JPH0536874A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH0536874A
JPH0536874A JP3334358A JP33435891A JPH0536874A JP H0536874 A JPH0536874 A JP H0536874A JP 3334358 A JP3334358 A JP 3334358A JP 33435891 A JP33435891 A JP 33435891A JP H0536874 A JPH0536874 A JP H0536874A
Authority
JP
Japan
Prior art keywords
substrate
layer
surface side
forming
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3334358A
Other languages
Japanese (ja)
Other versions
JP2608658B2 (en
Inventor
Katsuya Ozaki
克也 小▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3334358A priority Critical patent/JP2608658B2/en
Publication of JPH0536874A publication Critical patent/JPH0536874A/en
Application granted granted Critical
Publication of JP2608658B2 publication Critical patent/JP2608658B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Abstract

PURPOSE:To enable a chip to be protected against warpage and prevented from deteriorating in heat dissipating properties even if it is enlarged in size by a method wherein a layer of good heat conductive material is provided only to the heat dissipating part of the rear of a board by plating, and a honeycomb layer of the same material is provided to the rest of the rear of the board. CONSTITUTION:An Au PHS(plated heat sink) 5 is selectively formed on the second surface of a board 1 aligned with an element heat releasing part and a viahole 2 through electroplating, then the board 1 is dipped with the second surface upside into a sulfurous acid Au electroplating solution, and spherical fine Au particles 6 are precipitated. Thereafter, the fine particles are brought into contact with the surface of the board or each other to form a honeycomb Au film 66 through pulse electrolysis executed with a current of low density. Stress induced by the thermal expansion difference the board and the Au film is relaxed by the voids concerned. Therefore, chip can be protected against warpage induced at stabilizing baking or die bonding.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は半導体装置およびその
製造方法に関し、特にPHSを有する高周波高出力Ga
AsICおよびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and a method of manufacturing the same, and particularly to a high frequency and high output Ga having PHS.
The present invention relates to an AsIC and a manufacturing method thereof.

【0002】[0002]

【従来の技術】図6は従来の高周波高出力半導体装置の
構成を示す概観断面図で、図において1は半導体基板、
2は半導体基板1内のバイアホール、2aはバイアホー
ル2内に形成された金属層、3は半導体チップを個々の
基板に分離する分離溝、3aは分離溝3内に形成された
金属層、4は電解Auメッキ用の給電層、5はAu電解
メッキにより形成されたプレーティッドヒートシンク
(以下、AuPHSと称す)、また記号δはチップのそ
り量を、lはチップ長辺長をそれぞれ示している。
2. Description of the Related Art FIG. 6 is a schematic sectional view showing the structure of a conventional high-frequency high-power semiconductor device, in which 1 is a semiconductor substrate.
2 is a via hole in the semiconductor substrate 1, 2a is a metal layer formed in the via hole 2, 3 is a separation groove for separating the semiconductor chip into individual substrates, 3a is a metal layer formed in the separation groove 3, Reference numeral 4 is a power supply layer for electrolytic Au plating, 5 is a plated heat sink formed by Au electrolytic plating (hereinafter referred to as AuPHS), symbol δ is a warp amount of the chip, and 1 is a long side length of the chip. There is.

【0003】まず、製造方法について説明する。図7
(a) は半導体基板1の第1の面側にFETなどの素子部
8、およびバイアホール2等を形成し、さらにチップ分
離溝3を設け、バイアホール2及びチップ分離溝3内に
それぞれ金属層2a,3aを形成したのち、前記半導体
基板1の第1の面側とは反対の第2の面側を前記基板1
厚が約30μmとなるまで研磨し、次に前記基板1の第
2の面上に電解Auメッキ用給電層4を形成した状態で
ある。
First, the manufacturing method will be described. Figure 7
(a) shows an element portion 8 such as an FET, a via hole 2 and the like formed on the first surface side of the semiconductor substrate 1, a chip separation groove 3 is further provided, and a metal is provided in each of the via hole 2 and the chip separation groove 3. After forming the layers 2a and 3a, the second surface side opposite to the first surface side of the semiconductor substrate 1 is placed on the substrate 1
The state is such that the thickness is polished to about 30 μm, and then the electrolytic Au plating power supply layer 4 is formed on the second surface of the substrate 1.

【0004】この後、Au電解メッキにより約40μm
厚のAuPHS5を形成し(図4(b) )、続いてチップ
の分離溝3部分でダイサーカットして図6に示すような
高周波高出力用の半導体チップを得る。
Thereafter, about 40 μm is formed by Au electrolytic plating.
A thick AuPHS 5 is formed (FIG. 4 (b)), followed by dicer cutting at the separation groove 3 portion of the chip to obtain a semiconductor chip for high frequency and high output as shown in FIG.

