JPH053725B2 - - Google Patents

Info

Publication number
JPH053725B2
JPH053725B2 JP61133906A JP13390686A JPH053725B2 JP H053725 B2 JPH053725 B2 JP H053725B2 JP 61133906 A JP61133906 A JP 61133906A JP 13390686 A JP13390686 A JP 13390686A JP H053725 B2 JPH053725 B2 JP H053725B2
Authority
JP
Japan
Prior art keywords
wall
vaporization chamber
liquid pipe
refrigerant
radiator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61133906A
Other languages
Japanese (ja)
Other versions
JPS62291103A (en
Inventor
Masahiro Akaike
Yoshinari Hane
Tooru Serizawa
Yoshisuke Iwata
Jun Niekawa
Koji Abe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Tokyo Electric Power Co Holdings Inc
Original Assignee
Furukawa Electric Co Ltd
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Tokyo Electric Power Co Inc filed Critical Furukawa Electric Co Ltd
Priority to JP61133906A priority Critical patent/JPS62291103A/en
Publication of JPS62291103A publication Critical patent/JPS62291103A/en
Publication of JPH053725B2 publication Critical patent/JPH053725B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Transformer Cooling (AREA)

Description

【発明の詳細な説明】 〔技術分野〕 本発明は、油入り変圧器の冷却装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a cooling device for an oil-filled transformer.

〔従来技術とその問題点〕[Prior art and its problems]

従来の油入り変圧器を第5図に示す。1は鉄心
2とコイル3からなる変圧器本体、4はそれを収
納するタンクである。タンク4内には絶縁油5が
八分目ほど入つており、その上の空間には絶縁油
の劣化を防ぐ窒素ガス6が封入されている。変圧
器本体1は絶縁油5の中に浸漬されており、銅損
や鉄損により発生する熱は、絶縁油5の対流によ
りタンク4表面の放熱リブ7等に伝達され、放熱
される。
A conventional oil-filled transformer is shown in FIG. 1 is a transformer body consisting of an iron core 2 and a coil 3, and 4 is a tank that houses it. The tank 4 contains approximately eight parts of insulating oil 5, and the space above it is filled with nitrogen gas 6 to prevent deterioration of the insulating oil. The transformer body 1 is immersed in insulating oil 5, and heat generated by copper loss and iron loss is transferred to the heat radiating ribs 7 and the like on the surface of the tank 4 by convection of the insulating oil 5, and is radiated.

このように従来の油入り変圧器は、タンク表面
からの自然放熱により冷却を行つているため、タ
ンクの周囲には放熱に必要なスペースを作る必要
があり、例えば地下埋設型の変圧器などではその
スペースの確保が困難であつた。またタンク表面
からの自然放熱であるため、冷却効率も悪いとい
う問題がある。
In this way, conventional oil-filled transformers are cooled by natural heat radiation from the tank surface, so it is necessary to create space around the tank for heat radiation.For example, in underground transformers, etc. It was difficult to secure that space. Furthermore, since heat is naturally dissipated from the tank surface, there is a problem that the cooling efficiency is poor.

〔問題点の解決手段とその作用〕[Means for solving problems and their effects]

本発明は、上記のような従来技術の問題点を解
決した油入り変圧器の冷却装置を提供するもの
で、その構成は、油入り変圧器のタンクの周壁を
二重構造にしてその内壁と外壁の間に冷媒の気化
室を形成し、その気化室の上部と上記変圧器の外
部に設置された放熱器の気化冷媒入口とを気化管
路で接続すると共に、その放熱器の液化冷媒出口
と上記気化室とを液体管路で接続して、上記気化
室、気体管路、放熱器および液体管路からなる循
環系に冷媒を封入し、かつ上記液体管路の液化冷
媒出口を上記気化室上部で内壁に向けて開口さ
せ、内壁外面からその液体管路の液化冷媒出口位
置から下にらせん状に突条または溝を形成したこ
とを特徴とするものである。
The present invention provides a cooling device for an oil-filled transformer that solves the problems of the prior art as described above, and has a structure in which the circumferential wall of the tank of the oil-filled transformer has a double structure, and its inner wall and A refrigerant vaporization chamber is formed between the outer walls, and a vaporization pipe connects the upper part of the vaporization chamber to the vaporized refrigerant inlet of a radiator installed outside the transformer, and the liquefied refrigerant outlet of the radiator and the vaporization chamber are connected by a liquid pipe, and a refrigerant is sealed in a circulation system consisting of the vaporization chamber, the gas pipe, a radiator, and the liquid pipe, and the liquefied refrigerant outlet of the liquid pipe is connected to the vaporization chamber. It is characterized by opening toward the inner wall at the upper part of the chamber, and forming a spiral protrusion or groove from the outer surface of the inner wall downward from the liquefied refrigerant outlet position of the liquid pipe.

