JPH0542398B2 - - Google Patents

Info

Publication number
JPH0542398B2
JPH0542398B2 JP61120587A JP12058786A JPH0542398B2 JP H0542398 B2 JPH0542398 B2 JP H0542398B2 JP 61120587 A JP61120587 A JP 61120587A JP 12058786 A JP12058786 A JP 12058786A JP H0542398 B2 JPH0542398 B2 JP H0542398B2
Authority
JP
Japan
Prior art keywords
gas
diamond
phase synthesis
reaction chamber
crystalline carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61120587A
Other languages
Japanese (ja)
Other versions
JPS62278193A (en
Inventor
Koji Kobashi
Kozo Nishimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP12058786A priority Critical patent/JPS62278193A/en
Publication of JPS62278193A publication Critical patent/JPS62278193A/en
Publication of JPH0542398B2 publication Critical patent/JPH0542398B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ダイヤモンドに代表される様な結晶
性炭素の気相合成法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for vapor phase synthesis of crystalline carbon such as diamond.

[従来の技術] ダイヤモンドは、高硬度であることを利用して
古くは切削工具用途を中心に広く使用されてき
た。一方近年では、熱伝導度が大きいこと、不純
物ドーピングにより半導体としての利用可能性が
あること等に着目され、前者の特性を利用するも
のとしてIC(集積回路)基板のヒートシンク(冷
却用放熱器)への適用が検討され、また後者の特
性を利用するものとして半導体素子等の電子技術
分野にも応用されるに至り、ダイヤモンド膜を形
成する為の技術が急速に開発されつつある。
[Prior Art] Diamond has long been widely used mainly in cutting tools because of its high hardness. On the other hand, in recent years, attention has been focused on the high thermal conductivity and the possibility of using it as a semiconductor by doping with impurities. The latter characteristic has also been applied to electronic technology fields such as semiconductor devices, and techniques for forming diamond films are being rapidly developed.

ダイヤモンドの合成法としては、黒鉛を炭素原
料とし、Ni、Cr、Mn等を触媒として4〜7万気
圧、1000〜2000℃の高温・高圧で行なう高圧法が
知られているが、その他気体状炭化水素を炭素原
料として低圧条件下で行なう気相合成法も開発さ
れている。気相合成法によるダイヤモンドの合成
は、高圧法と比べてダイヤモンドの結晶が小さく
なるという欠点が従来より指摘されてきたが、上
述した様な電子技術分野への応用が進められる
と、却って薄膜の形成が容易であるという利点が
着目され、有用な技術であると位置付けられてい
る。
A known method for synthesizing diamond is the high-pressure method in which graphite is used as a carbon raw material and Ni, Cr, Mn, etc. are used as catalysts at high temperatures and pressures of 40,000 to 70,000 atm and 1,000 to 2,000°C. A gas phase synthesis method using hydrocarbons as a carbon feedstock under low pressure conditions has also been developed. It has been pointed out that the disadvantage of diamond synthesis using the vapor phase synthesis method is that the diamond crystals are smaller compared to the high-pressure method. The advantage that it is easy to form has attracted attention, and it is positioned as a useful technology.

第1図はダイヤモンド気相合成装置の一例を示
す概略説明図である。当該装置はマイクロ波を応
用した技術であり、その概略は下記の如くであ
る。第1図において、マイクロ波照射装置1から
発信されたマイクロ波は導波管2を通つて反応室
3内に導かれる。一方H2供給装置5及びCH4
給装置6からは夫々H2ガス及びCH4ガスが所定
量流出され所定割合に混合(例えばCH41%−
H299%)されつつ供給管7を介して前記反応室
3内に供給される。一方反応室3内は所定量の混
合ガスが吸引排気されることによつて、予め定め
た圧力(例えば40〜50Torr)とされる(8は排
気装置を示す)。反応室3内には、支持棒10に
よつて所定位置に固定された支持台11が設けら
れており、この支持台11上にはSiウエハ等のダ
イヤモンド析出用基板15が配置される。
FIG. 1 is a schematic diagram showing an example of a diamond vapor phase synthesis apparatus. The device is a technology that applies microwaves, and its outline is as follows. In FIG. 1, microwaves emitted from a microwave irradiation device 1 are guided into a reaction chamber 3 through a waveguide 2. In FIG. On the other hand, predetermined amounts of H 2 gas and CH 4 gas are discharged from the H 2 supply device 5 and CH 4 supply device 6, respectively, and mixed at a predetermined ratio (for example, CH 4 1%-
H 2 (99%) is supplied into the reaction chamber 3 via the supply pipe 7. On the other hand, the inside of the reaction chamber 3 is brought to a predetermined pressure (for example, 40 to 50 Torr) by suctioning and exhausting a predetermined amount of the mixed gas (8 indicates an exhaust device). A support stand 11 fixed at a predetermined position by a support rod 10 is provided in the reaction chamber 3, and a diamond deposition substrate 15 such as a Si wafer is placed on this support stand 11.

