JPH0546328B2 - - Google Patents

Info

Publication number
JPH0546328B2
JPH0546328B2 JP25495887A JP25495887A JPH0546328B2 JP H0546328 B2 JPH0546328 B2 JP H0546328B2 JP 25495887 A JP25495887 A JP 25495887A JP 25495887 A JP25495887 A JP 25495887A JP H0546328 B2 JPH0546328 B2 JP H0546328B2
Authority
JP
Japan
Prior art keywords
drug
lactic acid
copolymer
valerolactone
molar ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25495887A
Other languages
Japanese (ja)
Other versions
JPH0196139A (en
Inventor
Masaharu Asano
Masaru Yoshida
Isao Kaetsu
Hironobu Fukuzaki
Takao Okada
Tooru Mashita
Eiju Yamanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Atomic Energy Agency
Taki Chemical Co Ltd
Original Assignee
Japan Atomic Energy Research Institute
Taki Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Atomic Energy Research Institute, Taki Chemical Co Ltd filed Critical Japan Atomic Energy Research Institute
Priority to JP25495887A priority Critical patent/JPH0196139A/en
Publication of JPH0196139A publication Critical patent/JPH0196139A/en
Publication of JPH0546328B2 publication Critical patent/JPH0546328B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、薬物に徐放性機能を付与した生体分
解型コポリマー複合体に関する。 [従来の技術] 乳酸、グリコール酸等のポリマーは、生体分解
性、生体吸収性を有するために、従来より手術用
縫合糸等の生体分解性医用材料に応用されてい
る。また、近年に於ては生体への薬物投与を制御
するための薬物放出制御システム(DDS;Drug
delivery system)用の基剤として各種検討が行
なわれている。 この様なDDS基剤としては、所定期間に一定
量の薬物を生体内部に放出する機能を有すると共
に、生体に対しては基剤中に触媒、有機溶媒等の
不純物を含まず、副作用のない純粋な成分の基剤
が望まれる。 従来より知られている基剤として、乳酸、グリ
コール酸等のホモポリマーが知られている。しか
し、乳酸、グリコール酸等のホモポリマーは高分
子量化した製品が所望される結果、通常、ラクチ
ド、グリコリドを原料とし、触媒を使用して重合
が行われている。従つてこのものは、不純物とし
て残存する触媒の除去が必要であり、この触媒除
去のために有機溶媒が使用されるが、新たな問題
として、この有機溶媒の残存問題が発生する。ま
た、高分子量であるが故に基剤は固体状であり、
従つて、これと基剤とを混合する際には高温で基
剤を溶融する必要があり、薬物の変性、分解等の
問題を生じる。 一方、乳酸、グリコール酸を原料とし、無触媒
下で脱水重縮合を行い、低分子量のホモポリマー
を得る方法は知られており、このものは低分子量
であるが故に、上述の成形時の温度を低くするこ
とが可能であり、薬物の分解は抑制される。しか
し、乳酸、グリコール酸のホモポリマーは、前述
の高分子量のホモポリマーも同様であるが、一般
に結晶性であり、生体用DDS基剤としては次の
ような問題点がある。 先ず、この様な結晶性ポリマーは、生体内で不
均一な分解性を示すことにある。これは、結晶性
ポリマーが結晶性部分と非晶性部分とから成り、
非晶性部分に比べて結晶性部分は生体分解性が非
常に悪いことに起因する。 また、薬物は一般に結晶性部分よりも非晶性部
分に溶解あるいは分散しており、従つて、DDS
基剤としてこれを用いた場合、非晶性部分が先に
分解し、薬物の放出が終了した後も、薬物を含有
しない結晶性部分が残存し、この現象はDDS基
剤としては好ましくないものである。この他、分
子量を低下させることによりこの結晶性を低下さ
せる方法はある程度可能であるが、一般にこの場
合、分子量を数百以下とすることが必要である。
しかし、この場合にはポリマー末端の酸濃度が高
くなり、生体との接触時には炎症等の問題を引き
起こし、また生体分解性が早過ぎることで、徐放
性基剤としての機能が殆どないものとなる。 この様に、生体用DDS基剤としてのポリマー
は、非晶性、あるいは結晶化度が低いことが望ま
しく、この点に於いて乳酸、グリコール酸等のホ
モポリマーは、生体用DDS基剤として通常、実
用にそぐわないものである。 DDS基剤として乳酸、グリコール酸等のホモ
ポリマーからなる基剤の特に、徐放性制御面での
欠点を解消するものとして、乳酸、グリコール酸
等のラクトン類との共重合体からなる基剤が知ら
れている。〔H.R.Kricheldorf、T.Mang and J.
M.Jonte、Macromolecules、17、2173〜2181
(1984)〕、〔H.R.Kricheldorf、T.Mang and J.
M.Jonte、Makromol.Chem.、186、955〜976
(1985)〕 この基剤は、先ずグリコール酸及び乳酸のオリ
ゴマーの解重合によつて得られる環状ジエステル
のグリコリド及びラクチドを合成し、次いでそれ
らの環状ジエステルとラクトン類を触媒存在下で
反応させることによつて得ることができる。しか
し、この基剤についても使用する触媒の除去の問
題、また除去に際して用いる有機溶媒の残留の問
題、更には基剤が高分子量体であるが故に薬物と
の高温溶融混合時の薬物の劣化の問題等について
は解決されておらず、未だ優れた生体用DDS基
剤が見出されていないのが現状である。 [発明が解決しようとする問題点] 本発明者らは前記問題点を解決すべく、生体用
DDS基剤として所望される、生体に対して副作
用のない基剤であり、しかも薬物の分解、徐放性
制御の問題に於いて用途の制限がされることのな
い広範な用途に適用し得る優れた基剤を得るべく
鋭意研究を重ねた。 [問題点を解決するための手段] その結果、乳酸及び/又はグリコール酸とγ−
ブチロラクトン、δ−バレロラクトン及び/又は
ε−カプロラクトンとを無触媒下で直接脱水重縮
合することにより得られた特定組成を有する数平
均分子量が500〜5000の範囲のコポリマーが生体
用DDS基剤として優れることを見出し、本発明
を完成させるに至つたものである。 即ち、本発明は乳酸及び/又はグリコール酸と
γ−ブチロラクトン、δ−バレロラクトン及び/
又はε−カプロラクトンとを直接脱水重縮合し、
乳酸及び/又はグリコール酸(A)とγ−ブチロラク
トン、δ−バレロラクトン及び/又はε−カプロ
ラクトン(B)とのモル比が、即ち、(A)/(B)モル比と
して20/80〜90/10の範囲であつて、且つ数平均
分子量が500〜5000の範囲とした生体分解型コポ
リマーと薬物とを混合してなる薬物に徐放性機能
を付与した生体分解型コポリマー複合体に関す
る。 [作用] 以下、本発明を更に詳細に説明する。 本発明は、先ず乳酸及び/又はグリコール酸と
γ−ブチロラクトン、δ−バレロラクトン及び/
又はε−カプロラクトンとを直接脱水重縮合する
ことにより生体分解型コポリマーを得る。 乳酸の種類については特段限定はなく、D体、
L体、DL体のいずれのものであつてもよい。 これらモノマーの使用割合については、直接脱
水重縮合後に得られるコポリマーが、乳酸及び/
又はグリコール酸(A)とγ−ブチロラクトン、δ−
バレロラクトン及び/又はε−カプロラクトン(B)
とのモル比として、即ち、(A)/(B)モル比が20/80
〜90/10の範囲となるような割合で用いる。この
場合に、このモル比が90/10を上廻り、乳酸、グ
リコール酸が多くなると、結晶化度が高くなると
共に、このものと薬物とを混合したものは、不均
一なマトリツクスを形成することより、薬物の放
出速度が大きくなり過ぎ、薬剤として好ましくな
いものとなる。また反対に、モル比が20/80を下
廻り、δ−バレロラクトン等のラクトン類が多く
なると、乳酸、グリコール酸等のホモポリマーと
同様に、反応後に得られるコポリマーは結晶化度
が高くなり、基剤の徐放性が著しく低下すること
で好ましくない。 乳酸及び/又はグリコール酸とγ−ブチロラク
トン、δ−バレロラクトン及び/又はε−カプロ
ラクトンとの直接脱水重縮合反応は、無触媒下で
窒素ガスを原料液中に導入するか、あるいは10〜
100mmHg程度の減圧下、温度150〜250℃で2〜30
時間加熱反応すればよいが、特段これらの条件に
限定されるものではない。本発明では無触媒下で
反応を行なうことが可能であるから、触媒の除去
操作を必要とせず、従つて得られるコポリマー
は、有機溶媒等の不純物を含有しない生体用
DDS基剤として好ましいものとなる。 本発明に於いて殊に重要な点は、この様にして
得られる乳酸及び/又はグリコール酸とγ−ブチ
ロラクトン、δ−バレロラクトン及び/又はε−
カプロラクトンとのコポリマーの数平均分子量を
500〜5000とすることである。 このコポリマーの分子量がこの範囲を逸脱し、
500を下廻ると、後段で添加混合する薬物の放出
が極端に早くなり、徐放基剤としての機能が全く
無いものとなる。また逆に、数平均分子量が5000
を上廻ると、得られるコポリマーはゴム状とな
り、薬物との添加混合が困難となる。 重縮合後のコポリマーは、原料の成分組成によ
つても異なるが、通常ペースト状の形態であるか
ら、後段における薬物の添加混合は常温で、ある
いは若干の加熱下で混合が可能である。 本発明では次いでこの様な生体分解型コポリマ
ーと薬物とを混合することにより複合体を得る。
使用する薬物の種類は特に限定されず、ホルモン
剤、抗ヒスタミン剤、血圧降下剤、血管拡張剤、
血管補強剤、健胃消化剤、整腸剤、避妊剤、外皮
用殺菌消毒剤、寄生性皮膚疾患用剤、消炎剤、鎮
痛剤、利胆剤、抗リウマチ薬、強心剤、痔治療
剤、便秘治療剤、ビタミン剤、各種酵素製剤、ワ
クチン類、抗原虫剤、インターフエロン誘起物
質、駆虫剤、魚病薬、農薬、オーキシン、ジベレ
リン、サイトカイニンアブシジン酸等の植物ホル
モン、昆虫フエロモン等の薬物が使用できる。ま
た、これら薬物は天然物又は合成物のどちらであ
つてもよい。 次に、生体分解型コポリマーとこれらの薬物と
を混合してなる本発明の複合体の製造例を示せ
ば、例えば、乳酸及び/又はグリコール酸とγ−
ブチロラクトン、δ−バレロラクトン及び/又は
ε−カプロラクトンとを直接脱水重縮合し、乳酸
及び/又はグリコール酸(A)とγ−ブチロラクト
ン、δ−バレロラクトン及び/又はε−カプロラ
クトン(B)とのモル比が、即ち、(A)/(B)モル比とし
て20/80〜90/10の範囲であつて、且つ数平均分
子量が500〜5000の範囲とした生体分解型コポリ
マーを適宜選択し、一定量を容器に加え、通常こ
れに前述の薬物の一定量をこれに添加し、充分な
混合を行なえばよい。また、コポリマーの加熱溶
融を必要とする際には、直接または水浴、あるい
は恒温槽で100℃以下に加熱しながら溶融し、混
合を行なえばよい。 この様にして得られる本発明の薬物に徐放性機
能を付与した生体分解型コポリマー複合体は、徐
放特性に優れ、不純物を含まないことより生体に
は副作用のない、またペースト状の形態であるこ
とから成形が容易であり、広範な用途に適用し得
る生体用DDS複合体として優れたものである。 具体的にその使用形態の例を示せば次の様なも
