is long, from 10 to 24 hours, and a separate combustion process is required to separate the organic matter produced by decomposition from phosphoric acid, making the system complex.

回収再使用法は、放射能汚染された液体有機廃
棄物、特に廃溶媒類を蒸留精製して再使用する方
法であるが、TBPのような熱的に不安定な物質
の場合にはその一部が熱分解を起こすことは避け
られず、また蒸留により回収した溶媒に放射能が
残存することは不可避である。
The recovery and reuse method is a method in which radioactively contaminated liquid organic waste, especially waste solvents, is distilled and purified for reuse. It is inevitable that the solvent will undergo thermal decomposition, and that radioactivity will remain in the solvent recovered by distillation.

固化法は液体有機廃棄物をそのまま、または他
の物質を添加した後固化する方法であり、具体的
には人工雲母に吸着させた後1000℃で焼結固化す
る方法(特開昭53−143900号)、消石灰とケイ酸
塩など、さらに必要に応じセメントを加えて固化
する方法(特開昭54−8300号)、熱可塑性樹脂お
よび/またはアスフアルトで溶融固化する方法
(特公昭51−12800号)、他の粉末状放射性廃棄物
と一緒に、もしくは単独でスチレンなどのビニル
化合物あるいは不飽和ポリエステルなどの熱硬化
性樹脂などと重合固化する方法(特開昭50−
20200号、特公昭52−38540号)などがある。
The solidification method is a method of solidifying liquid organic waste as it is or after adding other substances. Specifically, it is a method of adsorbing it on artificial mica and then sintering and solidifying it at 1000℃ (Japanese Patent Application Laid-Open No. 143900/1983). method of solidifying by adding slaked lime and silicate, if necessary, and cement (Japanese Patent Publication No. 54-8300), method of melting and solidifying with thermoplastic resin and/or asphalt (Japanese Patent Publication No. 51-12800) ), a method of polymerizing and solidifying together with other powdered radioactive waste or alone with a vinyl compound such as styrene or a thermosetting resin such as unsaturated polyester (Japanese Patent Laid-Open No. 1973-
20200, Special Publication No. 52-38540), etc.

これらの固化法のうち、焼結固化法はプロセス
が多段にわたつて手間がかかる上、高温を用いる
ために装置材料の選定が困難であり、またオフガ
ス処理装置に問題がある。消石灰などを混合して
固化させる方法は固化体の安定性が悪く、さらに
セメントを使用する場合は固化体発生量が増大す
るという問題があり、また耐水性が低いため滲出
が生じやすいという問題もある。溶融固化法では
廃棄物量に対して固化材を2倍以上も必要とする
ため、廃棄物量はかえつて増大する。しかも固化
体は比重が1.0より小さく、また耐熱性、耐燃焼
性が劣つているなどの難点がある。またコストも
かなり高くつく。重合固化法は廃棄物である有機
化合物が固化材を溶解させたり、あるいは重合を
妨害する可能性があり、したがつて処理可能な廃
棄物の種類が限定される上、生成した固化体その
ものの性質も固体廃棄物の固化体に較べてかなり
劣つている。
Among these solidification methods, the sintering solidification method requires a multi-step process and is laborious, and uses high temperatures, making it difficult to select equipment materials, and also has problems with off-gas treatment equipment. The method of solidifying by mixing slaked lime, etc. has a problem that the stability of the solidified product is poor, and when cement is used, the amount of solidified product generated increases, and there is also the problem of easy leaching due to low water resistance. be. In the melt-solidification method, the amount of solidifying material required is more than twice the amount of waste, which increases the amount of waste. Moreover, the solidified material has disadvantages such as having a specific gravity smaller than 1.0 and poor heat resistance and combustion resistance. Also, the cost is quite high. In the polymerization solidification method, the organic compounds that are waste products may dissolve the solidification material or interfere with polymerization. Therefore, the types of waste that can be treated are limited, and the solidified material itself is Its properties are also considerably inferior to that of solid waste.

以上述べたように、現在までに検討されている
放射性液体有機廃棄物の分解処理方法はいずれも
適切な方法とはいい難い。
As mentioned above, none of the decomposition treatment methods for radioactive liquid organic waste that have been considered to date are suitable methods.

〔発明の目的〕[Purpose of the invention]

本発明は、このような現状に鑑み、放射性液体
有機廃棄物の処理方法として、実施が容易である
ような緩和な条件の下で、該廃棄物を殆んど完全
に無機物質にまで分解させるような方法を提供す
ることを目的とするものである。
In view of the current situation, the present invention is a method for treating radioactive liquid organic waste, which decomposes the waste almost completely into inorganic substances under mild conditions that are easy to implement. The purpose is to provide such a method.

