JPH0543761B2 - - Google Patents

Info

Publication number
JPH0543761B2
JPH0543761B2 JP60041518A JP4151885A JPH0543761B2 JP H0543761 B2 JPH0543761 B2 JP H0543761B2 JP 60041518 A JP60041518 A JP 60041518A JP 4151885 A JP4151885 A JP 4151885A JP H0543761 B2 JPH0543761 B2 JP H0543761B2
Authority
JP
Japan
Prior art keywords
powder
molybdenum
nickel
reduction
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60041518A
Other languages
Japanese (ja)
Other versions
JPS61201708A (en
Inventor
Yasuaki Azuma
Toshiki Ueda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Kinzoku Co Ltd
Original Assignee
Toho Kinzoku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Kinzoku Co Ltd filed Critical Toho Kinzoku Co Ltd
Priority to JP4151885A priority Critical patent/JPS61201708A/en
Publication of JPS61201708A publication Critical patent/JPS61201708A/en
Publication of JPH0543761B2 publication Critical patent/JPH0543761B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、粉末冶金法において使用されるモリ
ブデン粉末の製法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method for producing molybdenum powder used in powder metallurgy.

(従来の技術) 粉末冶金法の原料となる金属モリブデン粉末
は、酸化モリブデン粉末を比較的低温の一次還元
と比較的高温の二次還元の2回に分けて水素還元
して製造する(2段還元法)のが一般的である。
このような一般的な方法とは別に、例えば三酸化
モリブデン粉末(M0O3)を水素雰囲気炉中で最
高1100℃以上の温度まで時間をかけて徐々に昇温
し加熱することによつて1段で金属粉末に還元す
る方法(1段還元法)もある。
(Prior art) Metallic molybdenum powder, which is a raw material for powder metallurgy, is produced by reducing molybdenum oxide powder with hydrogen in two stages: primary reduction at a relatively low temperature and secondary reduction at a relatively high temperature. (reduction method) is common.
Apart from such general methods, for example, molybdenum trioxide powder (M 0 O 3 ) is heated in a hydrogen atmosphere furnace by gradually raising the temperature to a maximum of 1100°C or more over time. There is also a method of reducing metal powder in one step (one-step reduction method).

(発明が解決しようとする問題点) 上記従来の製法のうち、2段還元法は、還元を
2回に分けて行なわなければならないので、それ
だけ手間がかかり、必要な装置も多くなるという
問題点があつた。また上記従来の1段還元法は、
2段還元法に較べて工程が簡単であるという利点
はあるが、得られる金属粉末の粒度が粗く、圧粉
体を焼結したときに十分な比重が得られないとい
う問題があり、通常のモリブデンワイヤ等の工業
生産に採用することができなかつた。
(Problems to be Solved by the Invention) Among the conventional production methods mentioned above, the two-stage reduction method requires reduction to be carried out in two steps, which is time-consuming and requires more equipment. It was hot. In addition, the conventional one-stage reduction method described above is
Although it has the advantage that the process is simpler than the two-stage reduction method, there is a problem that the particle size of the obtained metal powder is coarse and sufficient specific gravity cannot be obtained when the green compact is sintered. It could not be adopted for industrial production of molybdenum wire, etc.

(問題点を解決するための手段) 本発明は、上記従来の製法の問題点を解決し、
粒度が細かく焼結時に高比重の得られる粉末を得
るため、次のような構成とした。
(Means for solving the problems) The present invention solves the problems of the conventional manufacturing method described above,
In order to obtain a powder with fine particle size and high specific gravity upon sintering, the following configuration was adopted.

すなわち、本発明にかかるモリブデン粉末の製
法は、三酸化モリブデンを主成分とする酸化モリ
ブデン粉末に0.0025〜0.03重量%のニツケルを添
加した後、水素雰囲気中で600℃以下の低温から
徐々に1000℃以上の高温に加熱し、酸化モリブデ
ン粉末を還元して微量のニツケルを含有する金属
モリブデン粉末を得ることを特徴としている。
That is, the method for producing molybdenum powder according to the present invention involves adding 0.0025 to 0.03% by weight of nickel to molybdenum oxide powder whose main component is molybdenum trioxide, and then gradually increasing the temperature from a low temperature of 600°C or lower to 1000°C in a hydrogen atmosphere. It is characterized in that it is heated to a high temperature above and reduced the molybdenum oxide powder to obtain a metal molybdenum powder containing a trace amount of nickel.

これについて具体的に例を挙げて説明すれば、
以下の通りである。
To explain this with a concrete example,
It is as follows.

