JPH0545434B2 - - Google Patents

Info

Publication number
JPH0545434B2
JPH0545434B2 JP59113301A JP11330184A JPH0545434B2 JP H0545434 B2 JPH0545434 B2 JP H0545434B2 JP 59113301 A JP59113301 A JP 59113301A JP 11330184 A JP11330184 A JP 11330184A JP H0545434 B2 JPH0545434 B2 JP H0545434B2
Authority
JP
Japan
Prior art keywords
recording
germanium oxide
layer
reflectance
oxide layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59113301A
Other languages
Japanese (ja)
Other versions
JPS60257291A (en
Inventor
Noboru Yamada
Kenichi Nishiuchi
Yoshito Ninomya
Masatoshi Takao
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59113301A priority Critical patent/JPS60257291A/en
Publication of JPS60257291A publication Critical patent/JPS60257291A/en
Publication of JPH0545434B2 publication Critical patent/JPH0545434B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/252Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B7/2433Metals or elements of groups 13, 14, 15 or 16 of the Periodic System, e.g. B, Si, Ge, As, Sb, Bi, Se or Te
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24312Metals or metalloids group 14 elements (e.g. Si, Ge, Sn)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24314Metals or metalloids group 15 elements (e.g. Sb, Bi)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24316Metals or metalloids group 16 elements (i.e. chalcogenides, Se, Te)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24318Non-metallic elements
    • G11B2007/2432Oxygen

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、レーザ光線等を用いて光学的に高密
度な情報を高速に記録、再生する光学情報記録部
材特に光デイスクに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an optical information recording member, particularly an optical disk, that optically records and reproduces high-density information at high speed using a laser beam or the like.

従来例の構成とその問題点 レーザ光線を用いて、回転しているデイスク上
に高密度な情報を高速に記録、再生する技術は、
光デイスク装置として既に幾つもの研究成果例、
商品開発例の報告が有り、情報システムを構成す
るうえで不可欠のものとなりつつある。
Conventional configuration and its problems The technology for recording and reproducing high-density information on a rotating disk at high speed using a laser beam is
There are already many examples of research results as optical disk devices.
There have been reports of product development examples, and it is becoming indispensable for configuring information systems.

これら光デイスクに用いる記録材料としては、
穴や泡等の形状変化を生じさせることで光の反射
率変化、透過率変化を得るものと、光学的性質
(屈折率n、消衰係数k)を変えて反射率変化、
透過率変化を得るものがあるが、後者のタイプの
ものが、密着した保護層を設けられる点、原理的
に変化が可逆的に書き換え可能なものが得られる
という点で有利であり、光デイスクの主流になる
と考えられる。
The recording materials used for these optical discs include:
There are those that change the reflectance and transmittance of light by changing the shape of holes and bubbles, and those that change the reflectance and transmittance by changing the optical properties (refractive index n, extinction coefficient k).
There are devices that change the transmittance, but the latter type is advantageous in that it can provide a protective layer that adheres to it, and that changes can be reversibly rewritable in principle. It is thought that this will become the mainstream.

このタイプの光デイスクとして代表的なもの
に、〔TeOX(O<x<2)〕を用いたものがある。
A typical optical disk of this type is one using [TeO x (O<x<2)].

これはPMMA等の樹脂基材上に、紫外線硬化
樹脂を用いて光ガイド用のトラツク溝を形成し、
その上に〔TeOX〕薄膜を蒸着等の方法で設置
し、更に基材と同様の樹脂基材をはり合わせた構
造をしている。この光デイスクは既に静止画フア
イル、文書フアイル等のシステム機器へ応用され
ているが、この〔TeOX〕を主材料として用い今
後例えば、大型化、書き換え可能化等、更に発展
させた形態にするためには幾つかの問題が残され
ている。
This involves forming track grooves for light guides on a resin base material such as PMMA using ultraviolet curing resin.
It has a structure in which a [TeO x ] thin film is placed on top of it by a method such as vapor deposition, and then a resin base material similar to the base material is laminated. This optical disk has already been applied to system equipment such as still image files and document files, but using this [ TeO Several problems remain.

