JPH0544834B2 - - Google Patents

Info

Publication number
JPH0544834B2
JPH0544834B2 JP6582684A JP6582684A JPH0544834B2 JP H0544834 B2 JPH0544834 B2 JP H0544834B2 JP 6582684 A JP6582684 A JP 6582684A JP 6582684 A JP6582684 A JP 6582684A JP H0544834 B2 JPH0544834 B2 JP H0544834B2
Authority
JP
Japan
Prior art keywords
film
insulating film
gate electrode
region
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6582684A
Other languages
Japanese (ja)
Other versions
JPS60210875A (en
Inventor
Kikuo Yamabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP6582684A priority Critical patent/JPS60210875A/en
Publication of JPS60210875A publication Critical patent/JPS60210875A/en
Publication of JPH0544834B2 publication Critical patent/JPH0544834B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • H01L29/78609Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device for preventing leakage current

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、絶縁膜上の半導体装置の製造方法に
係わり、特に素子を分離する素子分離法の改良を
はかつた半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device on an insulating film, and more particularly to a method for manufacturing a semiconductor device in which an element isolation method for isolating elements is improved.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

絶縁膜上の半導体薄膜によつて製造される半導
体装置、特にMOS型半導体装置においては、寄
生チヤネルによる絶縁不良をなくし、且つ寄生容
量を小さくするために素子間の所望フイールド領
域(素子分離領域)に厚い酸化膜を形成すること
が行われている。従来、酸化膜を用いる素子分離
法の一つとしては、フイールド領域の半導体薄膜
をエツチングして素子形成領域を島状に分離し、
素子分離領域にCVD技術を用いてフイールド酸
化膜を埋込む方法がある。この素子分離法は、素
子分離後の表面が略平坦になり、しかも素子分離
領域の寸法が精度よく形成されるエツチング領域
の寸法で決定されるため、高集積化された半導体
装置を製造する上で非常に有益な技術である。
In a semiconductor device manufactured using a semiconductor thin film on an insulating film, especially in a MOS type semiconductor device, a desired field region (element isolation region) between elements is used to eliminate insulation defects due to parasitic channels and reduce parasitic capacitance. Forming a thick oxide film is being practiced. Conventionally, one of the device isolation methods using an oxide film is to etch the semiconductor thin film in the field region to separate the device formation region into islands.
There is a method of burying a field oxide film in the element isolation region using CVD technology. This element isolation method is useful for manufacturing highly integrated semiconductor devices because the surface after element isolation is approximately flat and the dimensions of the element isolation region are determined by the dimensions of the etched region that is formed with precision. It is a very useful technique.

このような従来の素子分離法を第1図a〜eを
参照して簡単に説明する。まず、第1図aに示す
如くシリコン酸化膜11上に比抵抗5〜50[Ωcm]
程度で厚さ0.6[μm]程度の単結晶化されたシリ
コン膜12を用意し、このシリコン膜12の素子
形成領域上にマスク材13を形成する。次いで、
第1図bに示す如くマスク材13をマスクとして
シリコン膜12を異方性エツチングし、素子分離
領域14を形成する。続いて、第1図cに示す如
く素子分離領域14に絶縁膜15を埋込み、その
表面を坦化する。
Such a conventional device isolation method will be briefly explained with reference to FIGS. 1a to 1e. First, as shown in FIG.
A single-crystal silicon film 12 having a thickness of approximately 0.6 [μm] is prepared, and a mask material 13 is formed on the element formation region of this silicon film 12. Then,
As shown in FIG. 1B, the silicon film 12 is anisotropically etched using the mask material 13 as a mask to form element isolation regions 14. Subsequently, as shown in FIG. 1c, an insulating film 15 is buried in the element isolation region 14, and its surface is planarized.

しかしながら、この種の方法にあつては次のよ
うな問題があつた。即ち、素子形成領域のシリコ
ン膜表面と素子分離領域の絶縁膜表面は必ずしも
一致せず、第1図dに示す如く素子形成領域周辺
のコーナ部16が絶縁膜表面より出てしまう。そ
の後、第1図eに示す如くゲート酸化膜17及び
ゲート電極18を形成し、この後周知の方法で
MOSトランジスタを作成するとゲート電極18
に電圧を加えた場合、上記コーナ部16において
電界が集中し、寄生トランジスタが発生し、ソー
ス・ドレイン間のリーク電流が増加してしまう。
However, this type of method has the following problems. That is, the surface of the silicon film in the element forming region and the surface of the insulating film in the element isolation region do not necessarily coincide, and the corner portion 16 around the element forming region protrudes from the surface of the insulating film, as shown in FIG. 1d. Thereafter, a gate oxide film 17 and a gate electrode 18 are formed as shown in FIG. 1e, and then a well-known method is used.
When creating a MOS transistor, the gate electrode 18
When a voltage is applied to the corner portion 16, an electric field is concentrated at the corner portion 16, a parasitic transistor is generated, and leakage current between the source and drain increases.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、素子形成領域周辺のコーナ部
での電界集中による寄生トランジスタの発生を抑
制することができ、素子特性の向上をはかり得る
半導体装置の製造方法を堤供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a semiconductor device that can suppress the generation of parasitic transistors due to electric field concentration at corners around an element formation region and improve element characteristics.

