JPH0554897A - Solid electrolyte cell and manufacture thereof - Google Patents

Solid electrolyte cell and manufacture thereof

Info

Publication number
JPH0554897A
JPH0554897A JP3210716A JP21071691A JPH0554897A JP H0554897 A JPH0554897 A JP H0554897A JP 3210716 A JP3210716 A JP 3210716A JP 21071691 A JP21071691 A JP 21071691A JP H0554897 A JPH0554897 A JP H0554897A
Authority
JP
Japan
Prior art keywords
generation layer
interconnector
power generation
fuel
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3210716A
Other languages
Japanese (ja)
Inventor
Tatsuro Miyazaki
達郎 宮崎
Sumio Moriguchi
澄夫 森口
Tatsuo Kahata
達雄 加幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3210716A priority Critical patent/JPH0554897A/en
Publication of JPH0554897A publication Critical patent/JPH0554897A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To reduce the contact resistance and the cost and increase the mass- productivity, by interposing a porous material thin film between the interconnector having grooves and the power generation layer. CONSTITUTION:A power generation layer 1 is prepared by laminating an electrolytic material 5, and a fuel pole or an air pole 4 or 6 and bonding them to each other. An interconnector 2 is formed by extrusion technique and is bonded to the resulting laminate body. A connection portion 3 is prepared using a sheet with a doctor blade process, and this connection portion 3 is interposed between the powder generation layer 1 and the interconnector 2 and is filled between both. The interconnector 2 has grooves at its surface contacting with the power generation layer 1, which grooves are intended to supply air or fuel while, on the other hand, the sheet is porous material thin film which consists of a fuel pole material or air material. This improves the electrical connection between the power generation layer 1 and the interconnector 2, and makes the contact resistance low, thus enabling mass-production of a high-performance and inexpensive cell.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高温水電解装置、固体電
解質型燃料電池(以下、これをSOFCと略す)などに
有利に適用される固体電解質セル及びその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid electrolyte cell advantageously applied to a high temperature water electrolysis device, a solid oxide fuel cell (hereinafter abbreviated as SOFC), and a method for producing the same.

【0002】[0002]

【従来の技術】SOFCは燃料に含有される化学エネル
ギを燃焼による熱エネルギの形態を経由することなく電
気化学的手段を利用して等温下で連続的に電気エネルギ
へ直接変換する装置でカルノー効率の制約を受けないた
め本質的に高いエネルギ変換率を有し、更に良好な環境
保全性が期待されるなどの特徴を有している。
2. Description of the Related Art SOFC is a device for directly converting chemical energy contained in a fuel into electrical energy continuously under isothermal conditions by utilizing electrochemical means without passing through the form of thermal energy by combustion and Carnot efficiency. Since it is not restricted by the above, it has an inherently high energy conversion rate and is expected to have better environmental conservation.

【0003】平板型SOFCでは、図1を参照して説明
すると、発電を行なう発電層1(燃料極と電解質材と空
気極よりなる)と、供給ガスの混入を避け、かつ電気を
流すセパレータ(インタコネクタ)2とからなり、発電
層1とインタコネクタ2の接続部3は、機械的な押し付
けあるいは白金黒等易焼結性貴金属のペーストを塗布し
た後の焼結により行なわれている。
In the flat plate type SOFC, referring to FIG. 1, a power generation layer 1 (consisting of a fuel electrode, an electrolyte material and an air electrode) for generating power, and a separator (a flow of electricity while avoiding mixing of a supply gas). The connecting portion 3 between the power generation layer 1 and the interconnector 2 is formed by mechanical pressing or sintering after applying a paste of easily sinterable precious metal such as platinum black.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、発電
層、インタコネクタともに接続部は微視的には50〜1
00μm程度湾曲しており、従来技術では良好な接続を
得ることが難しく、接続部での接触抵抗が大きく性能低
下の原因となっている。例えば機械的な押し付けでは高
精度の制御が必要であり、セルの破損を生じやすい。一
方、貴金属ペーストの塗布では原料が高価であり、また
均一な塗布面が得られない。
However, the connecting portions of both the power generation layer and the interconnector are microscopically 50-1.
Since it is curved about 00 μm, it is difficult to obtain a good connection by the conventional technique, and the contact resistance at the connection portion is large, which causes a decrease in performance. For example, mechanical pressing requires high-precision control and is likely to cause cell damage. On the other hand, when the precious metal paste is applied, the raw material is expensive and a uniform applied surface cannot be obtained.

【0005】本発明は上記技術水準に鑑み、接触抵抗が
小さい接続が可能で、かつ安価で量産性に富む固体電解
質セル及びその製造方法を提供しようとするものであ
る。
In view of the above-mentioned state of the art, the present invention is to provide a solid electrolyte cell which can be connected with a small contact resistance, is inexpensive, and has a high mass productivity, and a method for producing the same.