【0005】上記従来の半導体装置において、PHS5
は半導体基板1の第1の面側に形成したFETなどの素
子部8から発生する熱を、チップキャリア側に逃すため
の放熱体としての機能および薄い半導体基板1、すなわ
ちチップのハンドリングを容易にするための機能を有し
ている。
In the above conventional semiconductor device, the PHS5
Is a function as a radiator for radiating heat generated from the element portion 8 such as FET formed on the first surface side of the semiconductor substrate 1 to the chip carrier side, and facilitates handling of the thin semiconductor substrate 1, that is, the chip. It has a function to do.

【0006】[0006]

【発明が解決しようとする課題】以上のように構成され
た従来の半導体装置では、基板1材とAuPHS5との
線膨張係数の違いによって、ダイボンディング時の加熱
によりチョプの反りが生じていた。例えば基板1を約3
0μm厚のGaAs,PHS5を約40μm厚のAu、
ダイボンド時の加熱温度を300℃とするとバイメタル
の式から、そり量δとチップ長辺長lとの関係は、図8
のようになる。すなわち前記条件において従来の半導体
装置では、チップ長辺長lを2mm以上にすると、組立
てテスト可能領域(δ=30μm)内に入らなくなり、
チップキャリアへのチップ実装時にダイボンディング,
ワイヤーボンディングが困難となるばかりか、チップと
チップキャリアとの接触面積が低下して放熱特性が著し
く劣化し、所望のRF特性が得られないという問題を引
き起こしていた。
In the conventional semiconductor device configured as described above, due to the difference in linear expansion coefficient between the substrate 1 material and the AuPHS5, the warp of the chop occurs due to the heating during die bonding. For example, about 1
0 μm thick GaAs and PHS5 are about 40 μm thick Au,
Assuming that the heating temperature at the time of die bonding is 300 ° C., the relationship between the warpage amount δ and the chip long side length 1 is shown in FIG.
become that way. That is, in the conventional semiconductor device under the above conditions, if the long side length l of the chip is set to 2 mm or more, it will not be within the assembly testable region (δ = 30 μm).
Die bonding when mounting the chip on the chip carrier,
Not only is it difficult to perform wire bonding, but the contact area between the chip and the chip carrier is reduced, and the heat dissipation characteristics are significantly degraded, causing a problem that desired RF characteristics cannot be obtained.

【0007】またこのようなチップ反りは、実装時にチ
ップとチップキャリアとをAu−Sn共晶ハンダのペレ
ットを用い張りつける際、溶融したハンダの量を制御す
るのが困難なため多量のハンダの上にチップが浮かぶよ
うな形となることも発生の主要因となっていた。
In addition, such a chip warp is difficult to control the amount of melted solder when the chip and the chip carrier are attached by using Au-Sn eutectic solder pellets at the time of mounting. The fact that the chip floats was also a major factor in the occurrence.

【0008】この発明は上記のような問題点を解消する
ためになされたもので、チップ反りを防止し、チップサ
イズを大型化しても放熱特性が劣化することのない高周
波高出力半導体装置およびその製造方法を得ることを目
的とするものである。
The present invention has been made in order to solve the above problems, and prevents high-frequency high-power semiconductor devices that prevent chip warpage and do not deteriorate heat dissipation characteristics even when the chip size is increased. The purpose is to obtain a manufacturing method.

【0009】[0009]

【課題を解決するための手段】この発明にかかる半導体
装置は、基板の表面に設けたチップの発熱部に対応する
基板裏面の放熱部にのみメッキ形成による良熱伝導性材
料からなる層を設け、その他の基板裏面部分には良熱伝
導性材料からなる微粒子を空隙ができるように積層して
なるハニカム状の層を設けるようにしたものである。
In a semiconductor device according to the present invention, a layer made of a good heat conductive material is formed by plating only on a heat radiating portion on the back surface of the substrate corresponding to a heat generating portion of a chip provided on the front surface of the substrate. A honeycomb layer formed by laminating fine particles made of a material having good thermal conductivity so as to form voids is provided on the other back surface of the substrate.

【0010】また、この発明に係る半導体装置の製造方
法は、半導体基板の第1の面側に素子を形成し、基板の
第2の面の全面に電解メッキ形成用の給電層を形成し、
第2の面上の前記素子の発熱部に位置合わせされた領域
のみに、電解メッキにより良熱伝導性の材質からなる第
1の層を形成し、基板の第2の面の第1の層形成領域以
外の領域に良熱伝導性の材質からなる球状の微粒子を堆
積させ、低電流密度の電解により上記基板面と上記微粒
子あるいは上記微粒子同士を密着させ、ハニカム状の第
2の層を形成し、基板の第2の面上に形成された第1の
層上およびハニカム状の第2の層上に、第1の層及び第
2の層を補強するための良熱導性材料からなる第3の層
を形成するようにしたものである。
Further, in the method of manufacturing a semiconductor device according to the present invention, the element is formed on the first surface side of the semiconductor substrate, and the feeding layer for electrolytic plating is formed on the entire second surface of the substrate.
A first layer made of a material having good thermal conductivity is formed by electrolytic plating only on a region of the second surface aligned with the heat generating portion of the element, and the first layer of the second surface of the substrate is formed. Spherical fine particles made of a material having good thermal conductivity are deposited in a region other than the formation region, and the substrate surface and the fine particles or the fine particles are brought into close contact with each other by electrolysis with a low current density to form a second honeycomb-shaped layer. Of the heat-conductive material for reinforcing the first layer and the second layer on the first layer and the honeycomb-shaped second layer formed on the second surface of the substrate. The third layer is formed.