のが挙げられる。 先を尖端とした柔軟な容器7に複合体5を充
填し、使用時に生体の一部を切開して注入する
方式(第8図参照) シート状素材6に複合体5を塗布し、湿布薬
状にして生体に張り付ける方式(第9図参照) テフロン管等の管状容器に複合体5を充填
し、押し出し、注射挿入を可能とした形状の注
射器デイスポーザルタイプ8からなる方式(第
10図参照) また、これらのものを殺菌処理するに際して
は、放射線源を用いて滅菌処理する方法が可能で
あり、その場合の放射線照射の線源は複合体内部
まで殺菌可能な線源の選択が理想である。従つ
て、その種類として60Co、137Cs等の透過力の強い
γ線源及びβ線源を用い、照射線量は5×105rad
〜5×106radが適切である。 [実施例] 以下に本発明の実施例を掲げて更に説明を行な
うが、本発明はこれらに限定されるものではな
い。また、%は特に断わらない限り全て重量%を
示す。 実施例 1〜4 L−乳酸(90%)とδ−バレロラクトン(100
%)の混合物〔L−乳酸/δ−バレロラクトン=
30/70(モル比)〕70gを200ml容反応容器に入れ、
200ml/minの割合で窒素ガスを混合液に導入し
ながら、200℃で2時間(実施例1)、4時間(実
施例2)、8時間(実施例3)、16時間(実施例
4)反応させた。 これらのコポリマーの100mgに、薬物としてカ
リシトニン(Calcitonin、骨粗しよう症治療薬)
を1mg添加し、均一となるまで混合を行い本発明
のコポリマー複合体を得た。 これら複合体の物性及びin vivo分解率を測定
した。尚、in vivo分解率は、先ず複合体を軟膏
容器(内部テフロン加工)に充填し、これで切開
したラツト背中皮下部に複合体を注入した。次い
で、複合体の埋込から1週間目にラツトを屠殺
し、残存している複合体量を測定して注入量から
分解率を算出した。 これらの結果を第1表に示した。 また比較のために、前記L−乳酸とδ−バレロ
ラクトンの混合物〔L−乳酸/δ−バレロラクト
ン=30/70(モル比)〕70gを同様に200ml容反応
容器に入れ、200ml/minの割合で窒素ガスを混
合液に導入しながら、200℃で1時間反応させ、
数平均分子量が300のコポリマーを得た。(比較例
1) 更に比較のために、L−乳酸とδ−バレロラク
トンの高分子量化したコポリマーを得た。 方法は、L−ラクチド(100%)と前記δ−バ
レロラクトンの混合物〔L−乳酸/δ−バレロラ
クトン=30/70(モル比)換算値〕の5gを20ml
容ガラスアンプルに入れ、触媒としてオクタン酸
スズをL−ラクチドとδ−バレロラクトンの合計
重量に対して0.1%添加し、容器を密閉して凍結
脱気を3回繰り返した後、1×10-4mmHgに減圧
下、200℃で4時間反応させた。得られたコポリ
マーをクロロホルムに溶解し、続いて多量のメタ
ノール中に析出させた後、30℃で真空乾燥を行な
い、室温でゴム状のコポリマーを得た。(比較例
2) 比較例1、比較例2で得たコポリマーについ
て、実施例1〜4と同様に、薬物としてカルシト
ニンを添加混合して得た複合体の物性及びin
vivo分解率を測定した。結果を第1表に示した。
[Industrial Application Field] The present invention relates to a biodegradable copolymer complex that provides a sustained release function to a drug. [Prior Art] Polymers such as lactic acid and glycolic acid are biodegradable and bioabsorbable, and have thus far been applied to biodegradable medical materials such as surgical sutures. In addition, in recent years, drug release control systems (DDS) have been developed to control drug administration to living organisms.
Various studies are being carried out as a base material for the delivery system. This kind of DDS base has the function of releasing a certain amount of drug into the body over a predetermined period of time. A base of pure ingredients is desired. As conventionally known bases, homopolymers such as lactic acid and glycolic acid are known. However, since homopolymers such as lactic acid and glycolic acid are desired to have high molecular weight products, polymerization is usually carried out using lactide or glycolide as a raw material and using a catalyst. Therefore, in this method, it is necessary to remove the catalyst remaining as an impurity, and an organic solvent is used for removing the catalyst, but a new problem arises, that is, the remaining organic solvent. In addition, due to its high molecular weight, the base is solid,
Therefore, when mixing this and a base, it is necessary to melt the base at a high temperature, which causes problems such as denaturation and decomposition of the drug. On the other hand, a method is known in which lactic acid and glycolic acid are used as raw materials, and dehydration polycondensation is performed in the absence of a catalyst to obtain a low molecular weight homopolymer. It is possible to lower the drug and drug decomposition is suppressed. However, homopolymers of lactic acid and glycolic acid, as well as the above-mentioned high molecular weight homopolymers, are generally crystalline and have the following problems as DDS bases for living organisms. First, such crystalline polymers exhibit non-uniform degradability in vivo. This is because a crystalline polymer consists of a crystalline part and an amorphous part,
This is due to the fact that the crystalline portion is much less biodegradable than the amorphous portion. Additionally, drugs are generally more dissolved or dispersed in the amorphous portion than in the crystalline portion, and therefore DDS
When this is used as a base, the amorphous part decomposes first, and even after drug release is complete, a crystalline part that does not contain the drug remains, and this phenomenon is not desirable as a DDS base. It is. In addition, it is possible to some extent to reduce the crystallinity by lowering the molecular weight, but in this case it is generally necessary to keep the molecular weight to several hundred or less.
However, in this case, the acid concentration at the end of the polymer becomes high, causing problems such as inflammation when it comes into contact with living organisms, and biodegradation is too rapid, so it has almost no function as a sustained-release base. Become. In this way, it is desirable that the polymer used as a DDS base for living organisms is amorphous or has a low degree of crystallinity, and in this respect, homopolymers such as lactic acid and glycolic acid are usually used as DDS bases for living organisms. , it is not suitable for practical use. As a DDS base, a base made of a copolymer with a lactone such as lactic acid or glycolic acid is used as a DDS base to overcome the disadvantages in terms of sustained release control, especially of a base made of a homopolymer such as lactic acid or glycolic acid. It has been known. [HRKricheldorf, T. Mang and J.
M. Jonte, Macromolecules, 17 , 2173–2181
(1984)], [HRKricheldorf, T. Mang and J.
M.Jonte, Makromol.Chem., 186 , 955–976