この様にして混合ガスが供給された反応室3内
にマイクロ波の様な振動電波が導入されると、高
エネルギー電子によつて混合ガス成分分子が原
子・イオン・ラジカルに分解され、反応室3内に
は定常的なプラズマが発生する。前記基板15は
プラズマ発生領域に配置されており、当該基板1
5上には混合ガス中の炭素を原料としてダイヤモ
ンド結晶が析出する。そして基板15の種類や処
理条件に応じて微結晶又は薄膜等の様に異なつた
形態のものが得られ、一方混合ガスの混合割合を
変化させることによつて結晶性ダイヤモンド、ダ
イヤモンド状結晶及びグラフアイト等の結晶構造
の異なる結晶性炭素が得られる。尚図中13は反
射板であり、反応室3内を拡散するマイクロ波を
反射させる作用を果たす。
When oscillating radio waves such as microwaves are introduced into the reaction chamber 3 to which the mixed gas is supplied in this way, the mixed gas component molecules are decomposed into atoms, ions, and radicals by high-energy electrons. A steady plasma is generated within 3. The substrate 15 is arranged in a plasma generation region, and the substrate 1
Diamond crystals are deposited on 5 using carbon in the mixed gas as a raw material. Depending on the type of substrate 15 and processing conditions, different forms such as microcrystals or thin films can be obtained, while crystalline diamonds, diamond-like crystals, and diamond-like crystals can be obtained by changing the mixing ratio of the mixed gas. Crystalline carbon having a different crystal structure such as aite can be obtained. In the figure, reference numeral 13 denotes a reflecting plate, which serves to reflect the microwaves diffused within the reaction chamber 3.

ダイヤモンド気相合成装置の他の例としては、
第2図に示される様な高周波を利用する技術も開
発されている。当該技術においては、第1図に示
したマイクロ波照射装置1の代りに高周波電源2
0を用い、高周波電源20からの高周波を作動コ
イル21に導通して反応室3内に高周波プラズマ
を発生させるものである。その他の基本的な原理
は第4図に示した技術と同様であり、対応する部
分には同一の参照符号を付して重複説明を避け
る。
Other examples of diamond vapor phase synthesis equipment include:
Techniques using high frequencies as shown in FIG. 2 have also been developed. In this technique, a high frequency power source 2 is used instead of the microwave irradiation device 1 shown in FIG.
0 is used to conduct high frequency waves from a high frequency power source 20 to an operating coil 21 to generate high frequency plasma in the reaction chamber 3. Other basic principles are the same as the technique shown in FIG. 4, and corresponding parts are given the same reference numerals to avoid redundant explanation.

[発明が解決しようとする問題点] 第1,2図に示した気相合成装置における炭素
性原料としては、上述したメタン(CH4)の他、
アセチレン、エチレン、エタン、ベンゼン等の様
な炭化水素が一般的に用いられていた。これは、
上記の様な炭化水素を用いた場合に反応室内で進
行するプラズマ反応による副生成物が、水素、炭
素、炭化水素等に限定され、且つこれらは強い毒
性や腐食性がなく、廃ガス処理が容易であるとい
う消極的理由からである。又基板上に成長する結
晶性炭素の格子欠陥、表面、粒界等に取り込まれ
るものは水素原子や水素分子程度の大きさのもの
に限られ、結晶性炭素の結晶構造に大きな影響を
与えることがないと予想されるからである。
[Problems to be Solved by the Invention] In addition to the above-mentioned methane (CH 4 ), as the carbonaceous raw material in the gas phase synthesis apparatus shown in FIGS.
Hydrocarbons such as acetylene, ethylene, ethane, benzene, etc. were commonly used. this is,
When the above hydrocarbons are used, the by-products from the plasma reaction that progresses in the reaction chamber are limited to hydrogen, carbon, hydrocarbons, etc., and these are not highly toxic or corrosive and cannot be treated as waste gas. This is for the negative reason that it is easy. Furthermore, the substances that are incorporated into the lattice defects, surfaces, grain boundaries, etc. of crystalline carbon that grows on the substrate are limited to hydrogen atoms and those that are about the size of hydrogen molecules, and have a large effect on the crystal structure of crystalline carbon. This is because it is expected that there will be no.

