JPH0557001B2 - - Google Patents

Info

Publication number
JPH0557001B2
JPH0557001B2 JP59110411A JP11041184A JPH0557001B2 JP H0557001 B2 JPH0557001 B2 JP H0557001B2 JP 59110411 A JP59110411 A JP 59110411A JP 11041184 A JP11041184 A JP 11041184A JP H0557001 B2 JPH0557001 B2 JP H0557001B2
Authority
JP
Japan
Prior art keywords
heat exchanger
passage
heated
raw water
preheater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59110411A
Other languages
Japanese (ja)
Other versions
JPS60255101A (en
Inventor
Mikio Ichiki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ORUGANO AKUA KK
Original Assignee
ORUGANO AKUA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ORUGANO AKUA KK filed Critical ORUGANO AKUA KK
Priority to JP11041184A priority Critical patent/JPS60255101A/en
Publication of JPS60255101A publication Critical patent/JPS60255101A/en
Publication of JPH0557001B2 publication Critical patent/JPH0557001B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、主として医薬用等の蒸溜水の製造
や、純粋蒸気の製造に好適な多重効用缶蒸溜装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a multi-effect distillation apparatus suitable for producing distilled water mainly for medical use and pure steam.

(従来技術) 例えば蒸溜水の製造装置として、高温の一次蒸
気と原料水供給用の第1通路から供給される低温
の原料水との間で熱交換を行ない原料水から水蒸
気を生成させる第1熱交換器と、第1熱交換器で
発生した水蒸気と蒸発しなかつた原料水との間で
熱交換を行ない原料水から水蒸気を発生させる1
又は2以上の一連の第2熱交換器とを有し、各熱
交換器が略同一容量に設定された構成が既に提案
されている(例えば特願昭58−188957号=特開昭
60−78686号公報)。
(Prior art) For example, as a distilled water production device, a first system that generates water vapor from raw water by exchanging heat between high temperature primary steam and low temperature raw water supplied from a first passage for supplying raw water. Heat exchange is performed between the heat exchanger and the steam generated in the first heat exchanger and the unevaporated raw water to generate steam from the raw water 1
Alternatively, a configuration has already been proposed in which a series of two or more second heat exchangers is set, and each heat exchanger is set to have approximately the same capacity (for example, Japanese Patent Application No. 188957/1989).
60-78686).

しかしその構成では、各熱交換器を経て蒸溜が
進むにつれてまだ蒸発していない原料水の流量が
減少することから、蒸溜の最終段階に近付くにつ
れて熱交換器に所定量の原料水が供給されなくな
つて、発生した蒸気が過熱(スーパーヒート)状
態となつたりハンチングを起こすなどの不具合が
発生する。又それによつて均一な純度を有する蒸
溜水を安定して得られなくなる不具合が生じる。
更に熱交換器内での流量が極端に減少すると、熱
交換を行なう壁面に原料水に含まれる不純物が固
着してしまい、熱交換効率が低下してしまう不具
合も発生する。
However, with this configuration, as distillation progresses through each heat exchanger, the flow rate of unevaporated raw water decreases, so as the final stage of distillation approaches, a predetermined amount of raw water is not supplied to the heat exchanger. As a result, the generated steam becomes overheated (superheated) and problems such as hunting occur. Moreover, this causes a problem that it becomes impossible to stably obtain distilled water having uniform purity.
Furthermore, if the flow rate in the heat exchanger is extremely reduced, impurities contained in the raw water will stick to the wall surface where heat exchange is performed, resulting in a problem that the heat exchange efficiency will decrease.

一方上記不具合を防止するため、全体としての
流量を増化させると蒸溜初期の段階における熱交
換器内で原料水の流量が過剰になつてしまい、効
率の良い熱交換を行えなくなる不具合が発生す
る。又後期段階での原料水の流量を確保するため
ポンプを設けて原料水を循環利用することが考え
られるが、熱を与えられた原料水は高温(通常
100℃以上)になつており、そのような高温に耐
え得る適当なポンプを安価に得ることは困難であ
る。又ポンプを設ければそのための駆動装置や電
源が必要となるばかりでなく、保守の費用がかさ
む不具合も生じる。
On the other hand, if the overall flow rate is increased in order to prevent the above problems, the flow rate of raw water in the heat exchanger during the initial stage of distillation will become excessive, causing a problem that efficient heat exchange cannot be performed. . Also, in order to ensure the flow rate of raw water in the later stages, it is possible to install a pump and recycle the raw water, but the heated raw water is at a high temperature (usually
(100℃ or higher), and it is difficult to obtain a suitable pump that can withstand such high temperatures at a low cost. Furthermore, if a pump is provided, not only a driving device and a power source are required for the pump, but also problems arise that increase maintenance costs.

(発明の目的) ポンプのような駆動機構を設けることなく、簡
単な構成で各熱交換器に適量の被加熱液体(例え
ば水)を供給できるようにする。これによつて過
熱蒸気の発生及びハンチングの発生などの不具合
を防止しつつ熱交換効率の低下をも防止し、安定
した蒸溜が行えるようにすることを日的としてい
る。
(Objective of the Invention) To supply an appropriate amount of heated liquid (for example, water) to each heat exchanger with a simple configuration without providing a drive mechanism such as a pump. The aim is to thereby prevent problems such as the generation of overheated steam and hunting, while also preventing a decrease in heat exchange efficiency and ensuring stable distillation.