(1985)] This base is produced by first synthesizing cyclic diesters glycolide and lactide obtained by depolymerizing oligomers of glycolic acid and lactic acid, and then reacting these cyclic diesters with lactones in the presence of a catalyst. It can be obtained by However, this base also has the problem of removal of the catalyst used, the problem of residual organic solvent used during removal, and furthermore, since the base is a high molecular weight substance, there is a risk of deterioration of the drug during high-temperature melt mixing with the drug. These problems have not been resolved, and the current situation is that an excellent DDS base for biological use has not yet been found. [Problems to be solved by the invention] In order to solve the above-mentioned problems, the present inventors have developed
This base is desired as a DDS base, has no side effects on living organisms, and can be applied to a wide range of applications without being restricted by problems of drug degradation or sustained release control. We conducted extensive research to obtain an excellent base material. [Means for solving the problem] As a result, lactic acid and/or glycolic acid and γ-
A copolymer with a specific composition and a number average molecular weight in the range of 500 to 5000 obtained by direct dehydration polycondensation of butyrolactone, δ-valerolactone and/or ε-caprolactone in the absence of a catalyst can be used as a DDS base for biological use. They have discovered that the invention is excellent, and have completed the present invention. That is, the present invention combines lactic acid and/or glycolic acid with γ-butyrolactone, δ-valerolactone and/or
or direct dehydration polycondensation with ε-caprolactone,
The molar ratio of lactic acid and/or glycolic acid (A) to γ-butyrolactone, δ-valerolactone and/or ε-caprolactone (B) is 20/80 to 90 as (A)/(B) molar ratio The present invention relates to a biodegradable copolymer composite in which a drug is mixed with a biodegradable copolymer having a number average molecular weight of 500 to 5000 and a drug with a sustained release function. [Function] The present invention will be explained in more detail below. The present invention first involves combining lactic acid and/or glycolic acid with γ-butyrolactone, δ-valerolactone and/or
Alternatively, a biodegradable copolymer is obtained by direct dehydration polycondensation with ε-caprolactone. There are no particular restrictions on the type of lactic acid, including D-form,
It may be either L-form or DL-form. Regarding the proportions of these monomers used, the copolymer obtained after direct dehydration polycondensation contains lactic acid and/or
or glycolic acid (A) and γ-butyrolactone, δ-
Valerolactone and/or ε-caprolactone (B)
That is, the molar ratio of (A)/(B) is 20/80.
Use in a ratio ranging from ~90/10. In this case, if this molar ratio exceeds 90/10 and the amount of lactic acid and glycolic acid increases, the degree of crystallinity will increase and a mixture of this substance and the drug will form a non-uniform matrix. As a result, the release rate of the drug becomes too high, making it undesirable as a drug. On the other hand, when the molar ratio is less than 20/80 and the amount of lactones such as δ-valerolactone increases, the copolymer obtained after the reaction has a high degree of crystallinity, similar to homopolymers such as lactic acid and glycolic acid. This is undesirable because the sustained release properties of the base material are significantly reduced. The direct dehydration polycondensation reaction of lactic acid and/or glycolic acid with γ-butyrolactone, δ-valerolactone and/or ε-caprolactone can be carried out by introducing nitrogen gas into the raw material liquid without a catalyst or by
2-30 at a temperature of 150-250℃ under reduced pressure of about 100mmHg
The reaction may be carried out by heating for a certain period of time, but the conditions are not particularly limited to these. In the present invention, it is possible to carry out the reaction without a catalyst, so there is no need to remove the catalyst, and the resulting copolymer does not contain impurities such as organic solvents and is suitable for biological use.
It is preferable as a DDS base. A particularly important point in the present invention is that the lactic acid and/or glycolic acid obtained in this way and γ-butyrolactone, δ-valerolactone and/or ε-
The number average molecular weight of the copolymer with caprolactone is
The number should be between 500 and 5000. If the molecular weight of this copolymer falls outside this range,
When it is less than 500, the release of the drug added and mixed in the latter stage becomes extremely rapid, and it has no function as a sustained release base at all. Conversely, the number average molecular weight is 5000
When the amount exceeds 1, the resulting copolymer becomes rubbery and difficult to mix with the drug. The copolymer after polycondensation differs depending on the component composition of the raw materials, but since it is usually in a paste form, the drug can be added and mixed in the latter stage at room temperature or under slight heating. In the present invention, a complex is then obtained by mixing such a biodegradable copolymer and a drug.
The types of drugs used are not particularly limited, and include hormones, antihistamines, antihypertensives, vasodilators,