先ず原料である酸化モリブデン(M0Ox、通常
は三酸化モリブデンM0O3を主成分とするもの)
粉末にニツケルを添加するが、この方法として
は、ニツケルを含有する水溶性化合物、例えば硝
酸ニツケルを水に溶解させて得られる水溶液を酸
化モリブデン粉末にふりかけて充分混合し、乾燥
させる方法がある。添加するニツケルの量は、
0.0025〜0.03%(重量%、以下同じ)とするのが
好ましく、0.005〜0.03%とするのがより好まし
い。ニツケルの量が0.0025%より少ないと、所望
の効果を得ることができず、0.03%よりも多いと
焼結後の加工がきわめて困難となる。
First, the raw material is molybdenum oxide (M 0 Ox, usually molybdenum trioxide M 0 O 3 is the main component).
Nickel is added to the powder, and one method for this is to sprinkle a water-soluble compound containing nickel, such as an aqueous solution obtained by dissolving nickel nitrate in water, over molybdenum oxide powder, mix thoroughly, and dry. The amount of nickel added is
It is preferably 0.0025 to 0.03% (weight %, same hereinafter), more preferably 0.005 to 0.03%. If the amount of nickel is less than 0.0025%, the desired effect cannot be obtained, and if it is more than 0.03%, processing after sintering becomes extremely difficult.

所定量のニツケルを添加した粉末は、水素雰囲
気の還元炉を用いて1段還元を行なう。この還元
は、例えば、600〜800gの粉末をボートに入れ、
550℃程度の低温から1150℃程度の高温まで、出
口側の温度が次第に高くなるように温度勾配のつ
いた電気炉中を一定の速度で進行させる方法で行
なう。炉中での保持時間は、3時間以上とするの
が好ましい。この還元時に、粉末を600℃よりも
高い温度で急激に加熱すると、三酸化モリブデン
が昇華するので、600℃以下の温度で二酸化モリ
ブデンまたはそれよりも低級な酸化物に変えた
後、徐々に昇温するのが好ましい。
The powder to which a predetermined amount of nickel has been added is subjected to one-stage reduction using a reduction furnace in a hydrogen atmosphere. This reduction can be done, for example, by putting 600-800g of powder into a boat,
The process is carried out by moving at a constant speed through an electric furnace with a temperature gradient, from a low temperature of about 550°C to a high temperature of about 1150°C, so that the temperature on the exit side gradually increases. The holding time in the furnace is preferably 3 hours or more. During this reduction, if the powder is rapidly heated to a temperature higher than 600°C, molybdenum trioxide will sublimate, so after converting it to molybdenum dioxide or a lower oxide at a temperature below 600°C, the powder will be gradually sublimated. Preferably warm.

この還元によつて、ブレーン空気透過法による
比表面積が大きい(粒度が細かい)モリブデン金
属粉末が得られる。このように、1段還元で微細
な粉末が得られるのは、モリブデン中に微量に添
加されているニツケルが、還元中に活性化の働き
をなすからであろうと推測される。なお、この製
法で得られるモリブデン粉末を加圧成形して得ら
れる圧粉体を常法に従つて通電焼結した結果、通
常の2段還元で得られるものと同様な高比重の焼
結体を得ることができた。
This reduction yields a molybdenum metal powder with a large specific surface area (fine particle size) by the Blaine air permeation method. It is presumed that the reason why a fine powder is obtained in the one-stage reduction is that nickel, which is added in a small amount to molybdenum, acts as an activator during the reduction. Furthermore, as a result of electrification sintering of the green compact obtained by pressure-molding the molybdenum powder obtained by this manufacturing method according to a conventional method, a sintered compact with a high specific gravity similar to that obtained by normal two-stage reduction is obtained. I was able to get

(実施例および比較例) ニツケルの添加量が0.005%(A)、0.0025%(B)、
0.0017%(C)の3種の酸化モリブデン粉末(M0O3
が主成分)と、ニツケルを添加しない同様な酸化
モリブデン粉末(D)を、入口側から順に550−850−
1050−1150℃と次第に高温となるように配置され
た4つのヒートゾーンをそなえた水素炉で還元し
た。還元は、ステンレス鋼製のボートに酸化物粉
末を入れ、該ボートを35分ごとにその1本分(1
つのヒートゾーンに対応)だけ高温側へ移動させ
ることによつて行なつた。水素流量はいずれも4
m3/Hrであり、ボートに対する粉末充填量は、
上記A、B、Dが730g、Cが800gであつた。
(Example and Comparative Example) The amount of nickel added is 0.005% (A), 0.0025% (B),
Three types of molybdenum oxide powder (M 0 O 3
is the main component) and a similar molybdenum oxide powder (D) without adding nickel, in order from the inlet side to 550-850-
Reduction was carried out in a hydrogen furnace equipped with four heat zones arranged to gradually increase the temperature to 1050-1150°C. For reduction, oxide powder is placed in a stainless steel boat, and the boat is heated every 35 minutes.
This was done by moving the temperature to the high temperature side by 200°C (corresponding to 1 heat zone). The hydrogen flow rate is 4 in both cases.
m 3 /Hr, and the powder filling amount for the boat is
The weight of A, B, and D was 730g, and the weight of C was 800g.

この還元によつて得られた金属粉末の比表面積
SBと、この粉末を加圧成形した圧粉体を最高電流
4600Aで通電焼結した場合の比重(計算比重)
SGは第1図に示すようであつた。なお、棒状の
焼結体の両端部は細くしてあるので、実際の比重
は図示されているものより0.2程度大きくなる。
Specific surface area of metal powder obtained by this reduction
S B and a green compact formed by pressure molding this powder at the highest current.
Specific gravity when sintered with electricity at 4600A (calculated specific gravity)
The SG was as shown in Figure 1. Note that since both ends of the rod-shaped sintered body are made thinner, the actual specific gravity is approximately 0.2 larger than that shown.

