JPH053776B2 - - Google Patents

Info

Publication number
JPH053776B2
JPH053776B2 JP58184005A JP18400583A JPH053776B2 JP H053776 B2 JPH053776 B2 JP H053776B2 JP 58184005 A JP58184005 A JP 58184005A JP 18400583 A JP18400583 A JP 18400583A JP H053776 B2 JPH053776 B2 JP H053776B2
Authority
JP
Japan
Prior art keywords
level
signal
circuit
received signal
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58184005A
Other languages
Japanese (ja)
Other versions
JPS6075157A (en
Inventor
Hiroyasu Murata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58184005A priority Critical patent/JPS6075157A/en
Publication of JPS6075157A publication Critical patent/JPS6075157A/en
Publication of JPH053776B2 publication Critical patent/JPH053776B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、受信レベルが急変したとき、それが
受信信号のレベルの急変であるか瞬断であるかを
瞬時に識別する方式に係り、特に多相位相変調信
号を受信するモデムの信号レベル急変と瞬断を瞬
時に識別する方式に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for instantly identifying when a received signal level suddenly changes, whether it is a sudden change in the level of the received signal or a momentary interruption. This invention relates to a method for instantly identifying sudden signal level changes and instantaneous interruptions in a modem that receives polyphase phase modulated signals.

〔技術の背景〕[Technology background]

データ通信では、通信帯域を有効に利用しかつ
伝送効率を高めるために、多相位相変調方式によ
り複数のデータを同時に伝送することが行われて
いる。この多相位相変調方式によるデータ通信で
は、データが伝送されているときは常にキヤリア
が存在するので、モデム受信部ではCDi回路(キ
ヤリア・デイテクシヨン・インデイケーシヨン回
路)によりキヤリアの有無を検出し、キヤリアが
検出されたときにモデム受信部を作動させるよう
にしている。
In data communications, multiple pieces of data are simultaneously transmitted using a polyphase modulation method in order to effectively utilize communication bands and increase transmission efficiency. In data communication using this polyphase phase modulation method, a carrier is always present when data is being transmitted, so the modem receiver uses a CDi circuit (carrier detection indication circuit) to detect the presence or absence of a carrier. The modem receiver is activated when a carrier is detected.

しかしながら、有線又は無線による伝送回線上
のノイズが大きい場合には、このノイズに含まれ
るキヤリア周波数成分によりCDi回路がオンにな
る。このため、データが伝送されないにも拘らず
キヤリアがあると判断されモデム受信部が作動さ
れるので、モデムが誤動作するという不都合な結
果を生じる。
However, if the noise on the wired or wireless transmission line is large, the carrier frequency component contained in this noise turns on the CDi circuit. Therefore, even though no data is being transmitted, it is determined that there is a carrier and the modem receiving section is activated, resulting in an inconvenient result that the modem malfunctions.

〔従来技術と問題点〕[Conventional technology and problems]

ノイズによるモデム受信部の誤動作を阻止する
ために、従来受信レベルがある絶対レベルを越え
た時にモデム受信部を作動させる方式があるが、
この方式では回線上のノイズが大きい場合の誤動
作を防止することができなかつた。
In order to prevent the modem receiver from malfunctioning due to noise, there is a conventional method that activates the modem receiver when the reception level exceeds a certain absolute level.
With this method, it was not possible to prevent malfunctions when the noise on the line was large.