この装置は、液体管路の出口から流れ出た液化
冷媒をらせん状の突条または溝によつて内壁外面
全周に案内すると共に、その突条または溝から内
壁外面沿つて液化冷媒を流下させ、それが気化す
るときの潜熱を利用して効率よく冷却を行うもの
である。気化した冷媒は気体管路を通つて放熱器
に入り、そこで液化した後、液体管路を通つて再
び気化室に戻る。
This device guides the liquefied refrigerant flowing out from the outlet of the liquid pipe to the entire circumference of the outer surface of the inner wall by a spiral protrusion or groove, and causes the liquefied refrigerant to flow down along the outer surface of the inner wall from the protrusion or groove, The latent heat generated when it evaporates is used to efficiently cool it down. The vaporized refrigerant enters the radiator through the gas line, where it liquefies, and then returns to the vaporization chamber through the liquid line.

〔実施例〕〔Example〕

第1図および第2図は本発明の一実施例を示
す。図において、11は油入り変圧器、12は鉄
心とコイルからなる変圧器本体、13はタンク、
14は絶縁油、15は窒素ガスである。タンク1
3はその周壁が二重構造になつており、その内壁
16と外壁17の間には冷媒の気化室18が形成
されている。気化室18は変圧器11の上部に設
置された放熱器(凝縮器)19の気化冷媒入口と
気体管路20によつて接続されており、また放熱
器19の液化冷媒出口と気化室18とは液体管路
21によつて接続されている。放熱器19内には
気体管路20と液体管路21を連通する放熱フイ
ン付き管22が設けられている。これにより気化
室18−気体管路20−放熱器19−液体管路2
1−気化室18からなる密閉された循環系が構成
され、その中にはフレオンあるいは水などの冷媒
が封入されている。
1 and 2 show one embodiment of the invention. In the figure, 11 is an oil-filled transformer, 12 is a transformer body consisting of an iron core and a coil, 13 is a tank,
14 is insulating oil, and 15 is nitrogen gas. tank 1
3 has a double-walled peripheral wall, and a refrigerant vaporization chamber 18 is formed between an inner wall 16 and an outer wall 17. The vaporization chamber 18 is connected to the vaporized refrigerant inlet of a radiator (condenser) 19 installed above the transformer 11 by a gas pipe 20, and the liquefied refrigerant outlet of the radiator 19 is connected to the vaporization chamber 18. are connected by a liquid conduit 21. A heat radiating finned tube 22 is provided in the radiator 19 to communicate the gas pipe 20 and the liquid pipe 21 . As a result, the vaporization chamber 18 - gas pipe line 20 - radiator 19 - liquid pipe line 2
1-A closed circulation system is constituted of a vaporization chamber 18, in which a refrigerant such as Freon or water is sealed.