〔発明の概要〕[Summary of the invention]

本発明の骨子は、ゲート絶縁膜及びゲート電極
膜形成後に、素子分離領域形成及び絶縁膜の埋込
みを行うことにより、素子形成領域周辺のコーナ
部での電界中を防止することにある。
The gist of the present invention is to prevent an electric field from occurring at a corner around an element formation region by forming an element isolation region and embedding an insulating film after forming a gate insulating film and a gate electrode film.

即ち本発明は、絶縁膜上に半導体装置を製造す
る方法において、絶縁膜上に半導体膜を形成した
のち、この半導体膜上にゲート絶縁膜及びゲート
電極膜を形成し、次いで素子形成領域を定義する
マスク材を用い、素子分離領域の上記ゲート絶縁
膜及びゲート電極膜をエツチングし、次いで上記
素子分離領域に絶縁膜を埋込み、しかるのち上記
半導体膜上に所望の素子を形成するようにした方
法である。
That is, the present invention provides a method for manufacturing a semiconductor device on an insulating film, in which a semiconductor film is formed on the insulating film, a gate insulating film and a gate electrode film are formed on the semiconductor film, and then an element formation region is defined. A method in which the gate insulating film and the gate electrode film in the element isolation region are etched using a mask material, the insulating film is then buried in the element isolation region, and then a desired element is formed on the semiconductor film. It is.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、素子形成領域周辺部のコーナ
部での電界集中がなくなるので、サブスレツシヨ
ルド領域のソース・ドレイン間リーク電流が第2
図に示す如く破線Aから実線Bのように改良され
る。このため、素子特性の向上をはかり得る。ま
た、ゲート電極を素子形成領域と自己整合的に形
成することができるので、素子の集積度を向上さ
せることができる。さらに、素子形成領域周辺で
の電界集中を抑制できるので、ゲート酸化膜を通
してのリーク電流も抑制するとができ、これによ
り素子特性の劣化を防止することが可能である。
According to the present invention, electric field concentration at the corners of the periphery of the element formation region is eliminated, so that the source-drain leakage current in the subthreshold region is reduced to a second level.
As shown in the figure, improvements are made from broken line A to solid line B. Therefore, it is possible to improve device characteristics. Furthermore, since the gate electrode can be formed in self-alignment with the element formation region, the degree of integration of the element can be improved. Furthermore, since electric field concentration around the device formation region can be suppressed, leakage current through the gate oxide film can also be suppressed, thereby preventing deterioration of device characteristics.

〔発明の実施例〕[Embodiments of the invention]

第3図a〜dは本発明の一実施例方法に係わる
MOSトランジスタの製造工程を示す断面図であ
る。まず、第3図aに示す如くシリコン酸化膜等
の絶縁膜21上に単結晶化されたシリコン膜22
を形成し、このシリコン膜22上に、例えば20
[nm]のゲート酸化膜(ゲート絶縁膜)23及
び0.4[μm]のリンドープポリシリコン電極(ゲ
ート電極膜)24を形成する。ここで、上記シリ
コン膜22の形成としては、非晶質や多結晶のシ
リコン膜をビームアニール等により単結晶化する
方法を選べばよい。次いで、第3図bに示す如く
素子形成領域を定義するマスク材25を形成し、
続いてポリシリコン電極24、ゲート酸化膜23
及びシリコン膜22を異方性エツチングによりエ
ツチングして素子分離領域26を形成する。
Figures 3a to 3d relate to an embodiment of the method of the present invention.
FIG. 3 is a cross-sectional view showing the manufacturing process of a MOS transistor. First, as shown in FIG. 3a, a single crystal silicon film 22 is formed on an insulating film 21 such as a silicon oxide film.
is formed on this silicon film 22, for example, 20
A gate oxide film (gate insulating film) 23 of [nm] and a phosphorus-doped polysilicon electrode (gate electrode film) 24 of 0.4 [μm] are formed. Here, to form the silicon film 22, a method may be selected in which an amorphous or polycrystalline silicon film is made into a single crystal by beam annealing or the like. Next, as shown in FIG. 3b, a mask material 25 is formed to define the element formation area, and
Next, polysilicon electrode 24 and gate oxide film 23
Then, the silicon film 22 is etched by anisotropic etching to form an element isolation region 26.