しかしながら、上述した様な炭化水素を炭素原
料として用いた場合には、結晶性炭素の結晶成長
速度が小さいという問題があつた。即ち、上記気
相合成法においては炭化水素分子と高エネルギー
電子との相互作用、取りわけ近距離相互作用によ
る電子と分子の衝突がプラズマ生成に寄与するの
であるが、炭素原料として炭化水素を用いた場合
には反応性衝突断面積が小さく結晶性炭素に必要
な原子・イオン・プラズマ種の生成効率が低くな
る。
However, when the above-mentioned hydrocarbons were used as carbon raw materials, there was a problem that the crystal growth rate of crystalline carbon was slow. That is, in the above gas phase synthesis method, the interaction between hydrocarbon molecules and high-energy electrons, especially the collision between electrons and molecules due to short-range interaction, contributes to plasma generation. In this case, the reactive collision cross section will be small and the generation efficiency of atoms, ions, and plasma species necessary for crystalline carbon will be low.

本発明はこうした従来技術の持つ問題点を解決
する為になされたものであつて、その目的とする
ところは結晶性炭素の結晶成長速度を大きくする
様にした気相合成法を提供する点にある。
The present invention was made to solve the problems of the prior art, and its purpose is to provide a vapor phase synthesis method that increases the crystal growth rate of crystalline carbon. be.

[問題点を解決する為の手段] 上記問題点を解決し得た本発明の構成とは、結
晶性炭素の気相合成に当たり、F元素を分子内に
含む有極性有機物質を炭素性原料として用いる点
に要旨を有するものである。
[Means for Solving the Problems] The structure of the present invention that can solve the above problems is that in vapor phase synthesis of crystalline carbon, a polar organic substance containing F element in the molecule is used as a carbonaceous raw material. The gist lies in the way it is used.

[作用] 本発明は上述の如く構成されるが、要はF元素
を分子内に含む有極性有機物質を炭素性原料とし
て用いて気相合成することにより結晶性炭素の結
晶成長速度を大きくし得たものである。ここで上
記有極性有機物質とは、例えばCH3Fの様に一般
式ClHnXo(l、m、nはl≧2、m≧3、n≧1
である整数)、で表わされる弗素化有機物質を総
称するものである。
[Function] The present invention is configured as described above, but the point is that the crystal growth rate of crystalline carbon is increased by vapor phase synthesis using a polar organic substance containing F element in the molecule as a carbonaceous raw material. That's what I got. Here, the above-mentioned polar organic substance refers to the general formula C l H n X o (l, m, n are l≧2, m≧3, n≧1
This is a general term for fluorinated organic substances represented by (an integer).

本発明で選ばれる有極性有機物質は、大きな双
極子モーメントを持つ。例えばCH3Fの双極子モ
ーメントは、1.85×10-18esu・cmである。電子と
双極子モーメントとの相互作用エネルギーは、電
子−双極子モーメント距離をγとすると、γ-2
比例する。そして前述の有極有機物質は、この相
互作用が比較的大きく、そこでその解離速度は一
般の炭化水素に比べて大きい。又上記有極性有機
物質は、原子半径の大きいF原子を分子内に含む
為電子の衝突断面積も大きく、それだけ分子解離
が促進されるという利点がある。
The polar organic material selected in the present invention has a large dipole moment. For example, the dipole moment of CH 3 F is 1.85×10 −18 esu·cm. The interaction energy between an electron and a dipole moment is proportional to γ -2 , where γ is the electron-dipole moment distance. The above-mentioned polar organic substance has a relatively large interaction, so its dissociation rate is higher than that of general hydrocarbons. Furthermore, since the polar organic substance contains F atoms with a large atomic radius in the molecule, the electron collision cross section is large, which has the advantage that molecular dissociation is promoted accordingly.