そこでノイズが大きい場合にも誤動作を阻止す
るものとして、従来モデムの受信部動作開始を絶
対レベルの検出でなく、相対レベルの検出によつ
て行なう方式が採用されている。この方式の概略
を第1図で説明すると、いま受信信号が第1図a
に示すように、時間t1においてデータ送信が終了
し、時間t3において再び次のデータ送信が開始さ
れたとすると、相対レベルは、第1図bに示すよ
うに、時間t1で低くなり、時間t3で再び高レベル
となる。図示しない相対レベル検出回路は、時間
t1において停止パルス(図示せず)を発生してモ
デム受信部の動作を停止させ、時間t3において開
始パルス(図示せず)を発生してモデム受信部の
動作を開始させる。モデム受信部は、時間t3〜t5
間でトレーニングを行ない、データを受信できる
ようにモデムを調整して引き込み動作を終了し、
時間t5以後にデータ伝送が行われるとそれを正し
く復調する。モデム受信部の動作状態を示すキヤ
リア検出動作は、第1図cに示すような遅延特性
をもつたものとなるので、t1においてデータ受信
が停止してもモデム受信部はt2まで動作し、t3
おいてデータ受信が再開されてもt4において正常
動作状態に引き込まれる。このためこの方式は、
第1図dに示すように、受信レベルが時間t1〜t3
で急変し、相対レベルも同様に変化すると、時間
t2〜t4間はモデム受信部は動作しないので、この
間のデータが無効となるという欠点があつた。
Therefore, in order to prevent malfunctions even when the noise is large, a method has been adopted in which the reception section of the modem starts operating not by detecting the absolute level but by detecting the relative level. To explain the outline of this method using Figure 1, the received signal is shown in Figure 1a.
As shown in FIG. 1b, if data transmission ends at time t 1 and the next data transmission starts again at time t 3 , the relative level becomes low at time t 1 , as shown in FIG. At time t 3 it becomes high level again. The relative level detection circuit (not shown)
A stop pulse (not shown) is generated at time t 1 to stop operation of the modem receiver, and a start pulse (not shown) is generated at time t 3 to start operation of the modem receiver. The modem receiving section is operated from time t 3 to t 5
The modem is trained in between, adjusts the modem so that it can receive data, and finishes the pull-in operation.
When data transmission occurs after time t5 , it is correctly demodulated. The carrier detection operation, which indicates the operating status of the modem receiver, has a delay characteristic as shown in Figure 1c, so even if data reception stops at t 1 , the modem receiver will continue to operate until t 2 . Even if data reception is resumed at , t 3 , the normal operating state is returned at t 4 . For this reason, this method
As shown in FIG. 1d, the reception level changes from time t 1 to t 3
If there is a sudden change in the relative level and the relative level changes as well, then the time
Since the modem receiving section does not operate between t2 and t4 , there is a drawback that data during this period is invalid.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、受信レベルが急変してノイズ
レベルが大きくなつたとき、それが受信信号のレ
ベル急変であるか瞬断であるかを瞬時に識別する
ことによりモデム受信部の誤動作をなくし、受信
データが無効になるのを阻止するようにした受信
信号のレベル急変瞬断識別方式を提供するにあ
る。
An object of the present invention is to eliminate malfunctions of the modem receiving section by instantly identifying whether the reception level suddenly changes and the noise level increases, whether it is a sudden change in the level of the received signal or a momentary interruption; To provide a system for identifying instantaneous interruptions in sudden changes in the level of a received signal, which prevents received data from becoming invalid.

〔発明の構成〕[Structure of the invention]

この目的を達成するため、本発明の受信信号の
レベル急変瞬断識別方式では、多相位相変調され
た受信信号のレベル変動を平滑化するAGC回路
と、受信信号のキヤリヤ位相と変調用基準発振器
の位相差に対応する位相誤差信号を出力する位相
誤差検出装置と、この位相誤差信号と所定の閾値
から受信信号がノイズであるかデータであるかを
識別する信号品質検出回路と、受信信号の相対レ
ベルを検出する相対レベル検出回路とを備え、こ
の相対レベルが所定のレベル以下となつたとき前
記AGC回路及び信号品質検出回路の閾値をイニ
シヤライズして両回路を瞬時に引き込ませること
を特徴とする。
In order to achieve this objective, the received signal level sudden change instantaneous interruption identification method of the present invention includes an AGC circuit that smoothes level fluctuations of a received signal subjected to multiphase phase modulation, and a reference oscillator for modulating the carrier phase of the received signal. a phase error detection device that outputs a phase error signal corresponding to the phase difference between and a relative level detection circuit that detects a relative level, and when the relative level falls below a predetermined level, the threshold values of the AGC circuit and the signal quality detection circuit are initialized to cause both circuits to be pulled in instantly. do.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例を第2図〜第4図にもとづき
説明する。
An embodiment of the present invention will be described based on FIGS. 2 to 4.