次に、CVD技術を用いて3図ccに示す如く素
子分離領域26に素子分離用絶縁膜としての
SiO2膜27を埋込み、その表面を平坦化する。
次いで、第3図dに示す如くゲート電極24をパ
ターンニングし、さらに半導体膜22中に拡散に
よるソース・ドレイン領域28を形成する。続い
て、全面に絶縁膜29を被着し、コンタクトホー
ル形成及び配線用Al膜30等を形成することに
よつて、MOSトランジスタが完成することにな
る。
Next, as shown in Figure 3cc, CVD technology is used to form an insulating film for element isolation in the element isolation region 26.
A SiO 2 film 27 is buried and its surface is planarized.
Next, the gate electrode 24 is patterned as shown in FIG. 3d, and source/drain regions 28 are further formed in the semiconductor film 22 by diffusion. Subsequently, an insulating film 29 is deposited on the entire surface, and a contact hole is formed and an Al film 30 for wiring, etc. are formed, thereby completing a MOS transistor.

かくして作成されたMOSトランジスタは、素
子形成領域周辺のコーナでの電界集中を抑えるこ
とができ、寄生トランジスタによるソース・ドレ
イン間のリーク電流を著しく低減することができ
た。
The MOS transistor thus created was able to suppress electric field concentration at the corners around the element formation region, and significantly reduce leakage current between the source and drain due to parasitic transistors.

第4図a,bは他の実施例方法を説明するため
の工程断面図である。この実施例が先に説明した
実施例と異なる点は、素子形成領域の周辺部を酸
化して該周辺部での電界集中をより抑えることに
ある。即ち、前記第3図bに示す工程で、第4図
aに示す如くシリコン膜22及びポリシリコンゲ
ート電極24の側部を酸化する。ここで、酸化の
条件としては該酸化による酸化膜31がゲート酸
化膜23の膜厚より厚くなるようにする。なお、
第4図aは前記第3図bとは直交する面の断面を
示している。この後、先の実施例と同様にMOS
トランジスタを作成すると、第4図bに示す如く
シリコン膜22及びゲート電極24の角部が丸く
なるので、前記素子形成領域周辺のコーナ部での
電界集中をより効果的に抑えることが可能とな
る。
FIGS. 4a and 4b are process sectional views for explaining another embodiment method. This embodiment differs from the previously described embodiments in that the periphery of the element formation region is oxidized to further suppress electric field concentration in the periphery. That is, in the step shown in FIG. 3b, the sides of the silicon film 22 and the polysilicon gate electrode 24 are oxidized as shown in FIG. 4a. Here, the oxidation conditions are such that the oxide film 31 resulting from the oxidation becomes thicker than the gate oxide film 23. In addition,
FIG. 4a shows a cross section perpendicular to FIG. 3b. After this, MOS
When a transistor is fabricated, the corners of the silicon film 22 and the gate electrode 24 are rounded as shown in FIG. 4b, making it possible to more effectively suppress electric field concentration at the corners around the element formation region. .

なお、本発明は上述した各実施例に限定される
ものではない。例えば、前記ゲート電極膜の材料
はポリシリコンに限るものではなく、MoSi2
WSi2等の高融点金属シリサイドであつてもよい。
また、ゲート酸化膜の代りにゲート絶縁膜を用い
てもよいのは勿論のことである。また、MOSト
ランジスタに限らず、MOSキヤパシタの製造に
適用することも可能である。その他、本発明の要
旨を逸脱しない範囲で、種々変形して実施するこ
とができる。
Note that the present invention is not limited to the embodiments described above. For example, the material of the gate electrode film is not limited to polysilicon, but may also be MoSi2 or
It may also be a high melting point metal silicide such as WSi 2 .
Furthermore, it goes without saying that a gate insulating film may be used instead of the gate oxide film. Further, the present invention can be applied not only to the production of MOS transistors but also to the production of MOS capacitors. In addition, various modifications can be made without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a〜eは従来の素子分離法を説明するた
めの断面図、第2図は本発明の効果を説明するた
めの特性図、第3図a〜dは本発明の一実施例方
法に係わるMOSトランジスタの製造工程を示す
断面図、第4図a,bは他の実施例方法を説明す
るための工程断面図である。 21,27,29,31……シリコン酸化膜
(絶縁膜)、22……シリコン膜、23……ゲート
酸化膜(ゲート絶縁膜)、24……ポリシリコン
ゲート電極(ゲート電極膜)、25……マスク材、
26……素子分離領域、28……ソース・ドレイ
ン領域、30……配線用Al膜。
1A to 1E are cross-sectional views for explaining the conventional element isolation method, FIG. 2 is a characteristic diagram for explaining the effects of the present invention, and FIGS. FIGS. 4a and 4b are cross-sectional views illustrating the manufacturing process of a MOS transistor according to the present invention. FIGS. 21, 27, 29, 31...Silicon oxide film (insulating film), 22...Silicon film, 23...Gate oxide film (gate insulating film), 24...Polysilicon gate electrode (gate electrode film), 25... …mask material,
26... Element isolation region, 28... Source/drain region, 30... Al film for wiring.