Blood vessel reinforcing agent, stomachic digestive agent, intestinal regulation agent, contraceptive agent, disinfectant for external skin, agent for parasitic skin diseases, anti-inflammatory agent, analgesic agent, choleretic agent, antirheumatic agent, cardiac agent, hemorrhoid treatment agent, constipation treatment agent Drugs such as vitamins, various enzyme preparations, vaccines, antiprotozoal agents, interferon inducers, anthelmintics, fish disease drugs, agricultural chemicals, plant hormones such as auxin, gibberellin, and cytokinin abscisic acid, and insect pheromones can be used. Further, these drugs may be either natural products or synthetic products. Next, an example of manufacturing a complex of the present invention obtained by mixing a biodegradable copolymer and these drugs will be described. For example, lactic acid and/or glycolic acid and γ-
Butyrolactone, δ-valerolactone and/or ε-caprolactone are directly dehydrated and polycondensed to form a molar ratio of lactic acid and/or glycolic acid (A) and γ-butyrolactone, δ-valerolactone and/or ε-caprolactone (B). A biodegradable copolymer with a ratio (A)/(B) molar ratio in the range of 20/80 to 90/10 and a number average molecular weight in the range of 500 to 5000 is appropriately selected and to a container, usually a fixed amount of the drug as described above, and thorough mixing. Furthermore, when it is necessary to heat and melt the copolymer, the copolymer may be melted and mixed while being heated to 100° C. or less directly, in a water bath, or in a constant temperature bath. The biodegradable copolymer complex obtained in this manner, which has a sustained-release function on the drug of the present invention, has excellent sustained-release properties, contains no impurities, has no side effects on living bodies, and is in a paste-like form. Therefore, it is easy to mold and is an excellent biological DDS composite that can be applied to a wide range of applications. Specific examples of its usage are as follows. A method in which a flexible container 7 with a pointed tip is filled with the complex 5, and when used, a part of the living body is incised and injected (see Figure 8).The complex 5 is applied to a sheet-like material 6, and a poultice is applied. (See Fig. 9) A method consisting of a disposable type 8 syringe with a shape that allows injection and insertion by filling the composite 5 into a tubular container such as a Teflon tube and extruding it (Fig. 10) Also, when sterilizing these items, it is possible to sterilize them using a radiation source, and in that case, it is ideal to select a radiation source that can sterilize the inside of the complex. It is. Therefore, γ-ray sources and β-ray sources with strong penetrating power such as 60 Co and 137 Cs are used, and the irradiation dose is 5×10 5 rad.
~5×10 6 rad is suitable. [Examples] The present invention will be further explained below with reference to Examples, but the present invention is not limited thereto. Moreover, all percentages indicate weight % unless otherwise specified. Examples 1-4 L-lactic acid (90%) and δ-valerolactone (100%)
%) mixture [L-lactic acid/δ-valerolactone=
30/70 (molar ratio)] 70g was placed in a 200ml reaction vessel,
While introducing nitrogen gas into the mixture at a rate of 200 ml/min, at 200°C for 2 hours (Example 1), 4 hours (Example 2), 8 hours (Example 3), 16 hours (Example 4) Made it react. 100mg of these copolymers contain calcitonin (an osteoporosis treatment drug) as a drug.
1 mg of was added and mixed until homogeneous to obtain a copolymer composite of the present invention. The physical properties and in vivo degradation rates of these complexes were measured. In order to determine the in vivo decomposition rate, the complex was first filled into an ointment container (internally treated with Teflon), and then injected into the lower part of the rat's back skin, which was incised. Next, the rats were sacrificed one week after implantation of the complex, the amount of the remaining complex was measured, and the degradation rate was calculated from the injection amount. These results are shown in Table 1. For comparison, 70 g of the mixture of L-lactic acid and δ-valerolactone [L-lactic acid/δ-valerolactone = 30/70 (molar ratio)] was similarly placed in a 200 ml reaction vessel, and the mixture was heated at 200 ml/min. While introducing nitrogen gas into the mixture at a certain rate, the reaction was carried out at 200℃ for 1 hour.
A copolymer with a number average molecular weight of 300 was obtained. (Comparative Example 1) For further comparison, a high molecular weight copolymer of L-lactic acid and δ-valerolactone was obtained. The method involves adding 5 g of a mixture of L-lactide (100%) and the above-mentioned δ-valerolactone [L-lactic acid/δ-valerolactone = 30/70 (molar ratio) equivalent value] to 20 ml.
0.1% of tin octoate was added as a catalyst based on the total weight of L-lactide and δ-valerolactone, the container was sealed, and freeze-degassing was repeated three times, followed by 1×10 - The reaction was carried out at 200° C. for 4 hours under reduced pressure of 4 mmHg. The obtained copolymer was dissolved in chloroform and then precipitated in a large amount of methanol, followed by vacuum drying at 30°C to obtain a rubbery copolymer at room temperature. (Comparative Example 2) Regarding the copolymers obtained in Comparative Examples 1 and 2, calcitonin was added as a drug and mixed in the same manner as in Examples 1 to 4. The physical properties and in
The in vivo degradation rate was measured. The results are shown in Table 1.