第2図は本発明の一実施例構成図、第3図はそ
の信号品質検出回路の機能ブロツク図、第4図は
この信号品質検出回路の動作説明図である。
FIG. 2 is a block diagram of an embodiment of the present invention, FIG. 3 is a functional block diagram of the signal quality detection circuit, and FIG. 4 is an explanatory diagram of the operation of the signal quality detection circuit.

第2図において、11は受信信号の受信レベル
の変動を平滑化するAGC回路、点線で図示され
る12は位相誤差検出手段である。この位相誤差
検出手段12を構成する回路のうち、13は符号
間干渉を除去するためのロール・オフ・フイルタ
(以下ROFという)、14は伝送路歪などにより
生じた符号間干渉を除去する自動等化器(以下
AEQという)、15は内部の復調用基準発振器
(図示省略)の位相を受信信号のキヤリア位相に
一致させるように制御するキヤリア位相自動制御
回路(以下CAPCという)、16は受信信号のキ
ヤリア位相とCAPC15のキヤリア位相との位相
差に対応した位相誤差信号を出力する判定回路で
ある。17は、この位相誤差信号と所定の閾値か
ら受信されたものがノイズであるかキヤリアすな
わちデータであるかを識別する識別信号を出力す
る信号品質検出回路(以下SQDという)、18は
SQD17から供給された識別信号から受信され
たものがノイズであるかデータであるかを識別す
る識別回路、19は受信信号の相対レベルを求め
所定レベル以上のときはオン信号を、以下のとき
はオフ信号を出力する相対レベル検出回路、20
は相対レベルが所定の閾値以下となつてオフ信号
を出力したときにAGC回路11及びSQDの閾値
をイニシヤライズし、両者を瞬時に引き込ませる
ようにするイニシヤライズ回路、21は受信信号
の相対レベルが急変したとき、モデム内各機器の
状態をホールドするRAM、22は受信信号のキ
ヤリアを検出するキヤリア検出回路である。
In FIG. 2, 11 is an AGC circuit for smoothing fluctuations in the reception level of the received signal, and 12, indicated by a dotted line, is a phase error detection means. Of the circuits constituting the phase error detection means 12, 13 is a roll-off filter (hereinafter referred to as ROF) for removing inter-symbol interference, and 14 is an automatic filter for removing inter-symbol interference caused by transmission path distortion. Equalizer (hereinafter
15 is a carrier phase automatic control circuit (hereinafter referred to as CAPC) that controls the phase of an internal demodulation reference oscillator (not shown) to match the carrier phase of the received signal, and 16 is the carrier phase of the received signal. This is a determination circuit that outputs a phase error signal corresponding to the phase difference with the carrier phase of CAPC 15. 17 is a signal quality detection circuit (hereinafter referred to as SQD) that outputs an identification signal for identifying whether what is received is noise or a carrier, that is, data based on the phase error signal and a predetermined threshold;
An identification circuit that identifies whether the received signal is noise or data based on the identification signal supplied from the SQD 17.The identification circuit 19 determines the relative level of the received signal and turns on the signal when it is above a predetermined level. Relative level detection circuit that outputs an off signal, 20
21 is an initialization circuit that initializes the threshold values of the AGC circuit 11 and SQD and causes them to be pulled in instantly when the relative level becomes below a predetermined threshold and outputs an off signal; 21 is an initialization circuit that causes a sudden change in the relative level of the received signal; 22 is a carrier detection circuit that detects the carrier of the received signal.