(発明の構成) 本発明は、高温の加熱媒体と被加熱液体供給用
の第1通路から供給される低温の被加熱液体との
間で熱交換を行ない被加熱液体から蒸気を生成さ
せる第1熱交換器と、第1熱交換器で発生した蒸
気と蒸発しなかつた被加熱液体との間で熱交換を
行ない被加熱液体から蒸気を発生させる1又は2
以上の一連の第2熱交換器とを有し、各熱交換器
が略同一容量に設定された多重効用缶蒸溜装置に
おいて;上記第1通路から分岐するバイパスを、
第2熱交換器に蒸発しなかつた被加熱液体をオリ
フイスを介して供給する第2通路のオリフイスの
下流側に連結して第2熱交換器へ被加熱液体を供
給することにより、各熱交換器への被加熱液体の
供給量が略等しくなるようにしたことを特徴とす
る多重効用缶蒸溜装置である。
(Structure of the Invention) The present invention provides a first method for generating steam from the heated liquid by performing heat exchange between a high temperature heating medium and a low temperature heated liquid supplied from a first passage for supplying the heated liquid. 1 or 2 for generating steam from the heated liquid by exchanging heat between the heat exchanger and the vapor generated in the first heat exchanger and the heated liquid that has not evaporated;
In a multi-effect distillation apparatus having the above series of second heat exchangers, each heat exchanger having approximately the same capacity; a bypass branching from the first passage;
Each heat exchanger is connected to the downstream side of the orifice of the second passage to supply the unevaporated heated liquid to the second heat exchanger via the orifice, and the heated liquid is supplied to the second heat exchanger. This is a multi-effect distillation apparatus characterized in that the amount of heated liquid supplied to the vessel is approximately equal.

(実施例) 本発明による多重効用缶蒸溜装置を蒸溜水製造
装置に採用した場合を示す第1図において、熱交
換器11の加熱媒体入口12には図示しないボイ
ラーから158℃(5Kg/cm2・g)〜174℃(8Kg/
cm2・g)程度の加熱蒸気(一次蒸気)が導入され
る通路13が連結されている。通路13から分岐
する通路14はプレヒータ15の加熱媒体入口1
6に連結されており、プレヒータ15の加熱媒体
出口17は途中にトラツプ18を有する排出路1
9を介して外部に連通している。又熱交換器11
内に導入された加熱蒸気の加熱媒体入口20も排
出路19を介して外部に連通している。なおトラ
ツプ18は水が溜つたときのみ排水し、水が溜ら
ず蒸気として存在するときには閉じるようになつ
ている。
(Example) In FIG. 1 showing the case where the multi-effect distillation device according to the present invention is adopted as a distilled water production device, a heating medium inlet 12 of a heat exchanger 11 is connected to a boiler (not shown) at 158°C (5Kg/cm 2 ).・g)~174℃(8Kg/
A passage 13 into which heating steam (primary steam) of about 1 cm 2 ·g) is introduced is connected. A passage 14 branching from the passage 13 is a heating medium inlet 1 of the preheater 15.
6, and the heating medium outlet 17 of the preheater 15 is connected to the discharge path 1 having a trap 18 in the middle.
It communicates with the outside via 9. Also heat exchanger 11
A heating medium inlet 20 for heating steam introduced into the interior also communicates with the outside via a discharge passage 19. The trap 18 is designed to drain water only when water accumulates, and close when water does not accumulate and exists as steam.

プレヒータ15の被加熱媒体入口21には通路
22の先端が連結されており、通路22の後端は
コンデンサ23の被加熱媒体出口24に連結され
ている。コンデンサ23は他の経路25と共用さ
れる熱交換器であり、被加熱媒体入口26に連結
される通路27から原料水が5〜8Kg/cm2・g程
度の圧力で供給されるようになつている。
The leading end of the passage 22 is connected to the heated medium inlet 21 of the preheater 15 , and the rear end of the passage 22 is connected to the heated medium outlet 24 of the condenser 23 . The condenser 23 is a heat exchanger shared with another path 25, and raw water is supplied from a path 27 connected to the heated medium inlet 26 at a pressure of about 5 to 8 kg/cm 2 ·g. ing.

一方プレヒータ15の被加熱媒体出口28は通
路29を介して熱交換器11の被加熱媒体入口3
0に連結されており、熱交換器11内で被加熱媒
体入口30から導入される水が熱交換パイプ31
を介して加熱媒体入口12からの加熱蒸気によつ
て加熱されるようになつている。熱交換器11の
下端部にはフラツシング室32が設けられてお
り、フラツシング室32の下端に形成された被加
熱媒体出口33には途中に流量制限用のオリフイ
ス34(又は弁)を有する通路35の一端が連結
されている。通路35の他端は次段のプレヒータ
15aの被加熱媒体入口21aに連結されてい
る。又フラツシング室32側壁に形成された蒸気
出口36にはミストセパレータ37が設けられて
おり、ミストセパレータ37の蒸気出口38は通
路39を介してプレヒータ15aの加熱媒体入口
16a及び熱交換器11aの加熱媒体入口12a
に連結されている。なおミストセパレータ37で
は蒸気中の液滴をサイクロン方式で分離するよう
になつている。
On the other hand, the heated medium outlet 28 of the preheater 15 is connected to the heated medium inlet 3 of the heat exchanger 11 via a passage 29.
0, and the water introduced from the heated medium inlet 30 in the heat exchanger 11 is connected to the heat exchange pipe 31.
It is adapted to be heated by heating steam from the heating medium inlet 12 via the heating medium inlet 12 . A flushing chamber 32 is provided at the lower end of the heat exchanger 11, and a heated medium outlet 33 formed at the lower end of the flushing chamber 32 has a passage 35 having an orifice 34 (or valve) for restricting the flow rate in the middle. One end of is connected. The other end of the passage 35 is connected to the heated medium inlet 21a of the next stage preheater 15a. A mist separator 37 is provided at a steam outlet 36 formed on the side wall of the flushing chamber 32, and a steam outlet 38 of the mist separator 37 passes through a passage 39 to heat the heating medium inlet 16a of the preheater 15a and the heat exchanger 11a. Media inlet 12a
is connected to. Note that the mist separator 37 separates droplets in the vapor using a cyclone method.