【表】 実施例 5〜8 L−乳酸(90%)とδ−バレロラクトン(100
%)の混合モル比(L−乳酸/δ−バレロラクト
ンモル比)がそれぞれ20/80(実施例5)、50/50
(実施例6)、70/30(実施例7)、90/10(実施例
8)となるように混合し、その50gを各200ml容
反応容器に入れた。また比較のため、次の条件に
より同様に試験を行なつた。 L−乳酸とδ−バレロラクトンの混合モル比
(L−乳酸/δ−バレロラクトンモル比)がそれ
ぞれ10/90としたもの50gについて(比較例3)、
L−乳酸のホモポリマーを得るためにL−乳酸
(90%)の70gについて(比較例4)、δ−バレロ
ラクトンのホモポリマーを得るためにδ−バレロ
ラクトン(100%)の60gと水10gについて(比
較例5)、これらをそれぞれ同様に各200ml容反応
容器に入れた。 実施例及び比較例として調製したこれらの液
に、窒素ガスを200ml/minの割合で導入しなが
ら、200℃で10時間の反応を行ない、コポリマー
及びホモポリマーを得た。 これらポリマーの100mgに、薬物としてカルシ
トニンを1mg添加し、均一となるまで混合を行い
本発明のコポリマー複合体を得た。 これら複合体の物性及びin vivo分解率を測定
した。 尚、in vivo分解率は次の方法により求めた。
先ず所定量の複合体をテフロンチユーブ(内径2
mmφ、長さ50mm)内に充填し、100Kg/cm2の圧力
下、70℃で成形処理した。この処理によつて、テ
フロンチユーブに充填された複合体は内径2mmφ
のロツド状となつた。次に、この状態で尖端とし
たチユーブ先端をラツト背中皮下部に挿入し、ス
テンレス棒状の押出器で注射挿入状態で複合体を
挿入した。 複合体の埋込から2週間目にラツトを屠殺し、
残存している複合体量を測定して注入量から分解
率を算出した。 これらの結果を第2表に示した。
[Table] Examples 5 to 8 L-lactic acid (90%) and δ-valerolactone (100%)
%) mixing molar ratio (L-lactic acid/δ-valerolactone molar ratio) is 20/80 (Example 5) and 50/50, respectively.
(Example 6), 70/30 (Example 7), and 90/10 (Example 8), and 50 g of the mixture was placed in each 200 ml reaction vessel. For comparison, a similar test was conducted under the following conditions. Regarding 50 g of L-lactic acid and δ-valerolactone mixed molar ratio (L-lactic acid/δ-valerolactone molar ratio) of 10/90 (Comparative Example 3),
For 70 g of L-lactic acid (90%) to obtain a homopolymer of L-lactic acid (comparative example 4), 60 g of δ-valerolactone (100%) and 10 g of water to obtain a homopolymer of δ-valerolactone. (Comparative Example 5), these were placed in each 200 ml reaction container in the same manner. These solutions prepared as Examples and Comparative Examples were reacted at 200° C. for 10 hours while nitrogen gas was introduced at a rate of 200 ml/min to obtain copolymers and homopolymers. 1 mg of calcitonin as a drug was added to 100 mg of these polymers, and the mixture was mixed until homogeneous to obtain a copolymer complex of the present invention. The physical properties and in vivo degradation rates of these complexes were measured. Incidentally, the in vivo decomposition rate was determined by the following method.
First, a predetermined amount of the composite was placed in a Teflon tube (inner diameter 2
mmφ, length 50 mm) and molded at 70° C. under a pressure of 100 Kg/cm 2 . Through this process, the composite filled in the Teflon tube has an inner diameter of 2 mmφ.
It became a rod shape. Next, in this state, the pointed end of the tube was inserted into the lower part of the rat's back skin, and the composite was inserted in the injection state using a stainless steel rod-shaped extruder. Two weeks after implantation of the complex, the rats were sacrificed.
The remaining amount of the complex was measured and the decomposition rate was calculated from the injection amount. These results are shown in Table 2.