つまり現状のままの構造では、くり返し使用す
ることによつて基材と記録層の界面付近で基材が
ダメージを受けやすく記録信号の品質が低下して
しまう点、更に容量を上げるためにデイスク形状
を大きくする、あるいは転送レートを上げるため
に回転速度を上げるというような試みに対して
は、現状の半導体レーザーの出力では記録感度が
不足する心配がある点、等の理由から何らかの対
策を必要とする。
In other words, with the current structure, the base material is easily damaged near the interface between the base material and the recording layer due to repeated use, and the quality of the recorded signal deteriorates.In order to further increase the capacity, the disk shape Attempts to increase the rotation speed in order to increase the transfer rate or to increase the transfer rate require some kind of countermeasure, as there is a concern that the recording sensitivity may be insufficient with the current output of semiconductor lasers. do.

発明の目的 本発明は光デイスクの構造を改良して、記録感
度、消去感度等を向上するとともに繰り返し使用
してもダメージを受けにくい光デイスクを提供す
ることを目的とする。
OBJECTS OF THE INVENTION An object of the present invention is to improve the structure of an optical disk to improve recording sensitivity, erasing sensitivity, etc., and to provide an optical disk that is less susceptible to damage even after repeated use.

発明の構成 本発明による光学情報記録部材は、基材上に、
酸化ゲルマニウム層と、光照射によつて反射率変
化を生じる材料薄膜から成る記録層の2層を順次
積層したことを特徴とする。
Structure of the Invention The optical information recording member according to the present invention includes, on a base material,
It is characterized by sequentially laminating two layers: a germanium oxide layer and a recording layer made of a thin film of a material whose reflectance changes when irradiated with light.

酸化ゲルマニウム層は、レーザ光の入射効率を
高めて見かけ上の記録感度を高めるとともに、基
材に対する防護層として作用し、くり返し使用に
よる基材の損傷を防止する。
The germanium oxide layer increases the incidence efficiency of laser light and increases the apparent recording sensitivity, and also acts as a protective layer for the base material to prevent damage to the base material due to repeated use.

実施例の説明 以下図面を参照しつつ本発明を詳しく説明す
る。第1図は、本発明の光学情報記録部材の基本
的構成の断面図を示したものである。図中1は、
基材であつて、PMMA、塩化ビニール、ポリカ
ーボネイト等のプラスチツク、又はガラス等を使
用目的に応じて用いることができる。2は本発明
の根幹をなす酸化ゲルマニウムGeOX(x=2又は
x2)の層であつて蒸着、スパツタリング等の
方法を用いて形成する。膜形成に際しては蒸着用
ソース材料あるいはスパツタリングのターゲツト
材料として二酸化ゲルマニウムGeO2を用いる。
蒸着あるいはスパツタリングの条件によつてはや
やOがはずれてGeOX(x2)となる場合がある
本発明においては、ほぼ同様の効果を得ることが
可能である。
DESCRIPTION OF EMBODIMENTS The present invention will be described in detail below with reference to the drawings. FIG. 1 shows a sectional view of the basic structure of the optical information recording member of the present invention. 1 in the figure is
As the base material, plastics such as PMMA, vinyl chloride, polycarbonate, glass, etc. can be used depending on the purpose of use. Reference numeral 2 denotes a layer of germanium oxide GeO x (x=2 or x2), which forms the basis of the present invention, and is formed using a method such as vapor deposition or sputtering. When forming the film, germanium dioxide GeO 2 is used as a source material for vapor deposition or as a target material for sputtering.
In the present invention, substantially the same effect can be obtained in some cases where O is slightly removed depending on the conditions of vapor deposition or sputtering to become GeO x (x2).

膜厚としては、基材1側から光を入射した時の
反射光量が干渉効果として極大値を示す時の膜厚
に設定することができる。設定方法としては、例
えば特開昭59−17139に提案されている反射率測
定方法を用いて行なうことができる。
The film thickness can be set to a film thickness at which the amount of reflected light when light is incident from the base material 1 side shows a maximum value as an interference effect. As a setting method, for example, the reflectance measurement method proposed in Japanese Patent Laid-Open No. 59-17139 can be used.