第2段目の蒸溜装置である熱交換器11aは熱
交換器11と概ね同一構造を有し、同一容量に設
定されており、第1図では対応する箇所の符号に
“a”を付してある。又プレヒータ15aはプレ
ヒータ15よりも容量が小さく設定されている
が、プレヒータ15と同一構造を有しており、プ
レヒータ15aにも対応する箇所の符号に“a”
が付してある。なおプレヒータ15aの加熱媒体
出口は通路40aを介して熱交換器11aの加熱
媒体入口41aに連結されている。
The heat exchanger 11a, which is the second-stage distillation device, has roughly the same structure as the heat exchanger 11, and is set to the same capacity, and in FIG. There is. Although the preheater 15a is set to have a smaller capacity than the preheater 15, it has the same structure as the preheater 15, and the parts corresponding to the preheater 15a have an "a" in the code.
is attached. Note that the heating medium outlet of the preheater 15a is connected to the heating medium inlet 41a of the heat exchanger 11a via a passage 40a.

更に第3段目の蒸溜装置として熱交換器11b
とプレヒータ15bが設けられ、熱交換器11b
及びプレヒータ15bはそれぞれ熱交換器11と
プレヒータ15及び熱交換器11aとプレヒータ
15a間と同一の接続構成を有しており、第1図
では対応する箇所の符号に“b”を付してある。
ただし熱交換器11aの加熱媒体出口20aは、
途中にオリフイス42aを有する通路43aを介
して熱交換器11bの加熱媒体入口12bに接続
されている。熱交換器11bは熱交換器11aと
全く同一形状かつ同一容量に設定されれており、
又プレヒータ15bはプレヒータ15aと全く同
一形状かつ同一容量に定されてる。
Furthermore, a heat exchanger 11b is installed as a third stage distillation device.
A preheater 15b is provided, and a heat exchanger 11b is provided.
and preheater 15b have the same connection configuration as between heat exchanger 11 and preheater 15 and between heat exchanger 11a and preheater 15a, respectively, and in FIG. .
However, the heating medium outlet 20a of the heat exchanger 11a is
It is connected to the heating medium inlet 12b of the heat exchanger 11b via a passage 43a having an orifice 42a in the middle. The heat exchanger 11b is set to have exactly the same shape and capacity as the heat exchanger 11a,
Further, the preheater 15b has exactly the same shape and capacity as the preheater 15a.

第4段目として熱交換器11cとプレヒータ1
5cが設けられ、熱交換器11c及びプレヒータ
15cはそれぞれ熱交換器11aとプレヒータ1
5aび熱交換器11bとプレヒータ15b間と全
く同一の接続構成となつており、第1図では対応
する箇所の符号に“c”を付してある。熱交換器
11cは熱交換器11a、熱交換器111bと全
く同一形状かつ容量に設定されており、又プレヒ
ータ15cはプレヒータ15a、プレヒータ15
bと全く同一形状かつ同一容量に設定されてい
る。
Heat exchanger 11c and preheater 1 as the fourth stage
5c is provided, and the heat exchanger 11c and the preheater 15c are the heat exchanger 11a and the preheater 1, respectively.
5a, heat exchanger 11b, and preheater 15b, the connection configuration is exactly the same as that between heat exchanger 11b and preheater 15b, and in FIG. The heat exchanger 11c has the same shape and capacity as the heat exchangers 11a and 111b, and the preheater 15c has the same shape and capacity as the heat exchangers 11a and 111b.
It is set to have exactly the same shape and capacity as b.

熱交換器11cの被加熱媒体出口33cに連結
された通路35cは途中にオリフイス45を有し
ており、通路35cの他端は外部に開口してい
る。又熱交換器11cの通路43c及び通路39
cはコンデンサ23の加熱媒体入口46,47に
それぞれ連結されており、コンデンサ23の加熱
媒体出口48は通路49を介して図示しない蒸溜
水用のタンクに連結されている。
A passage 35c connected to the heated medium outlet 33c of the heat exchanger 11c has an orifice 45 in the middle, and the other end of the passage 35c is open to the outside. Also, the passage 43c and the passage 39 of the heat exchanger 11c
c are respectively connected to heating medium inlets 46 and 47 of the condenser 23, and a heating medium outlet 48 of the condenser 23 is connected via a passage 49 to a tank for distilled water (not shown).