【表】 実施例 9〜11 実施例4のL−乳酸に代えて90%D−乳酸(実
施例9)、90%DL−乳酸(実施例10)及び100%
グリコール酸(実施例11)を用いて同様にコポリ
マーを合成した。 得られたコポリマーの100mgに、薬物としてカ
ルシトニンを1mg添加し、均一となるまで混合を
行なつた。この様にして得た複合体の物性を測定
し、結果を第3表に示した。またラツト中のin
vivo分解率を所定週毎に測定し、分解率の変化を
第1図に示した。
[Table] Examples 9 to 11 In place of L-lactic acid in Example 4, 90% D-lactic acid (Example 9), 90% DL-lactic acid (Example 10) and 100%
A copolymer was similarly synthesized using glycolic acid (Example 11). 1 mg of calcitonin as a drug was added to 100 mg of the obtained copolymer, and the mixture was mixed until homogeneous. The physical properties of the composite thus obtained were measured and the results are shown in Table 3. Also in rats
The in vivo decomposition rate was measured at predetermined weekly intervals, and changes in the decomposition rate are shown in Figure 1.

【表】 実施例 12〜13 実施例7のδ−バレロラクトンに代えて100%
γ−ブチロラクトン(実施例12)、100%ε−カプ
ロラクトン(実施例13)を用いて同様にコポリマ
ーを合成した。 得られたコポリマーを、X線回折によりその性
質を調べた結果、全て非晶性であつた。 これらコポリマーの100mgに、薬物としてカル
シトニンを1mg添加し、均一となるまで混合を行
なつた。この様にして得た複合体の物性及びラツ
ト中の埋入から一週間目のin vivo分解率を測定
し、結果を第4表に示した。
[Table] Examples 12-13 100% in place of δ-valerolactone in Example 7
Copolymers were similarly synthesized using γ-butyrolactone (Example 12) and 100% ε-caprolactone (Example 13). The properties of the obtained copolymers were examined by X-ray diffraction, and as a result, they were all amorphous. 1 mg of calcitonin as a drug was added to 100 mg of these copolymers and mixed until homogeneous. The physical properties of the composite thus obtained and the in vivo decomposition rate one week after implantation in rats were measured, and the results are shown in Table 4.

【表】 実施例 14〜19 実施例8と同様に合成した(L−乳酸/δバレ
ロラクトンモル比87/13)コポリマーの45mgと薬
物として天然黄体形成ホルモン放出ホルモン
(luteinizing hormone releasing hormone、以
下、LH−RHと略記する。尚、天然LH−RHの
アミノ酸配列はpGlu−His−Trp−Ser−Tyr−
Gly−Leu−Arg−Pro−Gly−NH2である)の5
mg(実施例14)を、また同様にLH−RH類似物
質である〔Gly−OH10〕−LH−RHの5mg(実施
例15)、〔D−Ala6〕−LH−RHの5mg(実施例
16)、〔D−Phe2、D−Ala6〕−LH−RHの5mg
(実施例17)、〔Ac−D−Pcl−Phe1,2、D−Trp3
D−Arg6、D−Ala10〕−LH−RHの5mg(実施
例18)、〔des−Gly10、D−Leu8〕−LH−RHの5
mg(実施例19)を、それぞれガラス製試験管中に
入れ、温度70℃で3分間混合撹拌した。コポリマ
ーと薬物はその条件下ですばやく溶融し、均一な
複合体が得られた。複合体を冷却後、これをデイ
スポーザルタイプのテフロン管(内径2mmφ、長
さ60mm)内に充填し、100Kg/cm2の圧力下、温度
50℃で2分間成形処理した。この処理によつて、
テフロンチユーブに充填された複合体は内径2mm
φ、長さ15mmのロツド状となつた。 この成形した複合体を殺菌処理するため、窒素
雰囲気中、−78℃(ドライアイス−メタノール)
の温度で60Co線源からのγ線を1×106R/hの
線量率で3時間照射した。 この様に処理して得た本発明複合体の薬物(生
理活性物質)のin vivo放出量を測定した。方法
は、複合体をウイスター系ラツト(雄、体重400
〜500g)の背中皮下部にデイスポーザルタイプ
テフロン管の先端を挿入し、充填している複合体
をテフロン棒で全量押出し挿入した。 所定時間の経過後、ラツトを屠殺し、複合体を
摘出して残存する薬物量を測定して注入量から薬
物放出率を算出した。 この様にして、各薬物について所定期間毎の薬
物放出量を測定し、その結果を第2図に示した。 更に、薬物(生理活性物質)の薬理作用をラツ
ト100g体重当りの前立腺腹葉の重量(mg/
100gbw)で求め、その結果を第3図に示した。 実施例 20 実施例12と同様に合成した(L−乳酸/γ−ブ
チロラクトンモル比78/22)コポリマーの1gと
薬物としてエストラマスチン(Estramustine、
制癌剤)の100mgを塩化メチレンの10mlに完全に
溶解させた。この薬物とコポリマーを含有する塩
化メチレン溶液を、1%ポリビニルアルコール水
溶液の200ml中に400rpmで攪拌下、スポイトで滴
下し、滴下終了後、更に室温で24時間撹拌した。
この操作によつて、薬物としてエストラマスチン
を含む本発明の複合体は、微粒子状(30〜50μ
m)となつた。この微粒子状複合体を数日間水洗
し、これを凍結乾燥した後、動物実験に供した。 動物実験の方法は、微粒子状複合体の100mgを
生理食塩水1mlに懸濁もしくは分散させ、これを
注射器でラツト背中皮下部に全量注入した。薬物
の薬理作用をラツト100g体重当りの前立腺腹葉
の重量(mg/100gbw)で求め、その結果を第4
図に示した。 実施例 21〜26 実施例13と同様に合成した(L−乳酸/ε−カ
プロラクトンモル比69/31)コポリマーの1gと
薬物としてセフアロチン〔Cephalothin、(抗生
物質)〕の100mg(実施例21)を、また同様にゲン
タマイシン〔Gentamicin、(抗生物質)〕の100mg
(実施例22)、インダシン〔Indacin、(解熱剤)〕
の100mg(実施例23)、インドメタシン
〔Indomethacin、(抗炎症剤)〕の100mg(実施例
24)、フエノバルビトン〔Phenobarbiton、(強心
剤)〕の100mg(実施例25)、カフエイン
〔Caffein、(鎮痛剤)〕の100mg(実施例26)をそ
れぞれ温度80℃で加温しながら混合した。これら
の複合体を注射器を用い、それぞれ一方を封じた
透析セロハンチユーブ中に充填した。 薬物のin vitro放出試験をメンブラン拡散法
(第5図参照)により行い、結果を第5表に示し
た。
[Table] Examples 14 to 19 45 mg of a copolymer (L-lactic acid/δ valerolactone molar ratio 87/13) synthesized in the same manner as in Example 8 and natural luteinizing hormone releasing hormone (hereinafter referred to as “luteinizing hormone releasing hormone”) as a drug. It is abbreviated as LH-RH.The amino acid sequence of natural LH-RH is pGlu-His-Trp-Ser-Tyr-
Gly−Leu−Arg−Pro−Gly−NH 2 )
mg (Example 14), 5 mg of [Gly-OH 10 ]-LH-RH (Example 15), which is a similar LH-RH substance, and 5 mg of [D-Ala 6 ]-LH-RH (Example 15). example
16), 5 mg of [D-Phe 2 , D-Ala 6 ]-LH-RH
(Example 17), [Ac-D-Pcl-Phe 1,2 , D-Trp 3 ,
5 mg of D-Arg 6 , D-Ala 10 ]-LH-RH (Example 18), 5 mg of [des-Gly 10 , D-Leu 8 ]-LH-RH
mg (Example 19) were respectively placed in glass test tubes, and mixed and stirred at a temperature of 70°C for 3 minutes. The copolymer and drug melted quickly under those conditions, resulting in a homogeneous complex. After cooling the composite, it was filled into a disposable type Teflon tube (inner diameter 2 mmφ, length 60 mm) and heated to a temperature of 100 Kg/cm 2 under a pressure of 100 kg/cm 2 .
Molding treatment was carried out at 50°C for 2 minutes. Through this process,
The composite filled in the Teflon tube has an inner diameter of 2 mm.
It became a rod shape with a diameter of φ and a length of 15 mm. In order to sterilize this molded composite, it was stored at -78℃ (dry ice-methanol) in a nitrogen atmosphere.
γ-rays from a 60 Co source were irradiated at a dose rate of 1×10 6 R/h for 3 hours at a temperature of . The in vivo release amount of the drug (physiologically active substance) from the complex of the present invention obtained by the above treatment was measured. The method involved administering the complex to Wistar rats (male, body weight 400 kg).
The tip of a disposable type Teflon tube was inserted into the lower back skin of ~500 g), and the entire amount of the filled composite was extruded and inserted using a Teflon rod. After a predetermined period of time, the rats were sacrificed, the complexes were extracted, the amount of remaining drug was measured, and the drug release rate was calculated from the amount injected. In this way, the amount of drug released for each drug was measured at each predetermined period, and the results are shown in FIG. Furthermore, the pharmacological action of the drug (physiologically active substance) was calculated by calculating the weight of the ventral lobe of the prostate per 100 g of rat body weight (mg/
100gbw) and the results are shown in Figure 3. Example 20 1 g of a copolymer synthesized in the same manner as in Example 12 (L-lactic acid/γ-butyrolactone molar ratio 78/22) and estramustine as a drug.
100 mg of anticancer drug) was completely dissolved in 10 ml of methylene chloride. This methylene chloride solution containing the drug and copolymer was dropped into 200 ml of a 1% polyvinyl alcohol aqueous solution using a dropper while stirring at 400 rpm, and after the dropwise addition was completed, the solution was further stirred at room temperature for 24 hours.
By this operation, the complex of the present invention containing estramastine as a drug is formed into fine particles (30 to 50μ
m) became. This particulate composite was washed with water for several days, freeze-dried, and then subjected to animal experiments. In the animal experiment, 100 mg of the particulate complex was suspended or dispersed in 1 ml of physiological saline, and the entire amount was injected into the lower skin of the back of a rat using a syringe. The pharmacological action of the drug was determined by the weight of the ventral lobe of the prostate per 100g of rat body weight (mg/100gbw), and the results were reported in the fourth section.
Shown in the figure. Examples 21 to 26 1 g of a copolymer (L-lactic acid/ε-caprolactone molar ratio 69/31) synthesized in the same manner as in Example 13 and 100 mg of Cephalothin (antibiotic) as a drug (Example 21) , also 100 mg of Gentamicin (antibiotic)
(Example 22), Indacin (antipyretic agent)
(Example 23), 100 mg of Indomethacin (anti-inflammatory agent) (Example 23),
24), 100 mg of Phenobarbitone (cardiac drug) (Example 25), and 100 mg of Caffein (analgesic) (Example 26) were mixed while heating at a temperature of 80°C. These complexes were filled into dialysis cellophane tubes each sealed at one end using a syringe. An in vitro drug release test was conducted using the membrane diffusion method (see Figure 5), and the results are shown in Table 5.