次に、第2図の動作について説明する。図示し
ない伝送路を経由して多相位相変調された信号が
受信されると、受信信号のレベル変動はAGC回
路11によつて平滑化された後、位相誤差検出手
段12のROF13に加えられる。
Next, the operation shown in FIG. 2 will be explained. When a multiphase phase modulated signal is received via a transmission path (not shown), level fluctuations in the received signal are smoothed by the AGC circuit 11 and then applied to the ROF 13 of the phase error detection means 12.

ROF13は符号間干渉が生じないように受信
信号の高域成分をフイルタする。続くAEQ14
は、等化特性を補正して伝送路歪等による符号間
干渉を除去する。この等化特性の補正は判定回路
16によつて検出された位相誤差信号に対応した
等化特性補正プログラムを格納しているRAM2
1によつて自動的に行われる。CAPC15は、内
部の復調用基準発振器の位相を受信信号のキヤリ
ア位相に制御するとともに、両者の位相差情報を
判定回路16に供給する。判定回路16は位相差
情報から、それに対応した制御用の位相誤差信号
を出力する。
The ROF 13 filters high frequency components of the received signal to prevent intersymbol interference. Continued AEQ14
corrects the equalization characteristics to remove intersymbol interference due to transmission path distortion and the like. This equalization characteristic correction is performed by the RAM 2 which stores an equalization characteristic correction program corresponding to the phase error signal detected by the determination circuit 16.
1 automatically. The CAPC 15 controls the phase of an internal demodulation reference oscillator to the carrier phase of the received signal, and supplies information on the phase difference between the two to the determination circuit 16. The determination circuit 16 outputs a phase error signal for control based on the phase difference information.

位相誤差信号の一部はCAPC15に加えられ
て、AEQ14から加えられた受信信号のキヤリ
ア位相にCAPC15の復調用基準発振器の位相を
自動制御する。
A portion of the phase error signal is applied to the CAPC 15 to automatically control the phase of the demodulation reference oscillator of the CAPC 15 to the carrier phase of the received signal applied from the AEQ 14.

位相誤差信号の他の一部がRAM21に加えら
れると、RAM21は位相誤差信号に対応した等
化特性補正プログラムに従つてAEQ14の等化
特性を自動的に補正し、伝送路歪等によつて生じ
た符号間干渉を除去する。
When another part of the phase error signal is added to the RAM 21, the RAM 21 automatically corrects the equalization characteristics of the AEQ 14 according to the equalization characteristics correction program corresponding to the phase error signal, and corrects the equalization characteristics due to transmission line distortion, etc. Eliminate the intersymbol interference that has occurred.

位相誤差信号のさらに他の一部はSQD17に
加えられるが、SQD17の動作については、後
に説明する。
Still another part of the phase error signal is applied to the SQD 17, and the operation of the SQD 17 will be explained later.

相対レベル検出回路19は、AGC回路11の
出力を受けて受信信号とノイズの相対レベルを検
出し、ノイズが増大して相対レベルが所定閾値以
下となるとオフ信号をイニシヤライズ回路20と
RAM21に加える。相対レベル検出回路19は
AGC回路11の出力で移動平均をとり、第5図
Cに示す如く、AGC回路11の出力にてエンベ
ロープを検出する。受信信号が第5図Aに示す如
く、ノイズが存在するとき、AGC回路11の出
力は同Bに示す如くなる。相対レベル検出回路1
9は、第5図Cに示す如く、AGC回路11の出
力にて移動平均をとり、AGC出力のエンベロー
プを検出する。そして閾値以下の場合、相対レベ
ルオフと判断する。
A relative level detection circuit 19 receives the output of the AGC circuit 11 and detects the relative level of the received signal and noise, and when the noise increases and the relative level becomes below a predetermined threshold, an off signal is sent to the initialization circuit 20.
Add to RAM21. The relative level detection circuit 19
A moving average is taken from the output of the AGC circuit 11, and an envelope is detected from the output of the AGC circuit 11, as shown in FIG. 5C. When the received signal contains noise as shown in FIG. 5A, the output of the AGC circuit 11 becomes as shown in FIG. 5B. Relative level detection circuit 1
9, as shown in FIG. 5C, takes a moving average of the output of the AGC circuit 11 and detects the envelope of the AGC output. If it is below the threshold, it is determined that the relative level is off.