更に第1図では、通路22からバイパス50が
分岐しており、コンデンサ23の被加熱媒体出口
24から出た原料水の半分がバイパス50側に流
れるようになつている。バイパス50の他端は3
本の分岐路51,52,53に分岐しており、分
岐51はオリフイス34と被加熱媒体入口21a
間において通路35に連結されている。分岐路5
2はインジエクタ54の動作流体入口に連結され
ており、インジエクタ54の出口がオリフイス3
4aと被加熱媒体入口21b間において通路35
aに連結されている。分岐路53はインジエクタ
55の動作流体入口に連結されており、インジエ
クタ55の出口はオリフイス34bと被加熱媒体
入口21c間において通路35bに連結されてい
る。又通路35bから分岐する分岐路56はイン
ジエクタ54の別の入口に連結されており、被加
熱媒体出口33cとオリフイス45との間で通路
35cから分岐する分岐路57はインジエクタ5
5の別の入口に連結されている。
Furthermore, in FIG. 1, a bypass 50 branches off from the passage 22, so that half of the raw water coming out of the heated medium outlet 24 of the condenser 23 flows to the bypass 50 side. The other end of the bypass 50 is 3
The main branch paths 51, 52, and 53 are branched, and the branch 51 is connected to the orifice 34 and the heated medium inlet 21a.
It is connected to a passage 35 in between. Branch road 5
2 is connected to the working fluid inlet of the injector 54, and the outlet of the injector 54 is connected to the orifice 3.
4a and the heated medium inlet 21b, the passage 35
connected to a. The branch passage 53 is connected to the working fluid inlet of the injector 55, and the outlet of the injector 55 is connected to the passage 35b between the orifice 34b and the heated medium inlet 21c. Further, a branch passage 56 branching from the passage 35b is connected to another inlet of the injector 54, and a branch passage 57 branching from the passage 35c between the heated medium outlet 33c and the orifice 45 is connected to another inlet of the injector 54.
It is connected to another entrance of 5.

なおバイパス50、分岐路51,52,53、
分岐路56,57の管径及びインジエクタ54,
55の容量は、以下に説明する作動時において所
定の割合で原料水の分配が行なわれるように設定
されている。
Note that the bypass 50, branch roads 51, 52, 53,
Pipe diameters of branch passages 56 and 57 and injector 54,
The capacity of 55 is set so that raw water is distributed at a predetermined ratio during the operation described below.

次に作動を説明する。まず通路13から加熱蒸
気を熱交換器11とプレヒータ15内に供給す
る。次に通路27からコンデンサ23に原料水
(例えば既にイオン交換等の処理を行なつた純度
の高い水)を供給する。このときの通路27から
の供給量を一例として1100/hとし、又各熱交
換器11a,11b,11cは設計流量がそれぞ
れ550/hに設定されているとする。コンデンサ
23を通過した原料水は通路22を介してプレヒ
ータ15に供給されるが、通路22から分岐する
ババイパス50に半分の550/hの原料水が分配
されることによつて、プレヒータ15への供給量
は550/hとなる。プレヒータ15において通路
13からの加熱蒸気によつて予備的に加熱された
原料水は、被加熱媒体入口30から熱交換器11
に導入される。熱交換器11内の熱交換パイプ3
1を流下する間に原料水は加熱媒体入口12から
導入された加熱蒸気によつて加熱され、主として
フラツシング室32内でその一部分が蒸発する。
一方熱交換器11内で熱が奪われた加熱蒸気は凝
縮して液体となり、プレヒータ15内で液体とな
つた水とともに排出路19を介して外部に排出さ
れる。
Next, the operation will be explained. First, heated steam is supplied from the passage 13 into the heat exchanger 11 and the preheater 15 . Next, raw water (for example, highly purified water that has already been subjected to ion exchange and other treatments) is supplied to the condenser 23 from the passage 27 . As an example, assume that the supply amount from the passage 27 at this time is 1100/h, and that the design flow rate of each heat exchanger 11a, 11b, and 11c is set to 550/h. The raw water that has passed through the condenser 23 is supplied to the preheater 15 via the passage 22, but by distributing half of the raw water at 550/h to the bypass 50 branching from the passage 22, the amount of raw water to the preheater 15 is reduced. The supply amount will be 550/h. The raw water that has been preliminarily heated by the heated steam from the passage 13 in the preheater 15 is transferred from the heated medium inlet 30 to the heat exchanger 11.
will be introduced in Heat exchange pipe 3 in heat exchanger 11
1, the raw water is heated by the heated steam introduced from the heating medium inlet 12, and a portion of it evaporates mainly within the flushing chamber 32.
On the other hand, the heated steam from which heat has been removed in the heat exchanger 11 is condensed and becomes a liquid, and is discharged to the outside through the discharge passage 19 together with the water that has become a liquid in the preheater 15.