第2図は、前述の方法を用いて酸化ゲルマニウ
ム薄膜を堆積していつた時の膜厚と基材側からの
反射率との関係を示したものである。反射光強度
は、基材表面からの反射光と、基材と酸化ゲルマ
ニウム層の界面からの反射光との間の多重干渉の
結果、図のように膜厚の増加に従つて増大し、極
大値をとつた後、減少することがわかつた。酸化
ゲルマニウムのように透明で光がほとんど吸収さ
れない物質の場合には、極大値をとる場合の膜厚
dと屈折率n、波長λの間には、nd=λ/4の
ような近似式が成立し、酸化ゲルマニウム薄膜の
屈折率n=1.6、光源の波長λ=840nmとすると、
反射光強度が極大をとる膜厚dOは、約130nmとな
る。
FIG. 2 shows the relationship between the thickness of a germanium oxide thin film deposited using the method described above and the reflectance from the substrate side. As a result of multiple interference between the reflected light from the substrate surface and the reflected light from the interface between the substrate and the germanium oxide layer, the reflected light intensity increases as the film thickness increases, reaching a maximum as shown in the figure. It was found that after taking the value, it decreases. In the case of a transparent material such as germanium oxide, which absorbs almost no light, an approximate formula such as nd = λ/4 can be found between the film thickness d, the refractive index n, and the wavelength λ at the maximum value. If the refractive index of the germanium oxide thin film is n = 1.6 and the wavelength of the light source is λ = 840 nm, then
The film thickness d O at which the reflected light intensity reaches its maximum is approximately 130 nm.

第1図において3は記録層を示す。上述のよう
に設計した酸化ゲルマニウム層2の上に記録層3
を堆積させる場合、記録膜3の屈折率が酸化ゲル
マニウム2の屈折率よりも大であれば、記録層3
を含めた全体の系として、基材側1からの反射光
強度を、酸化ゲルマニウム層2の無い場合に比べ
てはるかに小さくすることが可能であり光の入射
効率を高めることができる。
In FIG. 1, 3 indicates a recording layer. A recording layer 3 is formed on the germanium oxide layer 2 designed as described above.
When depositing the recording layer 3, if the refractive index of the recording film 3 is higher than the refractive index of the germanium oxide 2, the recording layer 3
As a whole system including this, the intensity of reflected light from the base material side 1 can be made much smaller than in the case without the germanium oxide layer 2, and the light incidence efficiency can be increased.

第3図に、記録層材料としてTe−TeO2系薄膜
を用いた場合において、酸化ゲムマニウム層2が
有る場合(a)、と無い場合(b)における反射光強度の
相違を示す。酸化ゲルマニウム層2が無い(b)の場
合においては、反射光強度は膜厚の増加とともに
増大し、極大値4をとつた後、減少し、その後、
極小5、極大6と増減をくり返しながら一定の値
に収束する。これに対して酸化ゲルマニウム層2
が有る場合においては反射光強度は小さい極小値
7をとつた後、増大し極大8をとり、その後減少
し極小9、極大10と増減をくり返しながら一定
の値に収束する。このとき、酸化ゲルマニウム層
2が有る場合には、各極大値、極小値、又収束値
とも無い場合に比べて全体に低くすることができ
ることがわかつた。従つて基材1と記録膜3との
間に酸化ゲルマニウム層2を設けることで光の入
射効率を高めることが可能となり、全体として記
録感度の向上が計れるものである。
FIG. 3 shows the difference in reflected light intensity between the case (a) with the gemmanium oxide layer 2 and the case (b) without it when a Te-TeO 2 -based thin film is used as the recording layer material. In case (b) without the germanium oxide layer 2, the reflected light intensity increases as the film thickness increases, reaches a maximum value of 4, then decreases, and then
It converges to a constant value while repeating increases and decreases from a minimum of 5 to a maximum of 6. On the other hand, germanium oxide layer 2
, the reflected light intensity takes a small minimum value of 7, then increases and reaches a maximum of 8, and then decreases to a minimum of 9 and a maximum of 10, repeating increases and decreases and converges to a constant value. At this time, it has been found that when the germanium oxide layer 2 is present, the overall maximum value, minimum value, and convergence value can be made lower than when there is no convergence value. Therefore, by providing the germanium oxide layer 2 between the base material 1 and the recording film 3, it is possible to increase the light incidence efficiency, and the overall recording sensitivity can be improved.