なお、本発明の目的の1つは、第6図aに示す
ように、キヤリア検出回路をオンするレベル以上
のノイズがある場合の瞬断なのか、同bに示すよ
うにレベル急変なのかを識別することにある。確
かに信号データと雑音はスペクトルが重なつてい
るが、レベル急変時、そのS/Nがとれていれ
ば、AGCの引き込みさえ行えば再び変復調を行
える状態となるため、判定エラーも減少するた
め、SQD17をみることでレベル急変であるこ
とが判る。
One of the objects of the present invention is to determine whether it is a momentary interruption when there is noise above the level that turns on the carrier detection circuit, as shown in Fig. 6a, or a sudden change in level, as shown in Fig. 6b. It's about identifying. It is true that the spectra of signal data and noise overlap, but if the S/N is maintained when the level suddenly changes, modulation and demodulation can be performed again as long as the AGC is pulled in, which reduces judgment errors. , by looking at SQD17, it can be seen that the level suddenly changed.

RAM21はオフ信号を受けると、図示しない
モデム内各機器の状態を記憶してホールドする。
さらにAEQ14の自動等化動作も停止させてホ
ールドする。
When the RAM 21 receives the off signal, it stores and holds the status of each device in the modem (not shown).
Furthermore, the automatic equalization operation of the AEQ 14 is also stopped and held.

イニシヤライズ回路20はオフ信号を受ける
と、AGC回路11のバイアス回路を高くし、
AGC回路11を瞬時に引き込ませてイニシヤラ
イズを行なう。
When the initialization circuit 20 receives the off signal, it raises the bias circuit of the AGC circuit 11,
The AGC circuit 11 is instantly pulled in and initialized.

ここでAGC回路11の等価回路を第7図に示
す。入力が小さい場合は(REF−入力)が正の
値となり、タツプに大きな値がたまり、Cが大き
な値となり、AGC出力は大きくなる。入力が大
きい場合には(REF−入力)が負の値となり、
タツプに小さな値がたまり、Cが小さな値とな
り、AGC出力は小となる。結果としてAGC出力
はREFの大きさとなり、(REF−入力=0)とな
るため、タツプの値はそれで一定となり、AGC
出力も一定となる。なお、AGC回路11のバイ
アス回路は、第7図の等価回路におけるフイード
バツク部分である。バイアス回路を高くすること
は、第7図でαの値を大きくする、即ち時定数が
小さくなることになり、フイードバツク量が大き
くなるため、最終値に引き込む時間が短くなる。
Here, an equivalent circuit of the AGC circuit 11 is shown in FIG. When the input is small, (REF-input) becomes a positive value, a large value accumulates in the tap, C becomes a large value, and the AGC output becomes large. If the input is large, (REF - input) will be a negative value,
A small value accumulates on the tap, C becomes a small value, and the AGC output becomes small. As a result, the AGC output is the size of REF, and (REF - input = 0), so the tap value remains constant and the AGC
The output is also constant. Note that the bias circuit of the AGC circuit 11 is a feedback portion in the equivalent circuit of FIG. Increasing the height of the bias circuit increases the value of α in FIG. 7, that is, the time constant decreases, and the amount of feedback increases, so the time required to reach the final value becomes shorter.