フラツシング室32で発生した水蒸気はミスト
セパレータ37で液滴分が除去されたのち、通路
39を介して熱交換器11aとプレヒータ15a
に加熱媒体として導入される(圧力は約3Kg/
cm2・g)。又フラツシング室32で蒸発しなかつ
た原料水はオリフイス34で流量が調節された状
態でプレヒータ15aに被加熱媒体として導入さ
れる。ここで熱交換器11から通路39を介して
次段階に導かれる水蒸気量は水量として略250/
hである。従つて通路35を介して次段階に導か
れる原料水量は略300/hとなる。一方通路22
からバイパス50に分配された550/hの原料水
のうち分岐路51へは250/hが分配されるよう
なつており、従つてプレヒータ15aに被加熱媒
体として導入される原料水の総量は550/hとな
る。プレヒータ15aに導入された原料水はプレ
ヒータ15a内で水蒸気から熱を奪うことによつ
て予備的に加熱された後、第2段目の蒸溜装置で
ある。熱交換器11aに被加熱媒体として導入さ
れる。熱交換器11aの熱交換パイプ31a内を
流下する間に水蒸気から熱を奪つた原料水は、主
としてフラツシング室32a内でその一部分が蒸
発する。一方プレヒータ15a内で熱を奪われて
凝縮した蒸溜水は通路40aを介して熱交換器1
1a内に導入され、熱交換器11a内で原料水に
熱を与えて凝縮した加熱媒体入口12aからの蒸
溜水とともに通路43aへ排出される。
The water vapor generated in the flushing chamber 32 is removed in droplets by a mist separator 37, and then passed through a passage 39 to a heat exchanger 11a and a preheater 15a.
(The pressure is about 3Kg/
cm2・g). The raw water that has not evaporated in the flushing chamber 32 is introduced into the preheater 15a as a medium to be heated, with its flow rate being adjusted by an orifice 34. Here, the amount of water vapor led from the heat exchanger 11 to the next stage via the passage 39 is approximately 250/
It is h. Therefore, the amount of raw water introduced to the next stage via the passage 35 is approximately 300/h. One side aisle 22
Of the 550/h of raw material water distributed from /h. The raw water introduced into the preheater 15a is preliminarily heated by removing heat from the water vapor in the preheater 15a, and is then used in the second stage distillation device. It is introduced into the heat exchanger 11a as a medium to be heated. A portion of the raw water, which has absorbed heat from the steam while flowing down inside the heat exchange pipe 31a of the heat exchanger 11a, evaporates mainly within the flushing chamber 32a. On the other hand, the distilled water that has been deprived of heat and condensed in the preheater 15a passes through the passage 40a to the heat exchanger 1.
1a, heat is given to the raw water in the heat exchanger 11a, and the distilled water from the heating medium inlet 12a is condensed and discharged to the passage 43a.

第2段目の熱交換器11aでは熱交換器11か
らの原料水に加えてバイパス50、分岐路51を
介する別のルートからの原料水が加わり、その結
果プレヒータ15a、熱交換器11aに導入され
る原料水の量は所定量、即ち550/hとなる。こ
の結果熱交換器11a内でも設計どおりの効率の
高い熱交換が行なわれる。
In the second stage heat exchanger 11a, in addition to the raw water from the heat exchanger 11, raw water from another route via the bypass 50 and the branch path 51 is added, and as a result, it is introduced into the preheater 15a and the heat exchanger 11a. The amount of raw water used is a predetermined amount, that is, 550/h. As a result, highly efficient heat exchange is performed within the heat exchanger 11a as designed.

第3段目の蒸溜装置である熱交換器11bには
加熱媒体として通路43aから導入される250/
hの蒸溜水に加えてミストセパレータ37aで液
滴が分離された水蒸気が水量として250/hに相
当する量だけ導入される(圧力は約2Kg/cm2
g)。従つてフラツシング室32a内で蒸発しな
かつた原料水量は300/hとなり、通路35aを
介してプレヒータ15bのの被加熱媒体入口21
bに導入される。一方バイパス50に分配された
550/hの原料水のうち分岐路52へは100/h
が分配されるようになつており、プレヒータ15
bへ100/hの原料水がインジエクタ54を介し
て付加される。又後述する熱交換器11b内で蒸
発しなかつた原料水の内その半分である150/h
が通路35bから分配されて分岐路56、インジ
エクタ54を介してプレヒータ15bに導入され
る。従つてプレヒータ15bに被加熱媒体として
導入される原料水の総量は550/hとなり、プレ
ヒータ15bに導入されたこれらの原料水は第3
番目の蒸溜装置である熱交換器11bに被加熱媒
体として導入される。
The heat exchanger 11b, which is the third stage distillation device, has 250/250/250
In addition to the distilled water of h, water vapor whose droplets have been separated by the mist separator 37a is introduced in an amount equivalent to 250/h (pressure is approximately 2 Kg/cm 2 ·
g). Therefore, the amount of raw water that has not evaporated in the flushing chamber 32a is 300/h, and the amount of raw water that has not evaporated in the flushing chamber 32a is 300/h, and the amount of raw water that has not evaporated in the flushing chamber 32a is 300/h.
b. On the other hand, it was distributed to bypass 50.
Of the raw water of 550/h, 100/h goes to branch road 52.
is distributed, and the preheater 15
100/h of raw water is added to b via the injector 54. Also, half of the raw water that did not evaporate in the heat exchanger 11b, which will be described later, was 150/h.
is distributed from the passage 35b and introduced into the preheater 15b via the branch passage 56 and the injector 54. Therefore, the total amount of raw water introduced into the preheater 15b as a medium to be heated is 550/h, and these raw water introduced into the preheater 15b are
It is introduced as a medium to be heated into the heat exchanger 11b, which is the second distillation device.

その後の原料水、水蒸気及び蒸溜水の挙動は第
2段目における挙動と同一である。第3段の熱交
換器11bでも導入される原料水の量は所定量、
即ち550/hとなり、この結果熱交換器11b内
でも設計どおりの効率の高い熱交換が行なわれ
る。
The behavior of the raw water, steam, and distilled water thereafter is the same as that in the second stage. The amount of raw water introduced in the third stage heat exchanger 11b is a predetermined amount,
That is, it becomes 550/h, and as a result, highly efficient heat exchange is performed within the heat exchanger 11b as designed.