〔発明の概要〕[Summary of the invention]

本発明は放射性液体有機廃棄物の分解処理法に
関するものであり、すなわちリン酸トリブチルを
有する放射性液体有機廃棄物を、水溶液中の濃度
が500〜10000ppmでありしかも重量が前記放射性
液体有機廃棄物に対して5重量%以上である銅イ
オンを含有する水溶液に接触させ、さらに重量が
前記放射性液体有機廃棄物に対して100%過酸化
水素に換算して10倍以上である過酸化水素に接触
させて酸化分解することを特徴とするものであ
る。このように分解することによつて液体有機廃
棄物は最終的に炭素成分は二酸化炭素に、水素成
分は水にまで各々完全に酸化分解され、分解液中
には無機成分のみが残存することになる。
The present invention relates to a method for decomposing radioactive liquid organic waste, in which radioactive liquid organic waste containing tributyl phosphate has a concentration in an aqueous solution of 500 to 10,000 ppm and a weight similar to that of the radioactive liquid organic waste. The radioactive liquid organic waste is then brought into contact with an aqueous solution containing copper ions in an amount of 5% or more by weight, and further brought into contact with hydrogen peroxide whose weight is 10 times or more, calculated as 100% hydrogen peroxide, relative to the radioactive liquid organic waste. It is characterized by oxidative decomposition. By decomposing the liquid organic waste in this way, the carbon component is finally completely oxidized and decomposed into carbon dioxide and the hydrogen component is completely oxidized and decomposed into water, leaving only inorganic components in the decomposed liquid. Become.

触媒として関与する銅イオンを上記濃度および
量で用いると、分解が速やかに進行し、廃棄物は
完全に分解される。銅イオン源としては、前述の
濃度程度に水に可溶でかつ水溶液中で完全に電離
する銅塩であれば任意の化合物を用いることがで
きるが、有機酸塩を用いるとその有機基も分解対
象となつて分解し、廃棄物に対する分解性能が低
下するので適当ではない。またハロゲン塩も装置
腐食の点からあまり適当とはいえない。流酸銅が
最も好ましい。
When the copper ions involved as a catalyst are used in the above concentrations and amounts, the decomposition proceeds quickly and the waste is completely decomposed. As a copper ion source, any compound can be used as long as it is a copper salt that is soluble in water at the concentration mentioned above and completely ionizes in an aqueous solution, but if an organic acid salt is used, its organic group will also decompose. It is not suitable because it becomes a target and decomposes, reducing the decomposition performance for waste. Further, halogen salts are also not very suitable from the viewpoint of equipment corrosion. Copper flow acid is most preferred.

過酸化水素は処理すべき廃棄物に対して重量で
100%H2O2に換算して10倍量以上であり、特に
TBPを完全に分解させるには30倍以上の量を使
用することが望ましい。添加方法は一度に必要量
全部を添加する回分式、または定流量で連続的に
添加する半回分式など任意の方法があるが、なる
べく少量の過酸化水素で、短時間で最大限の分解
を行なわせるためには、半回分式が適している。
Hydrogen peroxide is added by weight to the waste to be treated.
It is more than 10 times the amount converted to 100% H 2 O 2 , especially
It is desirable to use 30 times or more the amount to completely decompose TBP. There are various ways to add hydrogen peroxide, such as a batch method in which the entire required amount is added at once, or a semi-batch method in which it is added continuously at a constant flow rate, but it is best to use as little hydrogen peroxide as possible to achieve maximum decomposition in a short time. A semi-batch method is suitable for this purpose.

分解反応を行なうには分解槽中に液体有機廃棄
物、銅イオン含有水溶液および過酸化水素を入れ
て混合し(混合液は水溶液でも乳濁液でもよい)、
充分に撹拌して行なう。分解方法は外部から特に
加熱しなくても反応熱により進行するが、反応速
度を速めるためには外部から加熱して反応温度を
高めることが好ましく、特に80〜100℃の温度で
分解するのが好ましい。
To carry out the decomposition reaction, liquid organic waste, an aqueous solution containing copper ions, and hydrogen peroxide are placed in a decomposition tank and mixed (the mixed solution may be an aqueous solution or an emulsion).
Stir thoroughly. The decomposition process proceeds by the heat of reaction without any particular external heating; however, in order to speed up the reaction rate, it is preferable to increase the reaction temperature by external heating, and in particular, it is preferable to decompose at a temperature of 80 to 100°C. preferable.