【0006】[0006]

【課題を解決するための手段】本発明は (1)燃料極材と電解質材と空気極材とからなる発電層
と、該発電層に接する面に開口された燃料又は空気を供
給する溝を有するインタコネクタと、該インタコネクタ
と前記発電層との接合部に介在させた燃料極材又は空気
極材よりなる多孔質体の薄膜とを具備してなることを特
徴とする固体電解質セル。
The present invention provides (1) a power generation layer composed of a fuel electrode material, an electrolyte material, and an air electrode material, and a groove for supplying fuel or air opened in a surface in contact with the power generation layer. A solid electrolyte cell comprising: an interconnector having the same; and a thin film of a porous body made of a fuel electrode material or an air electrode material, which is interposed at a joint between the interconnector and the power generation layer.

【0007】(2)燃料極材と電解質材と空気極材とか
らなる発電層と、該発電層に接する面に開口された燃料
又は空気を供給する溝を有するインタコネクタとの接合
部に燃料極材又は空気極材の多孔質体の薄膜を挟持させ
る第1の工程と、前記多孔質体を挟持した前記発電層及
び前記インタコネクタをその挟持面に荷重をかけながら
焼結させる第2の工程とを有してなることを特徴とする
固体電解質セルの製造方法。 である。
(2) A fuel is formed at a joint between a power generation layer composed of a fuel electrode material, an electrolyte material, and an air electrode material, and an interconnector having a groove for supplying fuel or air opened on a surface in contact with the power generation layer. A first step of sandwiching a porous thin film of an electrode material or an air electrode material, and a second step of sintering the power generation layer and the interconnector sandwiching the porous body while applying a load to the sandwiching surface. A method for producing a solid electrolyte cell, comprising the steps of: Is.

【0008】すなわち、本発明は発電層とインタコネク
タの接続面に発電層電極材(燃料極材または空気極材)
をシート状に加工し未焼結の状態で充てんした後、焼結
を行なうことにより発電層/インタコネクタ間の接着性
を向上させ界面抵抗を低減できるようにした固体電解質
セル及びその製造方法である。
That is, according to the present invention, the power generation layer electrode material (fuel electrode material or air electrode material) is formed on the connection surface between the power generation layer and the interconnector.
A solid electrolyte cell and a method for manufacturing the same in which the sheet is processed into a sheet and filled in the unsintered state and then sintered to improve the adhesiveness between the power generation layer / interconnector and reduce the interfacial resistance. is there.

【0009】上記において、発電層の電極材のシート状
への加工は従来一般的に使われているセラミックスの薄
膜成形方法(ドクターブレード法、カレンダーロール
法、押し出し法)により行なえばよい。これらの方法に
より作成された薄膜は焼結前にはセラミックス粉の他に
有機バインダを含有して可塑性に富んでいるので発電層
とインタコネクタ間に置き、適度に加圧することにより
発電層、インタコネクタの湾曲部に充てんされる。シー
ト状に加工する際に使用される有機バインダは用いられ
る粉体の性状、分散剤、溶媒によって変わるが、一般的
にポリメチルアクリレート、ニトロセルロース、ポリエ
チレン、石油樹脂、ポリビニルアルコール、ポリビニル
ブチラール樹脂、ポリ塩化ビニル、アクリル酸ポリマ、
メタクリル酸ポリマ、メチルセルロース、ワックスなど
が使用される。
In the above, the electrode material of the power generation layer may be processed into a sheet by a generally used ceramic thin film forming method (doctor blade method, calender roll method, extrusion method). Before sintering, the thin film prepared by these methods contains an organic binder in addition to ceramic powder and is rich in plasticity, so it is placed between the power generation layer and the interconnector, and by appropriately pressing it, Fills the curved part of the connector. The organic binder used in processing into a sheet varies depending on the properties of the powder used, the dispersant, and the solvent, but generally polymethyl acrylate, nitrocellulose, polyethylene, petroleum resin, polyvinyl alcohol, polyvinyl butyral resin, Polyvinyl chloride, acrylic acid polymer,
Methacrylic acid polymer, methyl cellulose, wax and the like are used.

【0010】[0010]

【作用】本発明によれば、従来と比べ、発電層とインタ
コネクタ間の電気的な接続が良好となり、高性能な固体
電解質セルを提供することが可能となる。
According to the present invention, the electric connection between the power generation layer and the interconnector is improved as compared with the conventional one, and it is possible to provide a high performance solid electrolyte cell.

【0011】[0011]

【実施例】以下、図1により、本発明の一実施例を従来
の態様のものと比較して説明し、本発明の効果を立証す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. 1 in comparison with a conventional embodiment to prove the effect of the present invention.