酸化ゲルマニウム層2の膜厚としては、前述の
近似式で反射光強度が最大となるように選ぶ場合
において上述の反射率低減の効果を最大限得るこ
とができるものであるが、反射光強度が最大でな
い場合においても類似の効果を得ることは可能で
あり、この場合においては記録層3を含めた光の
反射率は、第3図aとbの中間の値をとるもので
ある。
The film thickness of the germanium oxide layer 2 is such that the above-mentioned effect of reducing the reflectance can be obtained to the maximum when the thickness of the germanium oxide layer 2 is selected so as to maximize the reflected light intensity using the above-mentioned approximation formula. It is possible to obtain a similar effect even if it is not the maximum, and in this case, the reflectance of light including the recording layer 3 takes a value between a and b in FIG. 3.

記録層3としては、上記以外にもSb2Te3
Sb2Se3等、やはり記録前後の光学的特性を変化
するもの、あるいはTe−C系薄膜、Pb−Te−Se
系薄膜等の穴を形成するような材料もそのまま適
用が可能である。
In addition to the above, the recording layer 3 may include Sb 2 Te 3 ,
Sb 2 Se 3 , etc., which also change the optical characteristics before and after recording, or Te-C thin film, Pb-Te-Se
Materials that form holes, such as system thin films, can also be applied as they are.

次に、記録層3としてTe−Ge−Sn−O系薄膜
(特願昭58−58158記載)を用いて、くり返し記
録、消去を行つた場合の実施例について説明す
る。この系の記録薄膜は、その使用方法として膜
をあらかじめ反射率の高い状態にしておき、光を
照射して反射率の低い状態に変化させることで記
録しようというものであるから、記録時の光の入
射効率を高めるという意味で、酸化ゲルマニウム
層による反射率低減効果は非常に有用である。更
にくり返し使用する際には樹脂基材1が熱的に変
形し、ノイズレベルが増大することが考えられる
が、酸化ゲルマニウムという無機材質層を介する
ことでその変形を押さえることができるものであ
る。特願昭58−58158記載のTe60Sn15Ge5O20薄膜
を用いて、酸化ゲルマニウム層が有る場合と無い
場合との両方の光デイスクを試作し、やはり特願
昭58−58185記載の記録の記録消去方法を用いて
くり返し記録消去試実験を行なつた。
Next, an embodiment will be described in which a Te--Ge--Sn--O thin film (described in Japanese Patent Application No. 58-58158) is used as the recording layer 3 to perform repeated recording and erasing. The method of using this type of recording thin film is to record by first setting the film in a high reflectance state and changing it to a low reflectance state by irradiating it with light. The reflectance reduction effect of the germanium oxide layer is very useful in terms of increasing the incidence efficiency of the light. Further, when used repeatedly, the resin base material 1 may be thermally deformed and the noise level may increase, but this deformation can be suppressed by interposing the inorganic material layer of germanium oxide. Using the Te 60 Sn 15 Ge 5 O 20 thin film described in Japanese Patent Application No. 58-58158, optical disks with and without a germanium oxide layer were produced as prototypes, and the records described in Japanese Patent Application No. 58-58185 were also produced. We conducted repeated record erasing trials using this record erasing method.

第4図は酸化ゲルマニウム層を設けて試作した
光デイスクの断面図、第5図は光デイスク作成時
の各工程におけるデイスクの反射率を連続的に示
したものである。
FIG. 4 is a cross-sectional view of an optical disk prototyped with a germanium oxide layer provided thereon, and FIG. 5 is a continuous view showing the reflectance of the disk at each step during the production of the optical disk.

基材11は1.2mm厚のPMMAを用い、そのうえ
に酸化ゲルマニウム層12を反射率が極大となる
ように蒸着し、その上にTe60Sn15Ge5O20薄膜層
13を、その反射率が極小となるようにこれも蒸
着して形成する。更に、この場合はくり返し使用
時におけるゴミ、キズ等の影響を避けるため記録
膜の上に更にもう一層、酸化ゲルマニウム層14
を反射率が極小となるように蒸着し、紫外線硬化
樹脂を用いて、1.1mm厚のPMMA基材15をはり
合わせて光デイスクとする。
The base material 11 is made of PMMA with a thickness of 1.2 mm, on which a germanium oxide layer 12 is vapor-deposited so that the reflectance is maximum, and on top of that, a Te 60 Sn 15 Ge 5 O 20 thin film layer 13 is deposited so that the reflectance is minimum. This is also formed by vapor deposition so that it becomes . Furthermore, in this case, one more germanium oxide layer 14 is added on top of the recording film to avoid the effects of dust, scratches, etc. during repeated use.
is vapor-deposited so that the reflectance is minimal, and a 1.1 mm thick PMMA base material 15 is glued together using an ultraviolet curing resin to form an optical disk.

第6図は、これらの光デイスクを用いて、記録
パワー、消去パワーをそれぞれ8mW、12mW、
消去レーザピーム長を半値巾で15μmとして同一
トラツク上にくり返し記録消去を行なつた場合の
C/Nの変化の様子を示したものである。記録周
波数は5MHz、デイスクの周速は15m/sである。
このとき、酸化ゲルマニウム層を備えた光デイス
クaにおいては、光の吸収効率が良いために初期
C/Nが高く、同時にくり返し使用時においても
C/Nの劣化がごく微かでしかなかつた。それに
比して、酸化ゲルマニウム層の無い光デイスクb
においては、初期C/Nがやや低く、くり返し使
用するとノイズレベルの上昇に伴ない、C/Nが
低下する減少が観察された。
Figure 6 shows that using these optical disks, the recording power and erasing power were 8 mW, 12 mW, respectively.
This figure shows how the C/N changes when recording and erasing is repeatedly performed on the same track with the erasing laser beam length set to 15 μm in half width. The recording frequency was 5 MHz, and the circumferential speed of the disk was 15 m/s.
At this time, in the optical disk a having the germanium oxide layer, the initial C/N was high due to good light absorption efficiency, and at the same time, the deterioration of the C/N was only slight even during repeated use. In comparison, optical disk b without germanium oxide layer
In this case, the initial C/N was rather low, and when used repeatedly, a decrease in the C/N was observed as the noise level increased.

発明の効果 本発明による光学情報記録部材は、無機材質層
を基材と記録層との間に備えることで、基材を保
護する効果を伴つて、くり返し使用時の耐久性に
優れた光学情報記録部材を提供することができ
る。
Effects of the Invention By providing an inorganic material layer between the base material and the recording layer, the optical information recording member according to the present invention has the effect of protecting the base material and provides optical information with excellent durability during repeated use. A recording member can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の光学情報記録部材の基本構
成の断面図、第2図は酸化ゲルマニウム層の膜厚
と反射率の関係を示すグラフ、第3図は、酸化ゲ
ルマニウム層が有る場合と無い場合の記録材料の
反射率の差異を示すグラフ、第4図は書き換え可
能な材料を用いて、はり合わせた構造の本発明の
一実施例における光学情報記録部材の断面図、第
5図は、デイスク作成時の各工程におけるデイス
クの反射率の連続的な変化を示すグラフ、第6図
は、酸化ゲルマニウム層の有無によるくり返し使
用時のC/Nの変化の相違を示すグラフである。 1……基材、2……酸化ゲルマニウム層、3…
…記録層。
FIG. 1 is a cross-sectional view of the basic structure of the optical information recording member of the present invention, FIG. 2 is a graph showing the relationship between the thickness of the germanium oxide layer and the reflectance, and FIG. FIG. 4 is a graph showing the difference in reflectance of the recording material when no recording material is used, FIG. FIG. 6 is a graph showing continuous changes in reflectance of the disk during each process during disk production. FIG. 1...Base material, 2...Germanium oxide layer, 3...
...recording layer.

Claims (1)

【特許請求の範囲】 1 基材上に、酸化ゲルマニウムGeOx(x=2
叉はx≒2)からなる無機材質層と、光照射によ
つて反射率変化を生じる材料薄膜から成る記録層
の2層を順次積層した光学情報記録部材であつ
て、上記無機材質層は前記光に対して透明であ
り、かつその屈折率が上記記録層を構成する材料
薄膜の屈折率よりも小さく選ばれており、かつそ
の膜厚は、上記無機材質層と上記記録層を積層し
たときに上記基材側から見た反射率が上記記録層
を基板上に単独で形成した場合に比べて低くなる
ように選ばれていることを特徴とする光学情報記
録部材。 2 記録層の上に更にもう1層無機材質層を積層
した少なくとも3層で構成されることを特徴とす
る特許請求の範囲第1項記載の光学情報記録部
材。
[Claims] 1 Germanium oxide GeOx (x=2
An optical information recording member in which two layers are successively laminated: an inorganic material layer consisting of x≈2) and a recording layer consisting of a thin film of material that causes a change in reflectance upon irradiation with light, wherein the inorganic material layer is is transparent to light, and has a refractive index smaller than that of the thin film of material constituting the recording layer, and has a thickness that is equal to when the inorganic material layer and the recording layer are laminated. An optical information recording member, characterized in that the reflectance as viewed from the substrate side is selected to be lower than that when the recording layer is formed alone on the substrate. 2. The optical information recording member according to claim 1, which is composed of at least three layers in which one more inorganic material layer is laminated on the recording layer.
JP59113301A 1984-06-01 1984-06-01 Optical information recording member Granted JPS60257291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59113301A JPS60257291A (en) 1984-06-01 1984-06-01 Optical information recording member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59113301A JPS60257291A (en) 1984-06-01 1984-06-01 Optical information recording member

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP27697390A Division JPH03141054A (en) 1990-10-15 1990-10-15 Production of optical information recording medium

Publications (2)

Publication Number Publication Date
JPS60257291A JPS60257291A (en) 1985-12-19
JPH0545434B2 true JPH0545434B2 (en) 1993-07-09

Family

ID=14608744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59113301A Granted JPS60257291A (en) 1984-06-01 1984-06-01 Optical information recording member

Country Status (1)

Country Link
JP (1) JPS60257291A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4787077A (en) * 1985-08-15 1988-11-22 International Business Machines Corporation Process for optically storing information using materials having a single phase in both the crystalline state and the amorphous state
JPH0777040B2 (en) * 1986-03-28 1995-08-16 株式会社東芝 Optical recording medium
JPS63251290A (en) * 1987-04-08 1988-10-18 Hitachi Ltd Optical recording medium, method for regeneration and application thereof
JP2525184B2 (en) * 1987-05-29 1996-08-14 日本コロムビア株式会社 Optical information recording medium
US5273861A (en) * 1987-12-04 1993-12-28 Matsushita Electric Industrial Co., Ltd. Optical information recording medium, method of making an optical information recording medium and method of recording/reproducing optical information
JPH0264936A (en) * 1988-08-30 1990-03-05 Hitachi Ltd Optical information recording medium
US5268254A (en) * 1989-02-28 1993-12-07 Fuji Xerox Co., Ltd. Optical recording medium
JPH03141054A (en) * 1990-10-15 1991-06-17 Matsushita Electric Ind Co Ltd Production of optical information recording medium
US7427431B2 (en) * 2004-04-28 2008-09-23 Sony Corporation Write once optical recording medium
JP2008183735A (en) * 2007-01-26 2008-08-14 Sony Corp Write-once type optical recording medium and its manufacturing method

Also Published As

Publication number Publication date
JPS60257291A (en) 1985-12-19

Similar Documents

Publication Publication Date Title
JPH10302310A (en) Optical recording medium and optical disk device
JPH08255374A (en) Multilayer optical disk and its signal reproducing method
JPH0545434B2 (en)
JP3351761B2 (en) Optical recording medium having multiple recording layers and method of manufacturing the same
US7244532B2 (en) Holographic recording medium
US5811217A (en) Optical information recording medium and optical information recording/reproducing method
JP4080741B2 (en) Multilayer optical recording medium manufacturing method and multilayer optical recording medium
JPH0221060B2 (en)
JP4165974B2 (en) Multi-layer optical disc
JP2003303442A (en) Optical recording medium
US20020057646A1 (en) Optical information recording medium and method of manufacturing the same
JPH03141054A (en) Production of optical information recording medium
JP4345246B2 (en) Optical recording medium
JPH117658A (en) Optical recording medium and optical disk device
JP2782910B2 (en) Optical information recording method, reproducing method and erasing method
JP4260929B2 (en) Optical information recording medium and manufacturing method thereof
JP3139479B2 (en) Information recording medium, method for manufacturing information recording medium, method for recording / reproducing information, and method for erasing information
JP2940176B2 (en) Optical recording medium and recording / reproducing method thereof
JPH0553022B2 (en)
JPH10302314A (en) Multilayer structure optical information medium
JP3082380B2 (en) Rewritable optical information recording medium
JPS615450A (en) Optical recording member
JPH03240589A (en) Optical data recording medium
JPH0337840A (en) Phase change type optical disk
JPH08147758A (en) Optical recording medium and optical disk reproducing method and optical disk reproducing device