Claims (1)

【特許請求の範囲】 1 絶縁膜上に半導体膜を形成する工程と、上記
半導体膜上にゲート絶縁膜及びゲート電極膜を形
成する工程と、次いで素子形成領域を定義するマ
スク材を用い、素子分離領域の上記ゲート電極、
ゲート絶縁膜及び半導体膜をエツチングする工程
と、次いで上記素子分離領域に絶縁膜を埋込む工
程と、しかる後所望の素子を形成する工程とを含
むことを特徴とする半導体装置の製造方法。 2 前記素子分離領域に絶縁膜を埋込む工程の前
に、前記素子形成領域の半導体膜及びゲート電極
膜を前記ゲート絶縁膜の厚さ以上の膜厚を得る条
件で酸化することを特徴とする特許請求の範囲第
1項記載の半導体装置の製造方法。 3 前記素子を形成する工程として、前記半導体
膜中にソース・ドレイン領域を形成してMOSト
ランジスタを形成するようにしたことを特徴とす
る特許請求の範囲第1項または第2項記載の半導
体装置の製造方法。
[Claims] 1. A step of forming a semiconductor film on an insulating film, a step of forming a gate insulating film and a gate electrode film on the semiconductor film, and then forming an element using a mask material that defines an element formation region. the gate electrode in the isolation region;
A method for manufacturing a semiconductor device, comprising the steps of etching a gate insulating film and a semiconductor film, then embedding an insulating film in the element isolation region, and then forming a desired element. 2. Before the step of embedding an insulating film in the element isolation region, the semiconductor film and the gate electrode film in the element formation region are oxidized under conditions to obtain a film thickness equal to or greater than the thickness of the gate insulating film. A method for manufacturing a semiconductor device according to claim 1. 3. The semiconductor device according to claim 1 or 2, wherein in the step of forming the element, source/drain regions are formed in the semiconductor film to form a MOS transistor. manufacturing method.
JP6582684A 1984-04-04 1984-04-04 Manufacture of semiconductor device Granted JPS60210875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6582684A JPS60210875A (en) 1984-04-04 1984-04-04 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6582684A JPS60210875A (en) 1984-04-04 1984-04-04 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS60210875A JPS60210875A (en) 1985-10-23
JPH0544834B2 true JPH0544834B2 (en) 1993-07-07

Family

ID=13298217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6582684A Granted JPS60210875A (en) 1984-04-04 1984-04-04 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60210875A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3497627B2 (en) * 1994-12-08 2004-02-16 株式会社東芝 Semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
JPS60210875A (en) 1985-10-23

Similar Documents

Publication Publication Date Title
JP3078720B2 (en) Semiconductor device and manufacturing method thereof
JPH0122749B2 (en)
JP3229665B2 (en) Method of manufacturing MOSFET
JPH06252359A (en) Manufacture of semiconductor device
JPH02260660A (en) Manufacture of mos type semiconductor device
US5677210A (en) Method of producing a fully planarized concave transistor
JPH0235461B2 (en)
JP2745970B2 (en) Method for manufacturing semiconductor device
US6352903B1 (en) Junction isolation
JP3529220B2 (en) Semiconductor device and manufacturing method thereof
JPH07153952A (en) Semiconductor device and manufacture thereof
US5612246A (en) Method for manufacturing semiconductor substrate having buck transistor and SOI transistor areas
JP2002076113A (en) Semiconductor device and its manufacturing method
KR20000003951A (en) Isolation method of soi devices
JPH0544834B2 (en)
JPH04275436A (en) Soimos transistor
JPH03163833A (en) Semiconductor device and manufacture thereof
JP3001588B2 (en) Semiconductor device and manufacturing method thereof
JP3280734B2 (en) Semiconductor device and manufacturing method thereof
JPS63305527A (en) Semiconductor device and manufacture thereof
JP2953201B2 (en) Thin film transistor and method of manufacturing the same
JP2672596B2 (en) Method for manufacturing semiconductor device
JPS5816341B2 (en) Manufacturing method of semiconductor device
JP3316023B2 (en) Semiconductor device
JPH03109739A (en) Manufacture of thin-film semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term