熱交換器11b内のフラツシング室32bで蒸
発した水250/hに相当する蒸気は通路39bを
介して熱交換器11cとプレヒータ15cに加熱
媒体として導入され(圧力は約1Kg/cm2・g)、又
蒸発しなかつた300/hの原料水は通路35bを
介してプレヒータ15cに被加熱媒体として導入
される。ただし上述したように、原料水300/h
のうち150/hは分岐路56からインジエクタ5
4に分配されるので、フラツシング32bからプ
レヒータ15cに導入される原料水量は150/h
となる。一方バイパス50に分配された原料水の
うち分岐路53へは残りの200/hが分配される
ようになつており、プレヒータ15bへ200/h
の原料水がインジエクタ55を介して付加され
る。又後述する熱交換器11c内で蒸発しなかつ
た原料水の内200/hが通路35cから分配され
て分岐路57、インジエクタ55を介してプレヒ
ータ15cに導入される。従つてプレヒータ15
cに被加熱媒体として導入される原料水の総量は
550/hとなり、プレヒータ15cに導入された
原料水は第4段の蒸溜装置である熱交換器11c
に被加熱媒体として導入される。
Steam equivalent to 250/h of water evaporated in the flushing chamber 32b in the heat exchanger 11b is introduced as a heating medium into the heat exchanger 11c and the preheater 15c via the passage 39b (pressure is approximately 1 Kg/cm 2 ·g). Also, the raw water of 300/h that has not been evaporated is introduced into the preheater 15c as a medium to be heated through the passage 35b. However, as mentioned above, raw water 300/h
Of these, 150/h is from branch road 56 to injector 5
Therefore, the amount of raw water introduced from the flushing 32b to the preheater 15c is 150/h.
becomes. On the other hand, the remaining 200/h of the raw water distributed to the bypass 50 is distributed to the branch path 53, and the remaining 200/h is distributed to the preheater 15b.
raw water is added via the injector 55. Also, 200/h of the raw water that did not evaporate in the heat exchanger 11c, which will be described later, is distributed from the passage 35c and introduced into the preheater 15c via the branch passage 57 and the injector 55. Therefore, the preheater 15
The total amount of raw water introduced as a heating medium into c is
550/h, and the raw water introduced into the preheater 15c is transferred to the heat exchanger 11c, which is the fourth stage distillation device.
is introduced as a heated medium.

その後の原料水、水訊蒸気及び蒸溜水の挙動は
第2段目及び第3段目における挙動と同一であ
る。第4段目の熱交換器11cでも導入される原
料水の量は所定量、即ち550/hとなり、この結
果熱交換器11c内でも設計どおりの効率の高い
熱交換が行なわれる。
The behavior of the raw water, water vapor and distilled water thereafter is the same as that in the second and third stages. The amount of raw water introduced into the fourth stage heat exchanger 11c is a predetermined amount, that is, 550/h, and as a result, highly efficient heat exchange as designed is performed within the heat exchanger 11c.

熱交換器11c内のフラツシング室32cで蒸
発した水250/hに相当する蒸気は通路39cを
介してコンデンサ23に加熱媒体として導入され
(圧力は約大気圧)、又蒸発しなかつた300/hの
原料水は通路35cを介して外部に排出される。
ただし上述したように、原料水300/hのうち
200/hは分岐路57からインジエクタ55に分
配されるので、フラツシング室32cから外部に
排出される原料水量は100/hとなる。排出され
る原料水には製造された1000/hの蒸溜水に最
初に含まれていた不純物が濃縮されて混入してい
る。
Steam equivalent to 250/h of water evaporated in the flushing chamber 32c in the heat exchanger 11c is introduced as a heating medium into the condenser 23 via the passage 39c (pressure is about atmospheric pressure), and 300/h that is not evaporated The raw water is discharged to the outside through the passage 35c.
However, as mentioned above, out of 300/h of raw water
Since 200/h is distributed from the branch path 57 to the injector 55, the amount of raw water discharged from the flushing chamber 32c to the outside is 100/h. The raw water that is discharged contains concentrated impurities that were originally contained in the distilled water produced at 1000/h.

一方第4段目の蒸溜装置である熱交換器11c
において生成した水250/hに相当する蒸気とと
もに、コンデンサ23へは通路43cを介して第
1〜第3段目の蒸溜装置で生成した蒸溜水750/
hが加熱媒体として供給される。コンデンサ23
内で通路27からの原料水及び他の経路25を流
れる液体に熱を与えた合計1000/hの蒸溜水は、
通路49を介して図示しないタンクに送られる。
On the other hand, the heat exchanger 11c which is the fourth stage distillation device
Along with the steam equivalent to 250/h of water generated in , the distilled water 750/h generated in the first to third stage distillers is sent to the condenser 23 via the passage 43c.
h is supplied as a heating medium. capacitor 23
A total of 1000/h of distilled water gives heat to the raw water from the passage 27 and the liquid flowing through the other passage 25.
It is sent to a tank (not shown) via a passage 49.