同図からわかるように、本発明の実施例である
A、Bは、ニツケルを添加しないもの(D)およびニ
ツケル量の少ないものに較べて、粉末粒度が細か
く、焼結したときに高比重が得られる。
As can be seen from the figure, Examples A and B of the present invention have a finer powder particle size and a higher specific gravity when sintered than those with no nickel added (D) and those with a small amount of nickel. can get.

(効果) 以上に説明した如く、本発明にかかるモリブデ
ン粉末の製法は、1段の還元で、粒度が細かく、
焼結後に高比重の得られる粉末を得ることのでき
るすぐれたものとなつた。
(Effects) As explained above, the method for producing molybdenum powder according to the present invention uses one-stage reduction to produce fine particle size.
This was an excellent product in that it was possible to obtain a powder with a high specific gravity after sintering.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は金属モリブデン粉末の比表面積と焼結
後の比重をあらわすグラフである。
FIG. 1 is a graph showing the specific surface area and specific gravity of metal molybdenum powder after sintering.

Claims (1)

【特許請求の範囲】[Claims] 1 三酸化モリブデンを主成分とする酸化モリブ
デン粉末に0.0025〜0.03重量%のニツケルを添加
した後、水素雰囲気中で600℃以下の低温から
徐々に1000℃以上の高温に加熱し、酸化モリブデ
ン粉末を還元して、微量のニツケルを含有する金
属モリブデン粉末を得ることを特徴とするモリブ
デン粉末の製法。
1 After adding 0.0025 to 0.03% by weight of nickel to molybdenum oxide powder whose main component is molybdenum trioxide, the molybdenum oxide powder is heated from a low temperature of 600°C or less to a high temperature of 1000°C or higher in a hydrogen atmosphere. A method for producing molybdenum powder, which comprises reducing it to obtain a metallic molybdenum powder containing a trace amount of nickel.
JP4151885A 1985-03-01 1985-03-01 Manufacture of molybdenum powder Granted JPS61201708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4151885A JPS61201708A (en) 1985-03-01 1985-03-01 Manufacture of molybdenum powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4151885A JPS61201708A (en) 1985-03-01 1985-03-01 Manufacture of molybdenum powder

Publications (2)

Publication Number Publication Date
JPS61201708A JPS61201708A (en) 1986-09-06
JPH0543761B2 true JPH0543761B2 (en) 1993-07-02

Family

ID=12610593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4151885A Granted JPS61201708A (en) 1985-03-01 1985-03-01 Manufacture of molybdenum powder

Country Status (1)

Country Link
JP (1) JPS61201708A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7276102B2 (en) 2004-10-21 2007-10-02 Climax Engineered Materials, Llc Molybdenum metal powder and production thereof
US7524353B2 (en) 2004-10-21 2009-04-28 Climax Engineered Materials, Llc Densified molybdenum metal powder and method for producing same
CN109848431B (en) * 2019-02-27 2022-05-10 金堆城钼业股份有限公司 Preparation method of fine molybdenum powder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835561A (en) * 1981-08-26 1983-03-02 Fuji Xerox Co Ltd Device for preventing contamination of optical system in copying machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5835561A (en) * 1981-08-26 1983-03-02 Fuji Xerox Co Ltd Device for preventing contamination of optical system in copying machine

Also Published As

Publication number Publication date
JPS61201708A (en) 1986-09-06

Similar Documents

Publication Publication Date Title
US3346427A (en) Dispersion hardened metal sheet and process
US2431690A (en) Consolidation of metal powder
JPH0543761B2 (en)
JPH05193943A (en) Method for preparing reduced titanium oxide
JPS6033335A (en) Heat resistant molybdenum material
JPH08120310A (en) Production of copper-tungsten mixed powder
US2076381A (en) Process for manufacturing metal bodies
US1760367A (en) Ductile chromium and method of producing the same
JP3121400B2 (en) Manufacturing method of tungsten sintered body
KR890005907A (en) Method for preparing superconductor and obtained product
KR0152737B1 (en) Method for crushing heat-treatment mpp core powder
JPS55115901A (en) Production of electric contact point material
JPS6169907A (en) Production of pulverous tungsten powder
JPH05148507A (en) Production of molybdenum sintered body
JPH0227778A (en) Manufacture of thermoelectric element
JPH07119821B2 (en) Method for producing oxide nuclear fuel sintered body
JPS594107A (en) Manufacture of rare earth and cobalt group magnetic material
JPH05100068A (en) Manufacture of nuclear fuel sintered pellet
JPH07297021A (en) Manufacture of low-loss oxide magnetic material
JPH0258758B2 (en)
JPS6058176B2 (en) Manufacturing method of uranium dioxide
JPH01179761A (en) Conductive silicon nitride sintered body
JPS6111887B2 (en)
JPH05238828A (en) Ceramics having low heat-conductivity and its production
Yamamoto Doping and Its Consequences on Fabrication Properties