また液体管路21は気化室18内でU字形に屈
曲されており、その液化冷媒出口は気化室18の
上部で内壁16に向つて開口している。さらに内
壁16の外面には、液体管路21の液化冷媒出口
位置から下にらせん状に突条23が設けられてい
る。この突条23は例えば線状体を内壁16にら
せん状に巻きつけて溶接すること等により形成さ
れる。
Further, the liquid pipe line 21 is bent into a U-shape within the vaporization chamber 18, and the liquefied refrigerant outlet thereof opens toward the inner wall 16 at the upper part of the vaporization chamber 18. Further, on the outer surface of the inner wall 16, a protrusion 23 is provided in a spiral shape downward from the liquefied refrigerant outlet position of the liquid pipe line 21. The protrusion 23 is formed, for example, by spirally winding a linear body around the inner wall 16 and welding it.

上記循環系に封入された冷媒は放熱器19から
出るときは冷却されて液化しており、この液化冷
媒は液体管路21によつて気化室18に導かれ、
その出口から突条23の最上部に流れ出す。突条
23のその位置かららせん状に下降しているた
め、液化冷媒はその突条23に案内されて内壁1
6の全周に行きわたると共に、そこから流れ落ち
て内壁16のほぼ全周面を濡らす。内壁16外面
を流下する液化冷媒は内壁16から熱をうばつて
一部が気化し、残りは気化室18の底部に溜まる
が、これも内部からの熱で徐々に気化する。なお
24は気化室18底部に溜まつた液化冷媒を示
す。気化した冷媒は気化室18の上部から気体管
路20を通つて放熱器19に入り、そこで凝縮し
て再び上記の経路で循環する。
The refrigerant sealed in the circulation system is cooled and liquefied when it exits the radiator 19, and this liquefied refrigerant is led to the vaporization chamber 18 by the liquid pipe 21,
It flows out from the outlet to the top of the protrusion 23. Since the protrusion 23 spirally descends from that position, the liquefied refrigerant is guided by the protrusion 23 and reaches the inner wall 1.
6 and flows down from there to wet almost the entire circumference of the inner wall 16. The liquefied refrigerant flowing down the outer surface of the inner wall 16 transfers heat from the inner wall 16 and partially vaporizes, and the rest accumulates at the bottom of the vaporization chamber 18, but this is also gradually vaporized by heat from inside. Note that 24 indicates the liquefied refrigerant accumulated at the bottom of the vaporization chamber 18. The vaporized refrigerant enters the radiator 19 from the upper part of the vaporization chamber 18 through the gas pipe 20, where it is condensed and circulated again along the above-mentioned path.

上記実施例における変圧器11ば例えば地中に
設置され、放熱器19は地上に設置されるもので
ある。
The transformer 11 in the above embodiment is installed, for example, underground, and the radiator 19 is installed above ground.

絶縁油14は対流により上面が最も高温になる
ため、液化冷媒を案内する突条23の上端は油面
より上にあることが好ましい。また突条23の下
端は気化室18内の液化冷媒液面(冷却動作中の
液面)に達する程度でよく、突条23は必ずしも
内壁全面に設ける必要はない。また気体管路20
の下端(気化冷媒の入口)は液体管路21の出口
より上に位置させることが好ましく、特に気化室
18の最上部に位置させることが好ましい。
Since the upper surface of the insulating oil 14 reaches the highest temperature due to convection, it is preferable that the upper end of the protrusion 23 that guides the liquefied refrigerant be above the oil level. Further, the lower end of the protrusion 23 may reach the liquid level of the liquefied refrigerant in the vaporization chamber 18 (the liquid level during cooling operation), and the protrusion 23 does not necessarily have to be provided on the entire inner wall. Also, the gas pipe 20
The lower end (inlet of the vaporized refrigerant) is preferably located above the outlet of the liquid conduit 21, and particularly preferably located at the top of the vaporization chamber 18.

上記実施例において液体管路21を気化室18
内でU字形に屈曲したのは、そのU字形部に液化
冷媒を溜めることにより、気化室18内の気化冷
媒が液体管路21に侵入するのを防止するためで
ある。
In the above embodiment, the liquid pipe line 21 is connected to the vaporization chamber 18.
The reason why the inner part is bent into a U-shape is to prevent the vaporized refrigerant in the vaporization chamber 18 from entering the liquid pipe line 21 by storing the liquefied refrigerant in the U-shaped part.