分解した液は澄明な水溶液として得られ、必要
に応じて中味処理した後、その放射能レベルに応
じて環境へ放出するか、あるいは再生廃液などの
高電導度放射性廃液と同様に通常の廃液処理系に
おいて処理すればよい。
The decomposed liquid is obtained as a clear aqueous solution, and after its contents are treated if necessary, it can be released into the environment depending on its radioactivity level, or it can be treated as a normal waste liquid in the same way as high conductivity radioactive waste liquid such as recycled waste liquid. It can be processed in the system.

〔発明の実施例〕[Embodiments of the invention]

本発明を実施例によつて説明する。 The present invention will be explained by way of examples.

実施例 1 外部ヒーターおよび撹拌機を備えた酸化分解槽
中にTBP16gおよび0.1モル/の硫酸銅水溶液
320ml(溶液中の銅イオン濃度6350ppm)を入れ、
これを均一になるように撹拌混合して90〜100℃
に加熱し、蒸発する水分は還流するようにした上
で、この液中に濃度60%の過酸化水素水480gを
ポンプを用いて一定速度で2時間かけて連続的に
添加した。過酸化水素水の添加終了後、さらに30
分間同じ条件下に保つたところ、反応液は透明な
均一水溶液になり、水に不溶の成分の存在は全く
認められなかつた。溶液中の全有機炭素量
(TOC)を測定したところ、分解前のTBP中の
全炭素量の87%が減少しており、したがつて87%
が分解したことが認められた。
Example 1 16 g TBP and 0.1 mol/aqueous copper sulfate solution in an oxidative decomposition tank equipped with an external heater and stirrer
Add 320ml (copper ion concentration in the solution 6350ppm),
Mix this by stirring to make it homogeneous and heat it to 90-100℃.
The solution was heated to 100%, and the evaporated water was refluxed, and 480 g of hydrogen peroxide solution with a concentration of 60% was continuously added to this solution at a constant rate over 2 hours using a pump. After addition of hydrogen peroxide solution, add another 30
When kept under the same conditions for several minutes, the reaction solution became a transparent homogeneous aqueous solution, and no presence of water-insoluble components was observed. Measurement of the total organic carbon content (TOC) in the solution showed that 87% of the total carbon content in TBP before decomposition was reduced; therefore, 87%
was found to have decomposed.

なお、本実施例で用いた硫酸銅水溶液の銅イオ
ンの量は、以下の式に示すように、TBPに対し
て12.7wt%に相当する。
Note that the amount of copper ions in the copper sulfate aqueous solution used in this example corresponds to 12.7 wt% with respect to TBP, as shown in the following formula.

0.1(mol/)×320(ml)/1000(ml)×63.5
(g/mol)=2.032g 2.032(g)/16g×100=12.7(wt%) また、過酸化水素の量は、100%過酸化水素に
換算して 480(g)×60/100÷16(g)=18 で、TBPの18倍に相当する。
0.1(mol/)×320(ml)/1000(ml)×63.5
(g/mol)=2.032g 2.032(g)/16g×100=12.7(wt%) Also, the amount of hydrogen peroxide is converted to 100% hydrogen peroxide, 480(g)×60/100÷16 (g) = 18, which is equivalent to 18 times TBP.

次に比較のため銅イオン濃度を上記実施例の半
分の3175ppmにした場合、およびTBPに対する
銅イオン量を2.8wt%とした場合について、実験
を行つたが、いずれも未分解のTBPが残存した。
Next, for comparison, experiments were carried out when the copper ion concentration was set to 3175 ppm, half of that in the above example, and when the copper ion amount relative to TBP was set to 2.8 wt%, but in both cases undecomposed TBP remained. .

実施例 2 実施例1と同一の条件で、ただし過酸化水素水
の添加量を実施例1の2倍量とした点のみ変更し
て分解方法を行なつたところ、分解液中のTOC
量は当初量の98%が減少していた。
Example 2 The decomposition method was carried out under the same conditions as in Example 1, except that the amount of hydrogen peroxide added was twice that of Example 1.
The volume had decreased by 98% of the initial volume.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明は、従来処理方法が
確立していなかつた放射性の液体有機廃棄物を、
簡単な装置と方法によつて分解処理し得たもので
ある。本発明よる酸化分解は該廃棄物を最終的に
二酸化炭素と水(水蒸気)と無機物とに分解して
しまうので、処理済の分解液中には無機物のみが
残存するようになる。そして本発明の分解反応は
100℃以下で行ない、かつ腐食性の薬品類を使用
しないので、装置の材質に特別の配慮をする必要
がなく、また放射能が飛散したり、発生ガス中へ
移行したりすることが殆んどない。したがつて廃
ガス処理も特別の装置を必要とせず、通常のオフ
ガス系において処理することができる。
As described above, the present invention can treat radioactive liquid organic waste, for which no conventional treatment method has been established.
It can be decomposed using simple equipment and methods. The oxidative decomposition according to the present invention ultimately decomposes the waste into carbon dioxide, water (steam), and inorganic substances, so that only inorganic substances remain in the treated decomposed liquid. And the decomposition reaction of the present invention is
Since it is carried out at temperatures below 100℃ and no corrosive chemicals are used, there is no need to pay special attention to the material of the equipment, and there is little chance of radioactivity scattering or migrating into the generated gas. Who? Therefore, waste gas treatment does not require any special equipment and can be performed in a normal off-gas system.