第3図は、SQD17の機能を示すブロツク図
で、25,28は乗算器、26は加算器、27は
遅延回路、Aは係数、Bは係数である。ところで
係数AはBとともにSQD17を構成しているロ
ーパスフイルタ(LPF)の時定数を決定するも
のである。また位相誤差信号は絶対値をとるた
め、絶対値回路29が設けられる。判定回路16
から位相誤差信号が加えられると、受信信号がノ
イズのときは、出力は次第に増大して一定レベル
に達し、受信信号がキヤリアすなわちデータのと
きは、出力は次第に低下して一定レベルに達す
る。係数Aが低いレベルのSL1のときは、第4図
aに示すように、ノイズ出力SN又はデータ出力
SDが最終レベルに達する期間はT1〜T2と長い
が、係数Aが高いレベルのSL2のときは、第4図
bに示すように、ノイズ出力SN又はデータ出力
SDが最終レベルに達する期間はT′1〜T′2と大き
く短縮されるので、瞬時に引き込みが行われる。
FIG. 3 is a block diagram showing the functions of the SQD 17, in which 25 and 28 are multipliers, 26 is an adder, 27 is a delay circuit, A is a coefficient, and B is a coefficient. By the way, the coefficient A and B determine the time constant of the low pass filter (LPF) that constitutes the SQD 17. Further, since the phase error signal takes an absolute value, an absolute value circuit 29 is provided. Judgment circuit 16
When a phase error signal is added from , when the received signal is noise, the output gradually increases and reaches a certain level, and when the received signal is carrier, that is, data, the output gradually decreases and reaches a certain level. When the coefficient A is at a low level SL 1 , the noise output SN or data output is
The period during which SD reaches the final level is long, T 1 to T 2 , but when the coefficient A is at a high level SL 2 , as shown in Figure 4b, the noise output SN or data output
Since the period during which SD reaches the final level is greatly shortened to T' 1 to T' 2 , the pull-in is performed instantaneously.

相対レベルが所定の閾値以下となつてオフ信号
を出力したとき、AGC回路11の時定数を小さ
くして高速に引き込ませた後、SQD17の遅延
タツプにオン・オフ信号の中間値をイニシヤライ
ズする。なおSQD17の出力は、受信信号の劣
化状態により値が変わり、係数A,Bによつて
は、値は変化しない。従つてモデムのデータ再生
において、通常問題なく使えるのは例えばエラー
レートが10-5より良い場合であり、使用上問題の
あるのは10-3より悪い場合である。よつてこの中
間のエラーレート10-4を閾値として用いる。
When the relative level is below a predetermined threshold and an off signal is output, the time constant of the AGC circuit 11 is made small to cause it to pull in at high speed, and then the delay tap of the SQD 17 is initialized to the intermediate value of the on/off signal. Note that the value of the output of the SQD 17 changes depending on the deterioration state of the received signal, and the value does not change depending on the coefficients A and B. Therefore, when reproducing data from a modem, it can normally be used without problems if the error rate is better than 10 -5 , for example, and if it is worse than 10 -3 there is a problem in use. Therefore, this intermediate error rate of 10 -4 is used as the threshold.

SQD17は、イニシヤライズされると、瞬時
に引き込まれて、データSDのときはオン信号を、
ノイズSDのときはオフ信号を識別信号として出
力する。
When SQD17 is initialized, it is instantly pulled in and outputs an on signal when it is data SD.
When the noise is SD, an off signal is output as an identification signal.

識別回路18は、SQD17の識別信号を受け
とり、オン信号であれば、受信信号はキヤリアす
なわちデータであると判断し、再動開始信号を
RAM21をはじめ図示しないモデム内各機器に
送り、受信動作を開始する。再開前の状態は
RAM21内にホールドされているので、直ちに
正常な動作が再開される。この再開までの期間
は、第1図のt1〜t2(数10ms程度)内で十分に行
なわれるので、受信データが無効になるような事
態は生じない。
The identification circuit 18 receives the identification signal of the SQD 17, and if it is an on signal, determines that the received signal is a carrier, that is, data, and issues a restart start signal.
The data is sent to the RAM 21 and other devices in the modem (not shown), and a reception operation is started. The state before restarting
Since it is held in the RAM 21, normal operation resumes immediately. Since the period until this restart is sufficiently carried out within t 1 to t 2 (about several tens of milliseconds) in FIG. 1, a situation in which the received data becomes invalid does not occur.