(発明の効果) 高温の加熱媒体(例えば水蒸気)と被加熱液体
供給用の第1通路(例えば通路22)から供給さ
れる低温の被加熱液体(例えば水)との間で熱交
換を行ない被加熱液体から蒸気を生成させる第1
熱交換器(例えば熱交換器11)と、第1熱交換
器で発生した蒸気と蒸発しなかつた被加熱液体と
の間で熱交換を行ない被加熱液体から蒸気を発生
させる1又は2以上の一連の第2熱交換器(例え
ば熱交換器11a)とを有し、各熱交換器が略同
一容量に設定された多重効用缶蒸溜装置におい
て;上記第1通路から分岐するバイパス50を、
第2熱交換器に蒸発しなかつた被加熱液体をオリ
フイス34を介して供給する第2通路(例えば通
路35)のオリフイス34の下流側に連結して第
2熱交換器へ被加熱液体を供給することにより、
各熱交換器への被加熱液体の供給量が略等しくな
るようにしたので; (a) ポンプのような駆動機構を設けることなく、
簡単な構成で各熱交換器に適量の被加熱液体を
供給できるようになる。
(Effects of the Invention) Heat exchange is performed between the high temperature heating medium (e.g. steam) and the low temperature liquid to be heated (e.g. water) supplied from the first passage (for example, passage 22) for supplying the liquid to be heated. A first step that generates steam from a heated liquid.
A heat exchanger (for example, heat exchanger 11) and one or more heat exchangers that generate steam from the heated liquid by exchanging heat between the steam generated in the first heat exchanger and the unevaporated heated liquid. In a multi-effect distillation apparatus having a series of second heat exchangers (for example, heat exchanger 11a), each heat exchanger having approximately the same capacity; a bypass 50 branching from the first passage;
A second passage (for example, a passage 35) is connected to the downstream side of the orifice 34 to supply the unevaporated heated liquid to the second heat exchanger via the orifice 34 to supply the heated liquid to the second heat exchanger. By doing so,
Since the amount of heated liquid supplied to each heat exchanger is approximately equal; (a) there is no need to provide a drive mechanism such as a pump;
With a simple configuration, it becomes possible to supply an appropriate amount of heated liquid to each heat exchanger.

(b) 熱交換器中のパイプ表面の液膜が切れること
が無くなることから、過熱蒸気の発生及びハン
チングの発生などの不具合が防止でき、安定し
た蒸溜が行えるようになるとともに一定した質
の蒸溜水が得られる。
(b) Since the liquid film on the surface of the pipe in the heat exchanger will not break, problems such as generation of overheated steam and hunting can be prevented, and stable distillation can be performed and distillation of consistent quality can be achieved. water is available.

(c) 適量の被加熱液体が各熱交換器にそれぞれ供
給されることから、熱交換器の熱交換面に乾き
を生じることはなく、その結果熱交換面に原料
水中に含まれていた不純物が固着して熱交換効
率を劣化させてしまう不具合は防止される。
(c) Since an appropriate amount of liquid to be heated is supplied to each heat exchanger, the heat exchange surface of the heat exchanger does not dry out, and as a result, impurities contained in the raw water are removed from the heat exchange surface. This prevents problems such as sticking and deteriorating heat exchange efficiency.

(d) 各熱交換器の大きさ(容量)を揃えることが
できることから、製作コストが低減できる。
(d) Since the size (capacity) of each heat exchanger can be made the same, manufacturing costs can be reduced.

(e) 多段構造(マルチ構造)であることから、加
熱用の一次蒸気の量を低減できる。
(e) Since it has a multi-stage structure, the amount of primary steam for heating can be reduced.

(f) 第1通路22から分岐するバイパス50を第
2通路35のオリフイス34の下流側に連結し
たので、フラツシング室32の被加熱媒体出口
33から出る被加熱媒体の量を最適に制御して
第2熱交換器11aに適量の被加熱媒体を供給
することができる。
(f) Since the bypass 50 branching from the first passage 22 is connected to the downstream side of the orifice 34 of the second passage 35, the amount of the heated medium exiting from the heated medium outlet 33 of the flushing chamber 32 can be optimally controlled. An appropriate amount of the medium to be heated can be supplied to the second heat exchanger 11a.

(別の実施例) (a) 本発明は4段の多重効用缶蒸溜装置に採用さ
れる場合に限られることはなく、2段以上であ
れば良い。通常3段〜7段の場合に有効に採用
される。
(Another Embodiment) (a) The present invention is not limited to the case where it is employed in a four-stage multi-effect distillation apparatus, and may be applied as long as there are two or more stages. It is usually effectively employed in cases of 3 to 7 stages.

(b) インジエクタ54、分岐路56を省略して分
岐路52を直接通路35aに接続してもよい。
この場合には原料水の供給量が1100/hであ
る上記実施例において、分岐路52に250/h
の原料水を分配し、分岐路53へは50/hの
原料水を分配するようにすればよい。
(b) The injector 54 and the branch passage 56 may be omitted and the branch passage 52 may be directly connected to the passage 35a.
In this case, in the above embodiment in which the raw water supply rate is 1100/h, the feed rate of raw water is 250/h to the branch path 52.
, and 50/h of raw material water may be distributed to the branch path 53.

(c) 更にインジエクタ55、分岐路57を省略す
ることもできる。この場合は通路35cからの
外部への排出量が300/hとなるので、原料水
の総供給量は1300/hとする必要がある。又
この場合には1300/hの原料水の内750/hを
バイパス50に分配するとともに、分岐岐路5
3へはそのうちの250/hを分配する必要があ
る。
(c) Furthermore, the injector 55 and branch path 57 can also be omitted. In this case, since the amount of discharge to the outside from the passage 35c is 300/h, the total amount of raw water supplied needs to be 1300/h. In this case, 750/h of the 1300/h of raw water is distributed to the bypass 50, and the
It is necessary to distribute 250/h of that to 3.