【表】 実施例 27 実施例13と同様に合成したコポリマーの1gと
〔フトラフール(Ftoraful、(制癌剤)〕の0.1gを
混合した。この本発明の複合体を用い、in vivo
によるフトラフールの血中濃度を測定した。 方法は、上記複合体を浣腸状容器を充填し、こ
れを雑犬(体重10Kg)の肛門から全量注入し、所
定期間毎にフトラフールの血中濃度を測定した。 結果を第6図に示した。 実施例 28 実施例13と同様に合成したコポリマーと薬物し
てエストラサイト(Estracyt、(制癌剤)〕を混合
した本発明の複合体を用い、in vivoによるエス
トラサイトの血中濃度を測定した。 方法は、上記複合体の0.5g(エストラサイト
50mg相当)を浣腸状容器を充填し、これをうさぎ
(体重4Kg)の肛門から全量注入し、所定時期毎
にエストラサイトの血中濃度を測定した。 結果を第7図に示した。 実施例 29〜31 実施例10と同様に合成した(DL−乳酸/δ−
バレロラクトンモル比30/70)コポリマー(数平
均分子量2200)の0.5gと薬物としてカルシトニ
ンの100mg(実施例29)を、また同様にテストス
テロン〔Testosterone、(ホルモン剤)〕の100mg
(実施例30)、天然LH−RHの100mg(実施例31)
をそれぞれ温度80℃で加温しながら混合した。こ
れらの複合体を布地素材に塗布し、これをヘアー
レスマウス(体重100g)の背中表皮に貼付けた。 所定期間毎にマウスを屠殺し、、マウス血中の
薬物濃度を測定した。 結果を第6表に示した。
[Table] Example 27 1 g of the copolymer synthesized in the same manner as in Example 13 and 0.1 g of [Ftoraful (anticancer drug)] were mixed. Using this complex of the present invention, in vivo
The blood concentration of ftorafur was measured. The method involved filling an enema-like container with the above complex, injecting the entire amount through the anus of a mongrel dog (weighing 10 kg), and measuring the blood concentration of ftorafur at predetermined intervals. The results are shown in Figure 6. Example 28 Using a complex of the present invention in which a copolymer synthesized in the same manner as in Example 13 was mixed with Estracyt (an anticancer drug), the blood concentration of Estracyt was measured in vivo. Method is 0.5 g of the above complex (estracyte
(equivalent to 50 mg) was filled into an enema-like container, and the entire amount was injected into the anus of a rabbit (weighing 4 kg), and the blood concentration of estracyte was measured at predetermined intervals. The results are shown in Figure 7. Examples 29-31 Synthesized in the same manner as Example 10 (DL-lactic acid/δ-
0.5 g of valerolactone molar ratio 30/70) copolymer (number average molecular weight 2200), 100 mg of calcitonin (Example 29) as a drug, and similarly 100 mg of Testosterone (hormone drug).
(Example 30), 100 mg of natural LH-RH (Example 31)
were mixed while heating each at a temperature of 80°C. These composites were applied to a cloth material and attached to the epidermis of the back of a hairless mouse (weighing 100 g). The mice were sacrificed at predetermined intervals, and the drug concentration in the mouse blood was measured. The results are shown in Table 6.