一方解離されたF原子は、副次反応につて
HF、F2分子或はその他の有機分子として排気さ
れる。そして通常の処理条件では、極めて微量の
有極性有機物質しか消費されないので、前述の様
に排気されるF原子は通常の吸着処理法やチラー
処理法等で容易に十分除去できる。又F原子の原
子半径は大きいので、結晶性炭素中に取り込まれ
るF原子量は極微量である。
On the other hand, the dissociated F atoms undergo side reactions.
Exhausted as HF, F2 molecules or other organic molecules. Under normal processing conditions, only a very small amount of the polar organic substance is consumed, so the F atoms exhausted as described above can be easily and sufficiently removed by normal adsorption processing, chiller processing, etc. Furthermore, since the atomic radius of F atoms is large, the amount of F atoms incorporated into crystalline carbon is extremely small.

本発明は、炭素原料として前記有極性有機物質
を用いたものであるが、本発明方法の実施に当つ
ては格別の装置である必要がなく、基本的には第
1図及び第2図に示した装置を用いればよい。即
ちCH4供給装置6の代りにCH3F等の有極性有機
物質を単独又はH2ガスと共に所定の混合割合に
して反応室3内に供給する様にすればよい。そし
て本発明方法を実施した場合は、従来用いられて
いる一般的な装置をもつてしてもわずかなマイク
ロ波又は高周波電力で有極性有機物質の解離が進
行するので、結晶性炭素の気相合成におけるコス
ト低減を図ることができる。
Although the present invention uses the polar organic substance described above as a carbon raw material, there is no need for special equipment to carry out the method of the present invention, and basically the method shown in FIGS. The device shown may be used. That is, instead of the CH 4 supply device 6, a polar organic substance such as CH 3 F may be supplied into the reaction chamber 3 alone or together with H 2 gas at a predetermined mixing ratio. When the method of the present invention is carried out, the dissociation of polar organic substances proceeds with a small amount of microwave or high-frequency power even with conventionally used general equipment, so crystalline carbon is dissolved in the gas phase. Cost reduction in synthesis can be achieved.

[実施例] マイクロ波CVD装置を用いて、ダイヤモンド
薄膜の結晶成長実験を行なつた。
[Example] A diamond thin film crystal growth experiment was conducted using a microwave CVD apparatus.

炭素性原料として、CH4ガスとCH3Fガスを用
い、夫々の場合を比較した。尚上記炭素性原料ガ
スは、H2によつて1%になる様に希釈し、混合
ガスとして気相合成に供した。
CH 4 gas and CH 3 F gas were used as carbonaceous raw materials, and the respective cases were compared. The above carbonaceous raw material gas was diluted to 1% with H 2 and used as a mixed gas for gas phase synthesis.

混合ガス流量は100SCCM(Standard Cubic
Centimeter)とし、反応室3の内圧は40Torrに
保ち、マイクロ波のパワーは300wとした。基板
15としては、表面処理を施したSiウエハを用
い、装置運転中の基板温度は850℃であつた。
The mixed gas flow rate is 100SCCM (Standard Cubic
Centimeter), the internal pressure of the reaction chamber 3 was maintained at 40 Torr, and the microwave power was 300 W. As the substrate 15, a surface-treated Si wafer was used, and the substrate temperature during operation of the apparatus was 850°C.

この様にして6時間に亘り基板15上にダイヤ
モンド薄膜を形成させた後、SEM(Scanning
Electron Microscope)で薄膜断面を観察した。
5箇所で膜厚を測定したところ、炭素性原料とし
てCH4ガスを用いた場合の平均膜厚は2.1μmであ
つたのに対し、CH3Fガスを用いた場合の平均膜
厚は2.4μmであつた。
After forming a diamond thin film on the substrate 15 for 6 hours in this manner, SEM (Scanning
The cross section of the thin film was observed using an electron microscope.
When the film thickness was measured at five locations, the average film thickness when CH 4 gas was used as the carbonaceous raw material was 2.1 μm, whereas the average film thickness when CH 3 F gas was used was 2.4 μm. It was hot.

この結果から明らかであるが、炭素性原料とし
てCH3Fガスを用いた場合は、従来用いられてい
た様な炭化水素(CH4等)を用いた場合に比べ、
結晶成長速度が約19%をも増大することが理解さ
れる。
It is clear from this result that when CH 3 F gas is used as a carbonaceous raw material, compared to the case where conventionally used hydrocarbons (CH 4 etc.) are used,
It is seen that the crystal growth rate increases by about 19%.