識別信号がオフのときは、受信信号はノイズで
あると判断し、モデム受信部の再動作は行なわな
い。受信信号の相対レベルが復旧し、相対レベル
検出回路がオン信号となつても識別回路18は再
動作開示信号は発生せず、第1図aに示す正常の
受信操作により、モデム受信部の受信動作の再開
が行われる。
When the identification signal is off, the received signal is determined to be noise, and the modem receiver does not operate again. Even when the relative level of the received signal is restored and the relative level detection circuit turns on, the identification circuit 18 does not generate a re-operation disclosure signal, and the normal reception operation shown in FIG. The operation is resumed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、受信レ
ベルが急変した場合も、それが受信信号のレベル
急変であるか、信号が瞬断したことによるノイズ
であるか瞬時に識別し、レベル急変のときはモデ
ム受信部の再動作開始を瞬時に行なうことができ
るので、受信レベルが急変した場合も、モデム受
信部の誤動作をなくし、受信データが無効になる
のを阻止することができる。
As explained above, according to the present invention, even if the reception level suddenly changes, it is possible to instantly identify whether it is a sudden change in the level of the received signal or noise caused by a momentary interruption of the signal, and to detect the sudden change in level. Since the modem receiving section can restart its operation instantly, even if the reception level suddenly changes, malfunction of the modem receiving section can be eliminated and received data can be prevented from becoming invalid.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の受信信号とノイズを識別する受
信方式の説明図、第2図は本発明の受信信号のレ
ベル急変瞬断識別方式のブロツク説明図、第3図
は信号品質検出回路(SQD)の機能ブロツク図、
第4図は信号品質検出回路の動作説明図、第5図
はAGC出力のエンベロープ検出説明図、第6図
はノイズによる瞬断とレベル急変との説明図、第
7図はAGC回路の等価回路である。 図中、11はAGC回路、12は位相誤差検出
手段、13はロール・オフ・フイルタ(ROF)、
14は自動等化器(AEQ)、15はキヤリア位相
自動制御回路(CAPC)、16は判定回路、17
は信号品質検出回路(SQD)、18は識別回路、
19は相対レベル検出回路、20はイニシヤライ
ズ回路、21はRAM、22はキヤリア検出回
路、25,28は乗算器、26は加算器、27は
遅延回路を示す。
Fig. 1 is an explanatory diagram of a conventional reception method for identifying received signals and noise, Fig. 2 is a block diagram of a method for identifying instantaneous interruptions in received signal levels according to the present invention, and Fig. 3 is a signal quality detection circuit (SQD). ) functional block diagram,
Figure 4 is a diagram explaining the operation of the signal quality detection circuit, Figure 5 is a diagram explaining envelope detection of AGC output, Figure 6 is a diagram explaining instantaneous interruptions due to noise and sudden level changes, and Figure 7 is an equivalent circuit of the AGC circuit. It is. In the figure, 11 is an AGC circuit, 12 is a phase error detection means, 13 is a roll off filter (ROF),
14 is an automatic equalizer (AEQ), 15 is a carrier phase automatic control circuit (CAPC), 16 is a judgment circuit, 17
is a signal quality detection circuit (SQD), 18 is an identification circuit,
19 is a relative level detection circuit, 20 is an initialization circuit, 21 is a RAM, 22 is a carrier detection circuit, 25 and 28 are multipliers, 26 is an adder, and 27 is a delay circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 多相位相変調された受信信号のレベル変動を
平滑化するAGC回路と、受信信号のキヤリア位
相と復調用基準発振器の位相差に対応する位相誤
差信号を出力する位相誤差検出手段と、この位相
誤差信号と所定の係数値から受信信号がノイズで
あるかデータであるかを識別する信号品質検出回
路と、AGC回路の出力にもとづき受信信号の相
対レベルを検出する相対レベル検出回路とを備
え、この相対レベルが所定のレベル以下となつた
ときそのバイアス回路を高くして前記AGC回路
を瞬時に引き込ませ、また信号品質検出回路の遅
延タツプをオン・オフ信号の中間レベルにイニシ
ヤライズして瞬時に引き込ませることを特徴とす
る受信信号のレベル急変瞬断識別方式。
1. An AGC circuit that smoothes level fluctuations of a received signal subjected to polyphase phase modulation, a phase error detection means that outputs a phase error signal corresponding to the phase difference between the carrier phase of the received signal and a reference oscillator for demodulation, and this phase A signal quality detection circuit that identifies whether a received signal is noise or data based on an error signal and a predetermined coefficient value, and a relative level detection circuit that detects the relative level of the received signal based on the output of the AGC circuit, When this relative level falls below a predetermined level, the bias circuit is set high to instantly draw in the AGC circuit, and the delay tap of the signal quality detection circuit is initialized to an intermediate level between the on and off signals. A method for identifying instantaneous interruptions in sudden changes in the level of a received signal, which is characterized by causing the signal to be pulled in.
JP58184005A 1983-09-30 1983-09-30 System for discriminating sudden change and hit of level of reception signal Granted JPS6075157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58184005A JPS6075157A (en) 1983-09-30 1983-09-30 System for discriminating sudden change and hit of level of reception signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58184005A JPS6075157A (en) 1983-09-30 1983-09-30 System for discriminating sudden change and hit of level of reception signal