【表】【table】 【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例9〜11で製造された本発明複
合体のコポリマーの生体内分解率と生体埋入期間
との関係を示すグラフである。第2図は、実施例
14〜19で製造された本発明複合体の生理活性物質
の生体内放出量と生体埋入期間との関係を示すグ
ラフである。第3図は、実施例14〜19で製造され
た本発明複合体から放出されたホルモンの薬理作
用(前立腺腹葉の重量で表わす)と生体埋入期間
との関係を示すグラフである。第4図は、実施例
20で製造された本発明複合体から放出されたホル
モンの薬理作用(前立腺腹葉の重量で表わす)と
生体埋入期間との関係を示すグラフである。第5
図は、実施例21〜26で用いたメンブラン拡散法に
よるin vitro放出試験装置の概略図である。第6
図及び第7図は、実施例27及び実施例28で製造さ
れた本発明複合体から放出されたホルモンの薬理
作用(前立腺腹葉の重量で表わす)と生体埋入期
間との関係を示すグラフである。第8図、第9図
及び第10図は、本発明の複合体を生体内に挿入
するための挿入具の具体例をそれぞれ示す。 1……選析セロハンチユーブ、2……サンプ
ル、3……ポンプ、4……37℃生理食塩水(1000
ml)、5……複合体、6……シート状素材、7…
…先を尖端としたテフロン加工の柔軟な容器、8
……注射器型デイスポーザル。
FIG. 1 is a graph showing the relationship between the biodegradation rate of the copolymers of the composites of the present invention produced in Examples 9 to 11 and the period of in vivo implantation. Figure 2 shows an example
14 is a graph showing the relationship between the in-vivo release amount of the physiologically active substance of the composites of the present invention manufactured in Nos. 14 to 19 and the in-vivo implantation period. FIG. 3 is a graph showing the relationship between the pharmacological action of the hormones released from the composites of the present invention produced in Examples 14 to 19 (expressed by the weight of the ventral lobe of the prostate) and the period of in vivo implantation. Figure 4 shows an example
20 is a graph showing the relationship between the pharmacological action of the hormone released from the composite of the present invention prepared in Example 20 (expressed as the weight of the ventral lobe of the prostate) and the period of implantation in the living body. Fifth
The figure is a schematic diagram of an in vitro release test device using a membrane diffusion method used in Examples 21 to 26. 6th
7 and 7 are graphs showing the relationship between the pharmacological action of the hormone released from the composites of the present invention produced in Example 27 and Example 28 (expressed by the weight of the abdominal lobe of the prostate) and the period of implantation in the living body. It is. FIG. 8, FIG. 9, and FIG. 10 each show a specific example of an insertion tool for inserting the composite of the present invention into a living body. 1...Selection cellophane tube, 2...Sample, 3...Pump, 4...37℃ physiological saline (1000
ml), 5...composite, 6...sheet-like material, 7...
...Teflon-treated flexible container with a pointed tip, 8
...Syringe type disposable.

Claims (1)

【特許請求の範囲】[Claims] 1 乳酸及び/又はグリコール酸とγ−ブチロラ
クトン、δ−バレロラクトン及び/又はε−カプ
ロラクトンとを直接脱水重縮合し、乳酸及び/又
はグリコール酸(A)とγ−ブチロラクトン、δ−バ
レロラクトン及び/又はε−カプロラクトン(B)と
のモル比が、即ち、(A)/(B)モル比として20/80〜
90/10の範囲であつて、且つ数平均分子量が500
〜5000の範囲とした生体分解型コポリマーと薬物
とを混合してなる薬物に徐放性機能を付与した生
体分解型コポリマー複合体。
1 Direct dehydration polycondensation of lactic acid and/or glycolic acid and γ-butyrolactone, δ-valerolactone and/or ε-caprolactone to produce lactic acid and/or glycolic acid (A), γ-butyrolactone, δ-valerolactone and/or Or the molar ratio with ε-caprolactone (B) is 20/80 to (A)/(B) molar ratio
90/10 range and number average molecular weight is 500
A biodegradable copolymer composite in which a drug is mixed with a biodegradable copolymer having a molecular weight of 5,000 to 5,000, and a drug is given a sustained release function.
JP25495887A 1987-10-09 1987-10-09 Biodegradable copolymer complex making drug gradually releasable Granted JPH0196139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25495887A JPH0196139A (en) 1987-10-09 1987-10-09 Biodegradable copolymer complex making drug gradually releasable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25495887A JPH0196139A (en) 1987-10-09 1987-10-09 Biodegradable copolymer complex making drug gradually releasable

Publications (2)

Publication Number Publication Date
JPH0196139A JPH0196139A (en) 1989-04-14
JPH0546328B2 true JPH0546328B2 (en) 1993-07-13

Family

ID=17272227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25495887A Granted JPH0196139A (en) 1987-10-09 1987-10-09 Biodegradable copolymer complex making drug gradually releasable

Country Status (1)

Country Link
JP (1) JPH0196139A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4856881B2 (en) * 2005-02-01 2012-01-18 川澄化学工業株式会社 Drug sustained release system
US20090110713A1 (en) * 2007-10-31 2009-04-30 Florencia Lim Biodegradable polymeric materials providing controlled release of hydrophobic drugs from implantable devices

Also Published As

Publication number Publication date
JPH0196139A (en) 1989-04-14

Similar Documents

Publication Publication Date Title
US6432438B1 (en) Biodegradable vehicle and filler
US10047193B2 (en) Sustained release polymer
EP0858323B1 (en) Process to manufacture implants containing leuprolide
CN1283215C (en) Biodegradable vehicles and delivery systems of biologically active substances
US20040018238A1 (en) Biodegradable vehicles and delivery systems of biolgically active substances
MX2014015902A (en) Biodegradable drug delivery for hydrophobic compositions.
EP0139286A2 (en) Prolonged sustained-release preparations
JP4548623B2 (en) Biomaterial
US20080206303A1 (en) Prolonged Release Formulations Comprising Anastrozole
TWI399224B (en) Solid sustained-release formulation comprising triptorelin acetate
JP3351523B2 (en) Improved sustained release system for sustained release of pharmaceutically and / or biologically useful substances from a depot carrier material
DE69935614T2 (en) LACTON GROUPS CARRYING ABSORBABLE POLYMERS
JP2000509403A (en) Pharmaceutical compositions for sustained release of insoluble active ingredients
JPH01500034A (en) Vaccines and implants
EP1973570B1 (en) Pharmaceutical formulations comprising dextran with molecular weight of 1.0-100kda and processes for their preparation
KR100979217B1 (en) Controlled releases system containing temozolomide
JP2005507385A (en) Biodegradable implant comprising polylactide polymer and LH-RH analogue
JPH0546328B2 (en)
CN1206001C (en) Biodegradable carrier and biodegradable transfer system
JPH0547525B2 (en)
CN113476418A (en) Subcutaneous implanted rod for long-acting blood pressure reduction and preparation method thereof
CN1541127A (en) Pellet implant system and method of administration
JPS63218632A (en) Production of biodegradable copoly(glycolic/l-lactic acid) complex which can gradually release hormons
JPS63203610A (en) Long life medicine comprising plural components for implant
CN101134012A (en) Method for producing injectable drug administration preparations using mixed polyacid anhydride as the carrier for middle-size or small molecule medicament and application thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 15