【0012】発電層1の構成膜としての電解質材5はイ
ットリア安定化ジルコニアを、燃料極4又は6はNi/
ZrO2 サーメットを、空気極4又は6はLaSrMn
3 を使用し、各々の膜はドクターブレード法により成
膜した。これを積層した後、焼結を行ない発電層1を作
成した。またインタコネクタ2としてはLaCrMgO
3 を使用し、これは押し出し法により成形し焼結した。
The electrolyte material 5 as a constituent film of the power generation layer 1 is yttria-stabilized zirconia, and the fuel electrode 4 or 6 is Ni /
ZrO 2 cermet, air electrode 4 or 6 is LaSrMn
O 3 was used, and each film was formed by the doctor blade method. After stacking these, sintering was performed to create a power generation layer 1. As the interconnector 2, LaCrMgO is used.
3 was used, which was extruded and sintered.

【0013】両者の接続面に充てんするシートもドクタ
ーブレード法により作成し、材料は空気極材であるLa
SrMnO3 を使用した。またこのとき可塑性を保持さ
せるために有機バインダとしてアクリル樹脂とフタル酸
のエステルを5〜15%添加した。
A sheet for filling both connecting surfaces is also prepared by the doctor blade method, and the material is La, which is an air electrode material.
SrMnO 3 was used. At this time, 5 to 15% of an acrylic resin and an ester of phthalic acid were added as an organic binder to maintain plasticity.

【0014】発電層1とインタコネクタ2の接続は1.
5〜10g/cm2 の荷重をかけ1000〜1400℃
の温度で加熱して行なった。
The connection between the power generation layer 1 and the interconnector 2 is 1.
Apply a load of 5 to 10 g / cm 2 and 1000 to 1400 ° C
The heating was performed at the temperature of.

【0015】このようにして得た発電層/インタコネク
タ接続体を直流四端子法により電気抵抗を測定した。
The electrical resistance of the power generation layer / interconnector connection thus obtained was measured by the DC four-terminal method.

【0016】また比較として機械的に押し付けたもの、
接続面に貴金属(白金黒)ペーストを塗布、焼結(10
00℃)したものについても同様に測定した。
For comparison, a mechanically pressed one,
Apply precious metal (platinum black) paste on the connecting surface and sinter (10
The same measurement was performed for the samples subjected to (00 ° C.).

【0017】結果を表1及び表2に示す。シート状の接
続層を設けたものは機械的な押し付けや白金ペーストに
比べて、発電層/インタコネクタの界面抵抗は小さく、
特に1200〜1300℃の温度で加熱し、また荷重量
は4.0g/cm2 以上のとき界面抵抗は小さくなるこ
とが確認された。
The results are shown in Tables 1 and 2. Compared with mechanical pressing or platinum paste, the one provided with a sheet-shaped connection layer has a smaller interface resistance between the power generation layer and the interconnector,
In particular, it was confirmed that the interface resistance was small when the sample was heated at a temperature of 1200 to 1300 ° C. and the load amount was 4.0 g / cm 2 or more.

【表1】 [Table 1]

【表2】 [Table 2]

【0018】[0018]

【発明の効果】本発明によれば、発電層とインタコネク
タ間の電気的接続が良好となり、高性能の固体電解質セ
ルを提供することが可能となる。
According to the present invention, the electric connection between the power generation layer and the interconnector is improved, and a high performance solid electrolyte cell can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】平板型固体電解質型燃料電池の構成の説明図。FIG. 1 is an explanatory diagram of a configuration of a flat plate solid oxide fuel cell.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 燃料極材と電解質材と空気極材とからな
る発電層と、該発電層に接する面に開口された燃料又は
空気を供給する溝を有するインタコネクタと、該インタ
コネクタと前記発電層との接合部に介在させた燃料極材
又は空気極材よりなる多孔質体の薄膜とを具備してなる
ことを特徴とする固体電解質セル。
1. A power generation layer composed of a fuel electrode material, an electrolyte material and an air electrode material, an interconnector having a groove for supplying fuel or air opened in a surface in contact with the power generation layer, the interconnector and the interconnector. A solid electrolyte cell, comprising: a porous thin film made of a fuel electrode material or an air electrode material, which is interposed at a joint with a power generation layer.
【請求項2】 燃料極材と電解質材と空気極材とからな
る発電層と、該発電層に接する面に開口された燃料又は
空気を供給する溝を有するインタコネクタとの接合部に
燃料極材又は空気極材の多孔質体の薄膜を挟持させる第
1の工程と、前記多孔質体を挟持した前記発電層及び前
記インタコネクタをその挟持面に荷重をかけながら焼結
させる第2の工程とを有してなることを特徴とする固体
電解質セルの製造方法。
2. A fuel electrode at a joint between a power generation layer composed of a fuel electrode material, an electrolyte material, and an air electrode material, and an interconnector having a groove for supplying fuel or air opened in a surface in contact with the power generation layer. Step of sandwiching a thin film of a porous material of a material or an air electrode material, and a second step of sintering the power generation layer and the interconnector sandwiching the porous material while applying a load to the sandwiching surface. And a method for producing a solid electrolyte cell.
JP3210716A 1991-08-22 1991-08-22 Solid electrolyte cell and manufacture thereof Withdrawn JPH0554897A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3210716A JPH0554897A (en) 1991-08-22 1991-08-22 Solid electrolyte cell and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3210716A JPH0554897A (en) 1991-08-22 1991-08-22 Solid electrolyte cell and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH0554897A true JPH0554897A (en) 1993-03-05

Family

ID=16593922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3210716A Withdrawn JPH0554897A (en) 1991-08-22 1991-08-22 Solid electrolyte cell and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH0554897A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09210741A (en) * 1996-01-31 1997-08-15 Agency Of Ind Science & Technol Dynamic observation method for brackish area saline layer by water temperature
US5866275A (en) * 1996-01-18 1999-02-02 Ngk Insulators, Ltd. Layered sintered body for electrochemical cells
US5964991A (en) * 1996-09-26 1999-10-12 Ngk Insulators, Ltd. Sintered laminated structures, electrochemical cells and process for producing such sintered laminated structures
US7449261B2 (en) 2001-09-13 2008-11-11 Ngk Insulators, Ltd. Holding member for holding an electrochemical cell, a holding substrate for the same, an electrochemical system and a connecting member for electrochemical cells

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5866275A (en) * 1996-01-18 1999-02-02 Ngk Insulators, Ltd. Layered sintered body for electrochemical cells
JPH09210741A (en) * 1996-01-31 1997-08-15 Agency Of Ind Science & Technol Dynamic observation method for brackish area saline layer by water temperature
US5964991A (en) * 1996-09-26 1999-10-12 Ngk Insulators, Ltd. Sintered laminated structures, electrochemical cells and process for producing such sintered laminated structures
US6183609B1 (en) 1996-09-26 2001-02-06 Ngk Insulators, Ltd. Sintered laminated structures, electrochemical cells and process for producing such sintered laminated structures
US7449261B2 (en) 2001-09-13 2008-11-11 Ngk Insulators, Ltd. Holding member for holding an electrochemical cell, a holding substrate for the same, an electrochemical system and a connecting member for electrochemical cells

Similar Documents

Publication Publication Date Title
Hsieh et al. Fabrication of electrolyte supported micro-tubular SOFCs using extrusion and dip-coating
JP3604848B2 (en) Laminated sintered body for electrochemical cell, electrochemical cell, and method for producing laminated sintered body for electrochemical cell
JPH08505823A (en) How to make a device containing a thin ceramic layer
JP2527876B2 (en) Method for manufacturing solid oxide fuel cell
CN112687929A (en) Lithium oxide electrode micro-molten salt ceramic fuel cell and preparation method thereof
JPH0554897A (en) Solid electrolyte cell and manufacture thereof
JP2001035505A (en) Fuel cell stack and method and member for joining same
CN113285084B (en) Method for preparing solid oxide fuel cell in one step
JPH0554896A (en) Solid electrolyte cell and manufacture thereof
JP3110265B2 (en) Bonding material and bonding method for solid oxide fuel cell stack
JP2774227B2 (en) Method for joining solid oxide fuel cell stack
CN109818021A (en) It is a kind of based on cerium oxide/ferriferrous oxide composite material low-temperature solid oxide fuel cell
JP4367843B2 (en) Fuel electrode, electrochemical cell, and method of manufacturing fuel electrode
JP2006339034A (en) Solid oxide fuel cell, and method of manufacturing same
JP5362979B2 (en) Method for producing solid oxide fuel cell
JPH11185780A (en) Cylindrical fuel cell with solid electrolyte
JPH0676842A (en) Flat plate solid electrolyte fuel cell
JP3358640B2 (en) Manufacturing method of electrode substrate
JP4232216B2 (en) Method for producing fuel electrode of solid oxide fuel cell
JPH08287921A (en) Fuel electrode for solid electrolyte fuel cell
JPH09306515A (en) Solid electrolyte fuel cell and manufacture thereof
Liu et al. Single solid oxide fuel cell testing using silver paste for sealing and current collection
JPH03194860A (en) Solid electrolyte fuel cell
JPH07335239A (en) Manufacture of junction body
JPH07135000A (en) Dimple type solid electrolyte cell

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981112