(d) 熱交換器11の熱交換パイプ31の両端に設
けられる管板は2重構造でもよい。又他の熱交
換器を2重管板構造としてもよい。
(d) The tube plates provided at both ends of the heat exchange pipe 31 of the heat exchanger 11 may have a double structure. Further, other heat exchangers may have a double tube plate structure.

(e) 本発明は水の蒸溜に採用される場合に限られ
ることはなく、他の流体の蒸溜用としても採用
することができる。
(e) The present invention is not limited to the case where it is employed for the distillation of water, but can also be employed for the distillation of other fluids.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による多重効用缶蒸溜装置のレ
イアウト図である。 11…第1熱交換器、11a…熱交換器(第2
熱交換器の一例)、22…第1通路、35…第2
通路、50…バイパス。
FIG. 1 is a layout diagram of a multi-effect distillation apparatus according to the present invention. 11...first heat exchanger, 11a...heat exchanger (second
example of heat exchanger), 22...first passage, 35...second
Passage, 50...bypass.

Claims (1)

【特許請求の範囲】[Claims] 1 高温の加熱媒体と被加熱液体供給用の第1通
路から供給される低温の被加熱液体との間で熱交
換を行ない被加熱液体から蒸気を生成させる第1
熱交換器と、第1熱交換器で発生した蒸気と蒸発
しなかつた被加熱液体との間で熱交換を行ない被
加熱液体から蒸気を発生させる1又は2以上の一
連の第2熱交換器とを有し、各熱交換器が略同一
容量に設定された多重効用缶蒸溜装置において;
上記第1通路から分岐するバイパスを、第2熱交
換器に蒸発しなかつた被加熱液体をオリフイスを
介して供給する第2通路のオリフイスの下流側に
連結して第2熱交換器へ被加熱液体を供給するこ
とにより、各熱交換器への被加熱液体の供給量が
略等しくなるようにしたことを特徴とする多重効
用缶蒸溜装置。
1. A first system for generating steam from the heated liquid by performing heat exchange between the high temperature heating medium and the low temperature heated liquid supplied from the first passage for supplying the heated liquid.
a series of one or more second heat exchangers that exchange heat between the heat exchanger and the steam generated in the first heat exchanger and the unevaporated heated liquid to generate steam from the heated liquid; In a multi-effect distillation apparatus having: and in which each heat exchanger is set to have approximately the same capacity;
A bypass branching from the first passage is connected to the downstream side of the orifice of the second passage, which supplies the liquid to be heated that has not evaporated to the second heat exchanger via the orifice, so that the liquid to be heated is supplied to the second heat exchanger. 1. A multi-effect can distillation apparatus characterized in that by supplying liquid, the amount of heated liquid supplied to each heat exchanger is approximately equal.
JP11041184A 1984-05-30 1984-05-30 Multiple-effect distillation apparatus Granted JPS60255101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11041184A JPS60255101A (en) 1984-05-30 1984-05-30 Multiple-effect distillation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11041184A JPS60255101A (en) 1984-05-30 1984-05-30 Multiple-effect distillation apparatus

Publications (2)

Publication Number Publication Date
JPS60255101A JPS60255101A (en) 1985-12-16
JPH0557001B2 true JPH0557001B2 (en) 1993-08-23

Family

ID=14535097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11041184A Granted JPS60255101A (en) 1984-05-30 1984-05-30 Multiple-effect distillation apparatus

Country Status (1)

Country Link
JP (1) JPS60255101A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7862692B2 (en) 2004-12-24 2011-01-04 Jeong-Ho Hong Liquid evaporating method and device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572002U (en) * 1980-06-03 1982-01-07

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572002U (en) * 1980-06-03 1982-01-07

Also Published As

Publication number Publication date
JPS60255101A (en) 1985-12-16

Similar Documents

Publication Publication Date Title
US4035243A (en) Method and apparatus for high volume distillation of liquids
US4319964A (en) Apparatus for high volume distillation of liquids
US7799178B2 (en) Distillation process
US6936140B2 (en) Water distillation system
US4186060A (en) Method and apparatus for high volume distillation of liquids
US4252772A (en) Apparatus for the recovery of vaporized phthalic anhydride from gas streams
SE437560B (en) DEVICE AND PROCEDURE FOR VAPORATION OF CONDENSED NATURAL GAS
JPH0626606A (en) Method of operating steam generator and steam generator
US9393502B1 (en) Desalination system
JP4105262B2 (en) Distillation plant and method of using the same
US4213830A (en) Method for the transfer of heat
RU2140804C1 (en) Method and apparatus for separation of agent from liquid mixture by fractionated crystallization
US2490750A (en) Method of removing scale
JPH06221113A (en) Gas-steam turbine composite facility and operating method thereof
US4458499A (en) Absorption heat pump system
US2379519A (en) Distillation heat exchange method and apparatus
JPS6253702A (en) Distillation accompanied by energy recovery by re-compression of steam used in ejector
US3433717A (en) Multistage flash still with vapor compression plant
US3901768A (en) Distillation method and apparatus
US3405037A (en) Distilland treatment with concentrate recycle
US4391617A (en) Process for the recovery of vaporized sublimates from gas streams
JPH0557001B2 (en)
US4366027A (en) Device for distillation or concentration of a solution and more particularly for desalination of a saline solution such as sea water
US7666281B2 (en) Method and device for treating water
US3391062A (en) Recirculating multistage flash evaporator apparatus and method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term