[発明の効果] 以上述べた如く本発明によれば、既述の構成を
採用することによつて、結晶性炭素の結晶成長速
度を大きくする様にした気相合成法が実現でき
た。
[Effects of the Invention] As described above, according to the present invention, by employing the above-described configuration, a vapor phase synthesis method in which the crystal growth rate of crystalline carbon is increased can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は気相合成装置の例を示す概
略説明図である。 1……マイクロ波照射装置、2……導波管、3
……反応室、15……基板、20……高周波電
源。
FIG. 1 and FIG. 2 are schematic explanatory diagrams showing an example of a vapor phase synthesis apparatus. 1... Microwave irradiation device, 2... Waveguide, 3
...Reaction chamber, 15...Substrate, 20...High frequency power supply.

Claims (1)

【特許請求の範囲】[Claims] 1 結晶性炭素の気相合成に当たり、F元素を分
子内に含む有極性有機物質を炭素性原料として用
いることを特徴とする結晶性炭素の気相合成法。
1. A method for vapor phase synthesis of crystalline carbon, which is characterized in that a polar organic substance containing element F in its molecule is used as a carbonaceous raw material.
JP12058786A 1986-05-26 1986-05-26 Vapor-phase synthesis of crystalline carbon Granted JPS62278193A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12058786A JPS62278193A (en) 1986-05-26 1986-05-26 Vapor-phase synthesis of crystalline carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12058786A JPS62278193A (en) 1986-05-26 1986-05-26 Vapor-phase synthesis of crystalline carbon

Publications (2)

Publication Number Publication Date
JPS62278193A JPS62278193A (en) 1987-12-03
JPH0542398B2 true JPH0542398B2 (en) 1993-06-28

Family

ID=14789964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12058786A Granted JPS62278193A (en) 1986-05-26 1986-05-26 Vapor-phase synthesis of crystalline carbon

Country Status (1)

Country Link
JP (1) JPS62278193A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5071677A (en) * 1990-05-24 1991-12-10 Houston Advanced Research Center Halogen-assisted chemical vapor deposition of diamond

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5930709A (en) * 1982-08-13 1984-02-18 Toa Nenryo Kogyo Kk Method for synthesizing carbon film and carbon granule in vapor phase
JPS61222915A (en) * 1985-03-29 1986-10-03 Asahi Chem Ind Co Ltd Vapor-phase synthesis of diamond

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5930709A (en) * 1982-08-13 1984-02-18 Toa Nenryo Kogyo Kk Method for synthesizing carbon film and carbon granule in vapor phase
JPS61222915A (en) * 1985-03-29 1986-10-03 Asahi Chem Ind Co Ltd Vapor-phase synthesis of diamond

Also Published As

Publication number Publication date
JPS62278193A (en) 1987-12-03

Similar Documents

Publication Publication Date Title
Lee et al. CVD diamond films: nucleation and growth
US4984534A (en) Method for synthesis of diamond
JPS63107898A (en) Method for synthesizing diamond with plasma
JP7431422B2 (en) Method and apparatus for deposition of carbon nanostructures
JPS61158899A (en) Production of diamond film
JPS6136200A (en) Method for vapor-phase synthesis of diamond
JPS61183198A (en) Production of diamond film
Din et al. CVD diamond
JPS60127293A (en) Production of diamond
JPH0542398B2 (en)
JPH0542397B2 (en)
JP2012176865A (en) Carbon nitride, and method for manufacturing carbon nitride
JPH0481552B2 (en)
JPS6054996A (en) Synthesis of diamond
JPH03240959A (en) Method for synthesizing carbon nitride thin film
JPH0481556B2 (en)
JPS60210597A (en) Gas phase synthesizing method of diamond
Schreck Growth of single crystal diamond wafers for future device applications
JPH0481553B2 (en)
Ivandini et al. Preparation and characterization of polycrystalline chemical vapor deposited boron-doped diamond thin films
JPH03174397A (en) Method and device for synthesizing rigid substance
JPH0361369A (en) Manufacture of diamond like carbon film
JPH0772119B2 (en) Gas phase synthesis of diamond
JPS63156009A (en) Synthesis of fine diamond powder
JP2975971B2 (en) Carbon film formation method