第3図は本発明の他の実施例を示す。この装置
は、内壁16の外面に、上記実施例における突条
23に代えて、溝25をらせん状に形成したもの
である。それ以外の構成は上記実施例と同じであ
る。
FIG. 3 shows another embodiment of the invention. In this device, a groove 25 is spirally formed on the outer surface of the inner wall 16 in place of the protrusion 23 in the above embodiment. The other configurations are the same as those of the above embodiment.

第4図は本発明のさらに他の実施例を示す。こ
の装置は、溝25(突条でも可)を形成した内壁
16の外面に網26を巻きつけたものである。こ
のようにすると溝25から流れ落ちた液化冷媒が
網26によつてさらに内壁16全面に行きわたる
ようになるため、全周を均等に冷却する効果が大
きい。
FIG. 4 shows yet another embodiment of the invention. This device has a net 26 wrapped around the outer surface of an inner wall 16 in which grooves 25 (or protrusions may be used) are formed. In this way, the liquefied refrigerant flowing down from the grooves 25 is further spread over the entire surface of the inner wall 16 by the net 26, so that the effect of uniformly cooling the entire circumference is great.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、タンクの
周壁を二重構造にしてその内壁と外壁の間に冷媒
の気化室を形成し、その内壁外面に設けたらせん
状の突条または溝に沿つて液化冷媒を全周に案内
すると共に、その突条または溝から内壁外面に沿
つて液化冷媒を流下させることにより油入り変圧
器の冷却を行つているので、タンクの周囲に自然
放熱のためのスペースを作る必要がなく、設置ス
ペースを小さくできる利点がある。また冷媒が気
化するときの潜熱を利用して冷却を行つているた
め、冷却効率が高いという利点もある。
As explained above, according to the present invention, the circumferential wall of the tank has a double structure, a refrigerant vaporization chamber is formed between the inner wall and the outer wall, and the spiral protrusion or groove provided on the outer surface of the inner wall extends along the outer surface of the inner wall. The oil-filled transformer is cooled by guiding the liquefied refrigerant all around the tank and by flowing the liquefied refrigerant down along the outer surface of the inner wall from the protrusions or grooves. There is no need to create a space, and the installation space can be reduced. Additionally, since cooling is performed using latent heat when the refrigerant vaporizes, it also has the advantage of high cooling efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る油入り変圧器
の冷却装置を示す断面図、第2図は第1図の−
線断面図、第3図および第4図はそれぞれ本発
明の他の実施例を示す要部断面図、第5図は従来
の油入り変圧器を示す一部切開斜視図である。 11〜油入り変圧器、13〜タンク、14〜絶
縁油、16〜内壁、17〜外壁、18〜気化室、
19〜放熱器、20〜気化管路、21〜液体管
路、23〜突条、24〜液化冷媒、25〜溝、2
6〜網。
FIG. 1 is a sectional view showing a cooling device for an oil-filled transformer according to an embodiment of the present invention, and FIG. 2 is a -
A line sectional view, FIGS. 3 and 4 are sectional views of main parts showing other embodiments of the present invention, and FIG. 5 is a partially cutaway perspective view showing a conventional oil-filled transformer. 11 - oil-filled transformer, 13 - tank, 14 - insulating oil, 16 - inner wall, 17 - outer wall, 18 - vaporization chamber,
19 - radiator, 20 - vaporization pipe line, 21 - liquid pipe line, 23 - protrusion, 24 - liquefied refrigerant, 25 - groove, 2
6 ~ Net.