Publications (2)

Publication Number Publication Date
JPS6075157A JPS6075157A (en) 1985-04-27
JPH053776B2 true JPH053776B2 (en) 1993-01-18

Family

ID=16145652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58184005A Granted JPS6075157A (en) 1983-09-30 1983-09-30 System for discriminating sudden change and hit of level of reception signal

Country Status (1)

Country Link
JP (1) JPS6075157A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4783876A (en) * 1985-09-03 1988-11-15 Toyota Jidosha Kabushiki Kaisha Concealable wiper apparatus for vehicle
US4780926A (en) * 1985-10-18 1988-11-01 Toyota Jidosha Kabushiki Kaisha Stretchable wiper apparatus for vehicle

Also Published As

Publication number Publication date
JPS6075157A (en) 1985-04-27

Similar Documents

Publication Publication Date Title
US4567599A (en) Automatic adaptive equalizer having improved reset function
EP0701322B1 (en) AM receiver
US6148046A (en) Blind automatic gain control system for receivers and modems
WO2018104716A1 (en) Demodulator for use in radio communication receivers
JPH053776B2 (en)
JP2826031B2 (en) Modulation / demodulation method
EP1197077B1 (en) Selective gain adjustement to aid carrier acquisition in a high definition television receiver
US20210226822A1 (en) Device for Receiving Signals from a Network Cable
RU2510132C2 (en) Radio communication device having carrier phase noise elimination function and radio communication method
JP2000068824A (en) Pll controller, pll control method and limiter
JPH09224056A (en) Transmitter and its control method
JP2006523059A (en) Receiver having DC offset voltage correction unit
JP3518743B2 (en) Multi-level digital demodulation system
JP4336884B2 (en) Demodulator
JPH04117837A (en) Automatic gain controller
JP3620124B2 (en) modem
JP2674399B2 (en) Cross polarization interference canceller
JP3921421B2 (en) Synchronization signal detection device, synchronization signal detection method, and program
JPS62217732A (en) Modulator/demodulator
JPH05235805A (en) Modulator-demodulator
JP3692465B2 (en) Pseudo bit prevention circuit and modem device using the same
JPH11136168A (en) Automatic equalizing system
JP4112290B2 (en) Receiving device in center of CATV transmission system
KR100450772B1 (en) Apparatus for receiving data in Home Network modem and method thereof
JP2662032B2 (en) Communication method using modem