Claims (1)

【特許請求の範囲】[Claims] 1 リン酸トリブチルを有する放射性液体有機廃
棄物を、水溶液中の濃度が500〜10000ppmであり
しかも重量が前記放射性液体有機廃棄物に対して
5重量%以上である銅イオンを含有する水溶液に
接触させ、さらに重量が前記放射性液体有機廃棄
物に対して100%過酸化水素に換算して10倍以上
である過酸化水素に接触させて酸化分解すること
を特徴とする放射性液体有機廃棄物の分解処理方
法。
1. Bringing radioactive liquid organic waste containing tributyl phosphate into contact with an aqueous solution containing copper ions whose concentration in the aqueous solution is 500 to 10,000 ppm and whose weight is 5% by weight or more based on the radioactive liquid organic waste. A decomposition treatment for radioactive liquid organic waste, further comprising oxidizing and decomposing it by bringing it into contact with hydrogen peroxide whose weight is 10 times or more in terms of 100% hydrogen peroxide compared to the radioactive liquid organic waste. Method.
JP16920583A 1983-09-16 1983-09-16 Method of decomposig and treating radioactive liquid organic waste Granted JPS6061697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16920583A JPS6061697A (en) 1983-09-16 1983-09-16 Method of decomposig and treating radioactive liquid organic waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16920583A JPS6061697A (en) 1983-09-16 1983-09-16 Method of decomposig and treating radioactive liquid organic waste

Publications (2)

Publication Number Publication Date
JPS6061697A JPS6061697A (en) 1985-04-09
JPH0564318B2 true JPH0564318B2 (en) 1993-09-14

Family

ID=15882146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16920583A Granted JPS6061697A (en) 1983-09-16 1983-09-16 Method of decomposig and treating radioactive liquid organic waste

Country Status (1)

Country Link
JP (1) JPS6061697A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140596A (en) * 1984-07-10 1986-02-26 東洋エンジニアリング株式会社 Batch type processing method of radioactive organic waste
JPH0723920B2 (en) * 1985-11-29 1995-03-15 株式会社東芝 Method for decomposing radioactive waste organic solvent
GB8811784D0 (en) * 1988-05-18 1988-06-22 Interox Chemicals Ltd Waste treatment
US6675880B2 (en) 1996-03-29 2004-01-13 Mitsui Engineering And Shipbuilding Company Limited Air heater for recovering a heat of exhaust gas

Also Published As

Publication number Publication date
JPS6061697A (en) 1985-04-09

Similar Documents

Publication Publication Date Title
US5960368A (en) Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials
EP0111839B1 (en) Method of disposing radioactive ion exchange resin
Xu et al. Review of the destruction of organic radioactive wastes by supercritical water oxidation
US8354567B2 (en) Destruction of mixed radioactive waste by catalyzed chemical oxidation
JP4414214B2 (en) Treatment method of waste ion exchange resin
JPH0450559B2 (en)
JPH0564318B2 (en)
US12033766B2 (en) Method for conditioning ion exchange resins and apparatus for carrying out the method
WO1992003829A1 (en) Organic material oxidation process utilizing no added catalyst
Kubota Decomposition of a cation exchange resin with hydrogen peroxide
JPH0564319B2 (en)
US5202062A (en) Disposal method of radioactive wastes
JPS6155079B2 (en)
JPS61157539A (en) Decomposition treatment of ion exchange resin
JPH0544640B2 (en)
JPH0579960B2 (en)
JPH0574040B2 (en)
JPS60105997A (en) Method of decomposing radioactive waste organic phosphoric acid esters
JPH0631866B2 (en) Volume reduction solidification method of radioactive metal-containing organic waste decomposition solution
Srinivas et al. Wet oxidative destruction of spent ion-exchange resins using hydrogen peroxide
JPS63315998A (en) Treatment of radioactive waste liquid
Hutson The use of oxidation and other processes for the treatment of liquid organic waste at BNFL, Sellafield, UK
Volgina et al. The oxidative destruction of substandard tributyl phosphate organic solutions under mild conditions
JPS61157540A (en) Decomposition treatment of ion exchange resin
JPS63247700A (en) Solidifying processing method and device for phosphoric acid trialkyl containing radioactive substance

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees