JPH0551884B2 - - Google Patents

Info

Publication number
JPH0551884B2
JPH0551884B2 JP61133675A JP13367586A JPH0551884B2 JP H0551884 B2 JPH0551884 B2 JP H0551884B2 JP 61133675 A JP61133675 A JP 61133675A JP 13367586 A JP13367586 A JP 13367586A JP H0551884 B2 JPH0551884 B2 JP H0551884B2
Authority
JP
Japan
Prior art keywords
liquid crystal
crystal element
temperature
laser beam
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61133675A
Other languages
Japanese (ja)
Other versions
JPS62291624A (en
Inventor
Kazuyuki Funahata
Keiji Nagae
Masahiro Kosaka
Juji Mori
Tadahiko Hashimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13367586A priority Critical patent/JPS62291624A/en
Publication of JPS62291624A publication Critical patent/JPS62291624A/en
Publication of JPH0551884B2 publication Critical patent/JPH0551884B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133382Heating or cooling of liquid crystal cells other than for activation, e.g. circuits or arrangements for temperature control, stabilisation or uniform distribution over the cell

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は液晶を用いた投射型表示装置に係り、
特に液晶素子の温度を制御するのに好適な液晶素
子に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a projection display device using liquid crystal,
In particular, the present invention relates to a liquid crystal element suitable for controlling the temperature of a liquid crystal element.

〔従来の技術〕[Conventional technology]

従来の液晶を用いた投射型表示装置における、
液晶素子の温度制御法は、テレビジヨン学会技術
報告(昭和61年1月28日発表)に記載のように、
液体で充した恒温カセツト中に液晶素子を納めた
構造であり、恒温カセツトは外気温度により左右
されやすいものであつた。又、この投射型表示装
置はモノカラーであり、液晶素子は1素子であ
る。しかし、フルカラー投射型表示装置では、液
晶素子は3素子必要であり、この液晶素子間の温
度のバラツキをなくすことは、表示装置の精度を
決定するうえで、重要な問題であり、この液体で
充したカセツト中に液晶素子を納めただけでは、
液晶素子間の温度バラツキは制御できない。
In a projection display device using a conventional liquid crystal,
The temperature control method for liquid crystal elements is as described in the Technical Report of the Television Society (published on January 28, 1986).
The liquid crystal element was housed in a thermostatic cassette filled with liquid, and the thermostatic cassette was easily affected by the outside temperature. Further, this projection type display device is monochrome and has one liquid crystal element. However, a full-color projection display requires three liquid crystal elements, and eliminating temperature variations among these liquid crystal elements is an important issue in determining the accuracy of the display. Simply placing the liquid crystal element in a fully filled cassette will not work.
Temperature variations between liquid crystal elements cannot be controlled.

この従来方式では、設定温度に対し温度変化が
大きい。これは、書込み線幅が温度変化によりか
わることであり、表示装置の精度がかわることで
ある。
In this conventional method, the temperature change is large relative to the set temperature. This means that the writing line width changes due to temperature changes, and the accuracy of the display device changes.

又、カラー表示の場合における液晶素子間の温
度のバラツキは、各液晶素子間の書込み線幅がか
わるため、色づれとなつて表われる欠点を有して
いた。
Furthermore, in the case of color display, temperature variations between liquid crystal elements have the disadvantage that the writing line width between each liquid crystal element changes, resulting in color shift.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は、設定温度に対する温度安定精
度については配慮されておらず、表示特性の安定
性が悪いという問題があつた。又、カラー表示の
場合の液晶素子間の温度制御については、配慮が
されていないという問題があつた。
The above-mentioned conventional technology does not take into account the temperature stability accuracy with respect to the set temperature, and has a problem in that the stability of display characteristics is poor. Another problem is that no consideration is given to temperature control between liquid crystal elements in the case of color display.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、液晶素子の少なくとも一部又は全
体を加熱及び冷却媒体を満たした恒温槽内に設置
し、前記液晶素子の温度検出手段と、前記温度検
出手段の検出値に応じて前記液晶素子を加熱また
は冷却する手段を設けることにより、達成され
る。
The above object is to install at least a part or the whole of a liquid crystal element in a constant temperature bath filled with a heating and cooling medium, and to detect a temperature of the liquid crystal element according to a detected value of the temperature detecting means and a temperature detecting means of the liquid crystal element. This is achieved by providing heating or cooling means.

〔作 用〕[Effect]

液晶素子を加熱及び冷却媒体を満たした恒温槽
内に設置し、液晶素子の温度検出手段と、その検
出値に応じて液晶素子を加熱または冷却する手段
を設けて液晶素子の温度制御を高精度に行えるよ
うにしたため、液晶素子の設定温度に対する温度
安定精度が向上し、各液晶素子間の温度バラツキ
が低減する。
The liquid crystal element is placed in a constant temperature bath filled with a heating and cooling medium, and a means for detecting the temperature of the liquid crystal element and a means for heating or cooling the liquid crystal element according to the detected value are installed to control the temperature of the liquid crystal element with high precision. As a result, temperature stability accuracy with respect to the set temperature of the liquid crystal element is improved, and temperature variations among each liquid crystal element are reduced.

〔実施例〕〔Example〕

以下、本発明を実施例につき詳述する。 Hereinafter, the present invention will be explained in detail with reference to examples.

第1図は本発明の実施例の構成を示す説明図で
ある。同図において、1は投射光源であり、クセ
ノン・ランプのように分光分布曲線が可視光の波
長領域で、太陽光とほぼ同様な連続スペクトルを
もつたものが適当である。投射光源1より放射さ
れた投射光は、熱線カツトフイルタ2により紫外
の波長域及び熱線である近赤外から赤外の波長域
の成分を除去して、可視光の波長域のみの連続ス
ペクトルをもつた光とし、コンデンサ・レンズ3
で平行光にする。この平行光となつた投射光は、
ハーフ・ミラー4で入射投射光のほぼ1/2の光量
を透過し、残り1/2の光量を反射して、液晶素子
5に照射する。この投射光は、レーザ6、変調器
7、偏向器8、液晶駆動回路9により、上記液晶
素子5に画像情報を書込み、そのパターンを液晶
素子5内に設けたAl反射膜により反射し、上記
ハーフ・ミラー4を透過し、投射レンズ10及び
カラーフイルタ11により、色づけ拡大してスク
リーン12に画像を表示する。ただし、液晶素子
5に最適条件で画像情報を書込むためには、液晶
素子5の温度を最適条件に制御することが重要で
ある。
FIG. 1 is an explanatory diagram showing the configuration of an embodiment of the present invention. In the figure, reference numeral 1 denotes a projection light source, which is suitably a xenon lamp whose spectral distribution curve is in the wavelength range of visible light and has a continuous spectrum almost similar to that of sunlight. The projection light emitted from the projection light source 1 has a continuous spectrum only in the visible light wavelength range by removing components in the ultraviolet wavelength range and the near-infrared to infrared wavelength range, which are heat rays, by the heat ray cut filter 2. Condenser lens 3
to make parallel light. This parallel projected light is
The half mirror 4 transmits approximately 1/2 of the incident and projected light, and the remaining 1/2 is reflected and irradiated onto the liquid crystal element 5. This projected light writes image information onto the liquid crystal element 5 using a laser 6, a modulator 7, a deflector 8, and a liquid crystal drive circuit 9, and the pattern is reflected by an Al reflective film provided inside the liquid crystal element 5. The image is transmitted through the half mirror 4, colored and enlarged by the projection lens 10 and color filter 11, and displayed on the screen 12. However, in order to write image information into the liquid crystal element 5 under optimum conditions, it is important to control the temperature of the liquid crystal element 5 under optimum conditions.

このことから、本発明は液晶素子5を恒温槽1
3内に設置し、温度検出器14と温度制御回路1
5により、液晶素子5の温度を最適条件に制御す
ることができるようにした。
For this reason, the present invention provides the liquid crystal element 5 in the constant temperature bath 1.
3, temperature detector 14 and temperature control circuit 1
5, the temperature of the liquid crystal element 5 can be controlled to optimal conditions.

本発明の液晶素子5温度制御装置は、気体及び
液体を加熱及び冷却媒体とし、液晶素子5の温度
を検出して、その温度により加熱及び冷却媒体の
温度を制御するものである。又、本発明の温度制
御は比例制御方式であるため、設定温度に対する
誤差が小さい。
The liquid crystal element 5 temperature control device of the present invention uses gas and liquid as heating and cooling media, detects the temperature of the liquid crystal element 5, and controls the temperature of the heating and cooling media based on the detected temperature. Furthermore, since the temperature control of the present invention is a proportional control method, the error with respect to the set temperature is small.

従つて、液晶素子5を最適温度に保つことがで
きるので、散乱の強い書込み状態を得ることがで
き、良好な表示品質を得ることができる。
Therefore, since the liquid crystal element 5 can be maintained at an optimum temperature, a writing state with strong scattering can be obtained, and good display quality can be obtained.

第2図は本発明の別の実施例の構成を示す説明
図である。同図において、21は投射光源であ
り、クセノン・ランプのように分光分曲線が可視
光の波長領域で、太陽光とほぼ同様な連続スペク
トルをもつたものが適当である。投射光源21よ
り放射された投射光は、熱線カツトフイルタ22
により紫外の波長域及び熱線である近赤外から赤
外の波長域の成分を除去して、可視光の波長域の
みの連続スペクトルをもつた光とし、コンデン
サ・レンズ23で平行光にする。この平行光とな
つた投射光は、ハーフ・ミラー24で入射投射光
のほぼ1/2の光量を透過し、残り1/2の光量を反射
して、液晶素子25に照射する。この投射光はレ
ーザ26、変調器27、偏向器28、液晶素子駆
動回路29により、上記液晶素子25に画像情報
を書込み、そのパターンを液晶素子25内に設け
たAl反射膜により反射し、上記ハーフ・ミラー
24を透過し、投射レンズ30及びカラーフイル
タ31により、色づけ拡大してスクリーン32に
画像を表示する。ただし、前述したように液晶素
子25に最適条件で画像情報を書込むためには、
液晶素子25の温度を最適条件に制御する必要が
ある。
FIG. 2 is an explanatory diagram showing the configuration of another embodiment of the present invention. In the figure, reference numeral 21 denotes a projection light source, which is suitably a xenon lamp whose spectral curve is in the wavelength range of visible light and has a continuous spectrum almost similar to that of sunlight. The projection light emitted from the projection light source 21 passes through a heat ray cut filter 22.
The components in the ultraviolet wavelength range and the heat rays in the near-infrared to infrared wavelength range are removed to produce light with a continuous spectrum only in the visible light wavelength range, and the condenser lens 23 converts the light into parallel light. This parallel projected light passes through the half mirror 24 with approximately 1/2 of the amount of the incident projected light, and the remaining 1/2 is reflected and irradiated onto the liquid crystal element 25 . This projected light writes image information onto the liquid crystal element 25 using a laser 26, a modulator 27, a deflector 28, and a liquid crystal element drive circuit 29, and the pattern is reflected by an Al reflective film provided inside the liquid crystal element 25. The image is transmitted through the half mirror 24, colored and enlarged by the projection lens 30 and color filter 31, and displayed on the screen 32. However, as mentioned above, in order to write image information to the liquid crystal element 25 under optimal conditions,
It is necessary to control the temperature of the liquid crystal element 25 to optimal conditions.

本発明は、液晶素子25の温度制御を行うに、
小型化に重点をおいたもので、液晶素子と加熱及
び冷却媒体を有する恒温槽を一体化したものであ
る。
In the present invention, when controlling the temperature of the liquid crystal element 25,
The focus is on miniaturization, and it integrates a liquid crystal element and a constant temperature bath containing heating and cooling media.

本発明の液晶素子25は、液晶素子部と恒温槽
部を一体化した構造で、液晶素子部の温度検子器
33と加熱及び冷却媒体の温度制御回路34によ
り、液晶素子部の温度を最適条件に制御できる。
The liquid crystal element 25 of the present invention has a structure in which the liquid crystal element part and the constant temperature bath part are integrated, and the temperature of the liquid crystal element part is optimized by the temperature detector 33 of the liquid crystal element part and the temperature control circuit 34 of the heating and cooling medium. Can be controlled according to conditions.

又、本発明の液晶素子25は、液晶素子部と恒
温槽部を一体化して小型にすることができるた
め、カラーデイスプレイには光学系の構成上有利
である。
Furthermore, the liquid crystal element 25 of the present invention can be made compact by integrating the liquid crystal element part and the constant temperature bath part, and is therefore advantageous in terms of the structure of the optical system for color displays.

本発明の重要な部分である液晶素子部の構成を
第3図に示す。同図に示すように、本発明の液晶
素子は、液晶素子部と加熱及び冷却部に大別され
る。41はレーザ光の反射防止膜であり、レーザ
光を損失なくレーザ光吸収膜45に入射するため
のものである。42はガラス基板であり、その基
板上に液晶48側に上述したレーザ光吸収膜4
5、可式光反射膜46、配向膜47が膜付されて
いる。一方、投射光側のガラス基板42の上に
は、投射光側に可視光反射防止膜50、液晶側に
透明電極49と配向膜47が膜付される。これら
膜付されたガラス基板をスペーサ43を介して、
熱・電気光学効果を有する液晶48が保持され
る。これが液晶素子部であり、加熱及び冷却媒体
は、液晶素子部の投射光側ガラス基板と、両面に
可視光反射防止膜50を施したガラス基板42を
スペーサ43を介して、加熱及び冷却媒体を保持
する。
FIG. 3 shows the structure of the liquid crystal element section, which is an important part of the present invention. As shown in the figure, the liquid crystal element of the present invention is roughly divided into a liquid crystal element section and a heating and cooling section. Reference numeral 41 denotes an antireflection film for laser light, which allows the laser light to enter the laser light absorption film 45 without loss. 42 is a glass substrate, on which the above-mentioned laser light absorption film 4 is placed on the liquid crystal 48 side.
5. A removable light reflecting film 46 and an alignment film 47 are attached. On the other hand, on the glass substrate 42 on the projection light side, a visible light antireflection film 50 is applied on the projection light side, and a transparent electrode 49 and an alignment film 47 are applied on the liquid crystal side. These film-coated glass substrates are placed through spacers 43,
A liquid crystal 48 having a thermo-electro-optic effect is held. This is the liquid crystal element section, and the heating and cooling medium is applied to the projection light side glass substrate of the liquid crystal element section and the glass substrate 42, which has a visible light antireflection film 50 on both sides, via a spacer 43. Hold.

本発明の液晶素子部の温度は、レーザ光照射面
側のガラス基板温度に較べ、投射光照射面側のガ
ラス基板温度が低くなる。このことは、レーザ光
により液晶を加熱するため、レーザの消費電力を
低下できる点で有利であり、又、レーザ光により
加熱された液晶の冷却には投射光側ガラス基板に
熱が逃げるため、冷却速度が速くなる。液晶の冷
却速度が速くなることは、光散乱の大きな情報書
込みが行え、コントラスト比が大きくなる。
Regarding the temperature of the liquid crystal element portion of the present invention, the temperature of the glass substrate on the projection light irradiation surface side is lower than the temperature of the glass substrate on the laser light irradiation surface side. This is advantageous in that the power consumption of the laser can be reduced because the liquid crystal is heated by the laser beam, and heat escapes to the glass substrate on the projection light side to cool the liquid crystal heated by the laser beam. Cooling speed becomes faster. If the cooling rate of the liquid crystal becomes faster, information can be written with greater light scattering, and the contrast ratio becomes larger.

従つて、本発明によれば、レーザの消費電力を
低下することができるとともに、コントラスト比
の大きな表示を得ることができる。又、液晶層の
温度を最適条件に制御できるため、書込み線幅の
制御が精度よく行える。従つて、書込み精度の向
上が図れる。
Therefore, according to the present invention, the power consumption of the laser can be reduced, and a display with a high contrast ratio can be obtained. Furthermore, since the temperature of the liquid crystal layer can be controlled to optimal conditions, the writing line width can be controlled with high precision. Therefore, writing accuracy can be improved.

第4図には、第3図に示した液晶素子の変形例
を示した。同図に示すように、加熱及び冷却部を
液晶素子部のレーザ光照射面側に設けた構造であ
る。本変形例も第3図に示した液晶素子と同様の
効果が得られる。
FIG. 4 shows a modification of the liquid crystal element shown in FIG. 3. As shown in the figure, the structure is such that a heating and cooling section is provided on the side of the laser beam irradiation surface of the liquid crystal element section. This modification also provides the same effects as the liquid crystal element shown in FIG. 3.

本発明の別の実施例を第5図に示す。同図に示
すように、液晶素子60、加熱及び冷却媒体を保
持するためのガラス基板61及びホルダー62で
液晶64の温度制御が可能な構成とした。
Another embodiment of the invention is shown in FIG. As shown in the figure, the configuration is such that the temperature of the liquid crystal 64 can be controlled by a liquid crystal element 60, a glass substrate 61 for holding a heating and cooling medium, and a holder 62.

液晶64の温度制御ができ、しかも、簡易な構
造であることに主眠をおいたものであり、液晶素
子60と保持ガラス基板61をホルダー62で保
持することにより、加熱及び冷却媒体路63を設
ける構造である。
The main purpose of this design was to be able to control the temperature of the liquid crystal 64 and to have a simple structure. By holding the liquid crystal element 60 and the holding glass substrate 61 with a holder 62, the heating and cooling medium path 63 can be controlled. This is a structure to be provided.

同図に示すように、投射光照射面側に加熱及び
冷却媒体路63を設けたものであり、保持ガラス
基板61の両面には可視光反射防止膜を膜付し
た。
As shown in the figure, a heating and cooling medium path 63 is provided on the projection light irradiation surface side, and a visible light antireflection film is coated on both surfaces of the holding glass substrate 61.

液晶素子60は、投射光照射側ガラス基板72
には、投射光側に可視光反射防止膜65、液晶側
に透明電極65と配向膜67が膜付されており、
一方、レーザ光照射面側ガラス基板73には、レ
ーザ光側にレーザ光反射防止膜70、液晶側にレ
ーザ光吸収膜69、可視光反射膜68、配向膜6
7が膜付され、これらをスペーサ71を介して液
晶64を挟持する構造である。
The liquid crystal element 60 has a glass substrate 72 on the projection light irradiation side.
A visible light antireflection film 65 is provided on the projection light side, and a transparent electrode 65 and an alignment film 67 are provided on the liquid crystal side.
On the other hand, the glass substrate 73 on the laser beam irradiation side includes a laser beam antireflection film 70 on the laser beam side, a laser beam absorption film 69 on the liquid crystal side, a visible light reflection film 68, and an alignment film 6.
7 is attached with a film, and the liquid crystal 64 is sandwiched between these with a spacer 71 interposed therebetween.

本発明によれば、構造が簡易でしかも液晶素子
部と加熱及び冷却部一体化構造の液晶素子と同様
の温度制御ができる。又、液晶の最適温度制御が
できるので、コントラスト比の高い表示及び解像
度の高い表示が得られる。
According to the present invention, the structure is simple, and temperature control similar to that of a liquid crystal element having a structure in which the liquid crystal element part and the heating and cooling parts are integrated can be performed. Furthermore, since the optimum temperature of the liquid crystal can be controlled, a display with a high contrast ratio and a high resolution can be obtained.

第6図には、第5図に示した加熱及び冷却が可
能な液晶素子の構造の変形例を示す。同図に示す
ように、加熱及び冷却部を液晶素子のレーザ光照
射面側に設けた構造である。
FIG. 6 shows a modification of the structure of the liquid crystal element shown in FIG. 5, which can be heated and cooled. As shown in the figure, the structure is such that a heating and cooling section is provided on the side of the laser beam irradiated surface of the liquid crystal element.

本変形例も第5図に示した構造の液晶素子と同
等の効果が得られる。
This modification also provides the same effect as the liquid crystal element having the structure shown in FIG.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明の投射
型表示装置によれば、従来の液体で充した恒温カ
セツト中に液晶素子を納めた方式で問題となつ
た、設定温度の変動の解消ができる。又、フルカ
ラー及びマルチカラー投射型表示装置における液
晶素子間の温度のバラツキも解消できる。
As is clear from the above description, according to the projection type display device of the present invention, it is possible to eliminate fluctuations in the set temperature, which was a problem with the conventional method in which the liquid crystal element was housed in a constant temperature cassette filled with liquid. . Furthermore, temperature variations between liquid crystal elements in full-color and multi-color projection display devices can also be eliminated.

更に、精度のよい温度制御ができるので、コン
トラスト比が高く、しかも解像度の高い表示が得
られるという効果がある。
Furthermore, since temperature control can be performed with high precision, a display with a high contrast ratio and high resolution can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の投射型液晶表示装置の構成
図、第2図は本発明の別の実施例の構成図、第3
図は本発明のポイントとなる一体型液晶素子部の
構造図、第4図は別の一体型液晶素子部の構造
図、第5図は分割型液晶素子部の構造図、第6図
は分割型液晶素子部の構造図である。 1,21…投射光源、2,22…熱線カツトフ
イルタ、3,23…コンデンサ・レンズ、4,2
4…ハーフ・ミラー、5,25,60…液晶素
子、6,26…レーザ、7,27…変調器、8,
28…偏光器、9,29…液晶素子駆動回路、1
0,30…投射レンズ、11,31…カラーフイ
ルタ、12,32…スクリーン、13…恒温槽、
14,33…温度検出器、15,34…温度制御
回路、41,70…レーザ光反射防止膜、42,
61,72,73…ガラス基板、43,71…ス
ペーサ、44,63…加熱及び冷却媒体、45,
69…レーザ光吸収膜、46,68…可視光反射
膜、47,67…配向膜、48,64…液晶、4
9,66…透明電極、50,65…可視光反射防
止膜、62…ホルダー。
FIG. 1 is a block diagram of a projection type liquid crystal display device of the present invention, FIG. 2 is a block diagram of another embodiment of the present invention, and FIG.
The figure is a structural diagram of an integrated type liquid crystal element part, which is the key point of the present invention, Figure 4 is a structural diagram of another integrated type liquid crystal element part, Figure 5 is a structural diagram of a split type liquid crystal element part, and Figure 6 is a structural diagram of a divided type liquid crystal element part. FIG. 2 is a structural diagram of a molded liquid crystal element section. 1, 21... Projection light source, 2, 22... Heat ray cut filter, 3, 23... Condenser lens, 4, 2
4... Half mirror, 5, 25, 60... Liquid crystal element, 6, 26... Laser, 7, 27... Modulator, 8,
28...Polarizer, 9, 29...Liquid crystal element drive circuit, 1
0, 30... Projection lens, 11, 31... Color filter, 12, 32... Screen, 13... Constant temperature bath,
14, 33... Temperature detector, 15, 34... Temperature control circuit, 41, 70... Laser light antireflection film, 42,
61,72,73...Glass substrate, 43,71...Spacer, 44,63...Heating and cooling medium, 45,
69... Laser light absorption film, 46, 68... Visible light reflection film, 47, 67... Alignment film, 48, 64... Liquid crystal, 4
9,66...Transparent electrode, 50,65...Visible light antireflection film, 62...Holder.

Claims (1)

【特許請求の範囲】 1 レーザビーム発生器と、該レーザビームを二
次元的に走査する光学的手段と、熱・電気光学効
果を有する液晶素子を有し、前記レーザ発生器と
二次元的に走査する光学的手段により、液晶素子
上に画像を形成し、該画像をスクリーン上に投射
して成る液晶表示装置において、前記液晶素子の
少なくとも一部又は全体を加熱及び冷却媒体を満
たした恒温槽内に設置し、前記液晶素子の温度検
出手段と、前記温度検出手段の検出値に応じて前
記液晶素子を加熱または冷却する手段を設けたこ
とを特徴とする液晶表示装置。 2 特許請求の範囲第1項において、前記液晶素
子を加熱又は冷却する手段は、前記恒温槽と一体
化構造もしくは分割構造にしたことを特徴とする
液晶表示装置。 3 特許請求の範囲第2項において、前記液晶素
子の投射光照射面側かレーザ光照射面側のいずれ
か一方を恒温槽内に設けたことを特徴とする液晶
表示装置。
[Claims] 1. A laser beam generator comprising a laser beam generator, an optical means for two-dimensionally scanning the laser beam, and a liquid crystal element having a thermo-electro-optic effect, which is two-dimensionally connected to the laser beam generator. In a liquid crystal display device in which an image is formed on a liquid crystal element by a scanning optical means and the image is projected onto a screen, at least a portion or the whole of the liquid crystal element is heated in a constant temperature bath filled with a cooling medium. 1. A liquid crystal display device, comprising: a temperature detecting means for the liquid crystal element; and a means for heating or cooling the liquid crystal element in accordance with a detected value of the temperature detecting means. 2. The liquid crystal display device according to claim 1, wherein the means for heating or cooling the liquid crystal element has an integrated structure or a separate structure with the thermostatic oven. 3. The liquid crystal display device according to claim 2, wherein either one of the projection light irradiation surface side and the laser light irradiation surface side of the liquid crystal element is provided in a constant temperature bath.
JP13367586A 1986-06-11 1986-06-11 Liquid crystal display device Granted JPS62291624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13367586A JPS62291624A (en) 1986-06-11 1986-06-11 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13367586A JPS62291624A (en) 1986-06-11 1986-06-11 Liquid crystal display device

Publications (2)

Publication Number Publication Date
JPS62291624A JPS62291624A (en) 1987-12-18
JPH0551884B2 true JPH0551884B2 (en) 1993-08-03

Family

ID=15110263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13367586A Granted JPS62291624A (en) 1986-06-11 1986-06-11 Liquid crystal display device

Country Status (1)

Country Link
JP (1) JPS62291624A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH041723A (en) * 1990-04-19 1992-01-07 Asahi Optical Co Ltd Thermal writing type liquid crystal display device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5887535A (en) * 1981-11-20 1983-05-25 Sony Corp Liquid crystal display
JPS60107023A (en) * 1983-11-15 1985-06-12 Canon Inc Image forming device
JPS60110782A (en) * 1983-11-22 1985-06-17 Canon Inc Liquid crystal element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5887535A (en) * 1981-11-20 1983-05-25 Sony Corp Liquid crystal display
JPS60107023A (en) * 1983-11-15 1985-06-12 Canon Inc Image forming device
JPS60110782A (en) * 1983-11-22 1985-06-17 Canon Inc Liquid crystal element

Also Published As

Publication number Publication date
JPS62291624A (en) 1987-12-18

Similar Documents

Publication Publication Date Title
JP3738505B2 (en) Projection display
US6623144B2 (en) High intensity lighting projectors
AU708038B2 (en) Improvements in high intensity lighting projectors
US5829868A (en) High intensity lighting projectors
USRE33914E (en) Infrared imaging system and method
JP2756514B2 (en) Projection equipment
EP0518111A1 (en) Projection image display system
WO1995010058A1 (en) Reflection hologram multiple-color filter array and flat panel display incorporating same
JPH08122699A (en) Image projection device
EP1298484B1 (en) Liquid crystal display
US4530010A (en) Dynamic infrared scene projector
JPH0551884B2 (en)
JP2004245871A (en) Electrooptical modulating device and method for manufacturing the same, and projector
GB2269238A (en) Spatial light modulators
JPS63123018A (en) Projection type liquid crystal display device
JPH04119330A (en) Photoconductive liquid crystal light valve
JPH057717B2 (en)
JPH09258328A (en) Projector
JP2630450B2 (en) Optical writing liquid crystal light valve and image output device using the same
JPS57158834A (en) Method for optical recording
JP2001100643A (en) Electro-optic device and projection type display device
JP2552507Y2 (en) Projection display device
GB2156537A (en) Temperature stability arrangement in a combined laser recording and color projection system
JP2877884B2 (en) Photothermal writing type spatial light modulator
GB2125573A (en) Thermal imaging system