Claims (1)

【特許請求の範囲】 1 油入り変圧器のタンクの周壁を二重構造にし
てその内壁と外壁の間に冷媒の気化室を形成し、
その気化室の上部と上記変圧器の外部に設置され
た放熱器の気化冷媒入口とを気体管路で接続する
と共に、その放熱器の液化冷媒出口と上記気化室
とを液体管路で接続して、上記気化室、気体管
路、放熱器および液体管路からなる循環系に冷媒
を封入し、かつ上記液体管路の液化冷媒出口を上
記気化室上部で内壁に向けて開口させ、内壁外面
にはその液体管路の液化冷媒出口位置から下にら
せん状に突条または溝を形成したことを特徴とす
る油入り変圧器の冷却装置。 2 特許請求の範囲第1項記載の装置であつて、
液体管路が気化室内でU字形に屈曲されているも
の。 3 特許請求の範囲第1項または第2項記載の装
置であつて、らせん状に突条または溝を設けた内
壁の外面に網が巻きつけられているもの。
[Claims] 1. The peripheral wall of the tank of the oil-filled transformer is made into a double structure, and a refrigerant vaporization chamber is formed between the inner wall and the outer wall,
The upper part of the vaporization chamber and the vaporized refrigerant inlet of a radiator installed outside the transformer are connected by a gas pipe, and the liquefied refrigerant outlet of the heat radiator and the vaporization chamber are connected by a liquid pipe. A refrigerant is sealed in a circulation system consisting of the vaporization chamber, a gas pipe, a radiator, and a liquid pipe, and the liquefied refrigerant outlet of the liquid pipe is opened toward the inner wall at the upper part of the vaporization chamber, and the outer surface of the inner wall is sealed. A cooling device for an oil-filled transformer, characterized in that a protrusion or groove is formed in a spiral shape downward from the liquefied refrigerant outlet position of the liquid pipe. 2. The device according to claim 1,
The liquid pipe line is bent into a U-shape inside the vaporization chamber. 3. The device according to claim 1 or 2, in which a net is wound around the outer surface of an inner wall provided with spiral protrusions or grooves.
JP61133906A 1986-06-11 1986-06-11 Cooler for oil-filled transformer Granted JPS62291103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61133906A JPS62291103A (en) 1986-06-11 1986-06-11 Cooler for oil-filled transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61133906A JPS62291103A (en) 1986-06-11 1986-06-11 Cooler for oil-filled transformer

Publications (2)

Publication Number Publication Date
JPS62291103A JPS62291103A (en) 1987-12-17
JPH053725B2 true JPH053725B2 (en) 1993-01-18

Family

ID=15115863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61133906A Granted JPS62291103A (en) 1986-06-11 1986-06-11 Cooler for oil-filled transformer

Country Status (1)

Country Link
JP (1) JPS62291103A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3015673A1 (en) 2014-10-27 2016-05-04 Toyota Jidosha Kabushiki Kaisha Ebullient cooling device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3015673A1 (en) 2014-10-27 2016-05-04 Toyota Jidosha Kabushiki Kaisha Ebullient cooling device

Also Published As

Publication number Publication date
JPS62291103A (en) 1987-12-17

Similar Documents

Publication Publication Date Title
US2127732A (en) Refrigerating apparatus
US4009418A (en) Attachment of heat pipes to electrical apparatus
US5349131A (en) Electrical wiring material and transformer
JPS59103318A (en) Apparatus for cooling machine or equipment
JPH053725B2 (en)
JPH053726B2 (en)
JPH07220936A (en) Transformer cooling structure with looped heat pipe
JPH053728B2 (en)
US2947798A (en) Cooling arrangement for electric apparatus
JPS62291105A (en) Coller for oil-filled transformer
KR20030062519A (en) Cooling system for transformer
JPS5860512A (en) Evaporation cooling induction electric appliance
JPS5984509A (en) Stationary induction electric apparatus
JPS631012A (en) Directly buried type transformer
US1833719A (en) Transformer
US2715322A (en) Absorption refrigeration
JPS6314410Y2 (en)
JP2000138122A (en) Stationary induction apparatus
JPS6127888B2 (en)
JPS63153807A (en) Induction type electric apparatus utilizing evaporative cooling
KR200274840Y1 (en) Cooling system for transformer
JPH0632657Y2 (en) Gas insulated electrical equipment
JPS5918809B2 (en) Chika Denryoku Cable House
JPS5937598Y2 (en) Heat exchanger
JPH0410668Y2 (en)