【0011】また、この発明にかかる半導体装置及びそ
の製造方法は、基板の表面に設けたチップの発熱部に対
応する基板裏面の放熱部にのみメッキ形成による良熱伝
導性材料からなる層を設け、その他の基板裏面部分に
は、反りを防止するためのグラファイト繊維複合メッキ
を形成したものである。また該複合メッキの上層にAu
−Sn合金ハンダ層を電解メッキで形成するようにした
ものである。
Further, in the semiconductor device and the method of manufacturing the same according to the present invention, a layer made of a good heat conductive material is formed by plating only on the heat radiating portion on the back surface of the substrate corresponding to the heat generating portion of the chip provided on the front surface of the substrate. The graphite fiber composite plating for preventing warpage is formed on the other back surface of the substrate. In addition, Au is formed on the upper layer of the composite plating.
-Sn alloy solder layer is formed by electrolytic plating.

【0012】[0012]

【作用】この発明においては、ハニカム状の良熱伝導性
材料層を構成する微粒子間の空隙部が、チップ安定化ベ
ークやダイボンド時に基板材と基板裏面に設けた良熱伝
導性材料層との熱膨張係数の違いによって生じる、基板
材に対する良熱伝導性材料層の応力を緩和し、チップの
反りを低減する。
In the present invention, the voids between the fine particles forming the honeycomb-shaped heat-conductive material layer are formed between the substrate material and the heat-conductive material layer provided on the back surface of the substrate during chip stabilization baking or die bonding. The stress of the good thermal conductive material layer with respect to the substrate material, which is caused by the difference in the coefficient of thermal expansion, is relaxed, and the warpage of the chip is reduced.

【0013】また、この発明においては、グラファイト
繊維複合メッキを基板材に対する応力の符号を互いに相
殺するような組合せ、及び組成比で形成することによっ
て反りを防止できる。またAu−Sn合金ハンダ層を電
解メッキで形成することによって実装時に溶融ハンダ量
を制御しなくてもハンダ量を一定にすることができる。
In the present invention, the warp can be prevented by forming the graphite fiber composite plating with a combination and a composition ratio that cancel the signs of stress on the substrate material. Further, by forming the Au—Sn alloy solder layer by electrolytic plating, the solder amount can be made constant without controlling the molten solder amount during mounting.

【0014】[0014]

【実施例】以下この発明の一実施例を図について説明す
る。図1はこの発明の第1の実施例によるる高周波高出
力用の半導体装置の構成を示す断面図、図2は第1の実
施例による半導体装置を製造する方法の一例を示した主
要断面図である。図において、1は半導体基板、2はバ
イアホール、2aはバイアホール2内に設けた金属層、
3は半導体チップを個々の基板に分離するための分離
溝、3aは分離溝3内に設けた金属層、4は電解Auメ
ッキ用の給電層、5はAu電解メッキにより形成された
PHS、6はAu微粒子、66はAu微粒子6からなる
ハニカム状のAu膜、7はAuPHS5及びハニカム状
Au膜66を覆うよう形成した補強用Au膜である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. 1 is a sectional view showing the structure of a semiconductor device for high frequency and high output according to a first embodiment of the present invention, and FIG. 2 is a main sectional view showing an example of a method for manufacturing the semiconductor device according to the first embodiment. Is. In the figure, 1 is a semiconductor substrate, 2 is a via hole, 2a is a metal layer provided in the via hole 2,
3 is a separation groove for separating the semiconductor chip into individual substrates, 3a is a metal layer provided in the separation groove 3, 4 is a power supply layer for electrolytic Au plating, 5 is PHS formed by Au electrolytic plating, 6 Is Au fine particles, 66 is a honeycomb-shaped Au film made of Au fine particles 6, and 7 is a reinforcing Au film formed so as to cover the AuPHS 5 and the honeycomb-shaped Au film 66.

【0015】まず、製造方法について説明する。まず半
導体基板1の第1の面側にFETなどの素子部8、バイ
アホール2,チップ分離溝3を形成し、バイアホール2
及びチップ分離溝3内にそれぞれ金属層2a,3aを形
成した後、前記半導体基板1の第1の面側とは反対の第
2の面側を基板1の厚みが約30μmになるまで研磨
し、この研磨した基板1の第2の面上に電解Auメッキ
形成のための給電層4を形成する。
First, the manufacturing method will be described. First, an element portion 8 such as an FET, a via hole 2, and a chip separation groove 3 are formed on the first surface side of the semiconductor substrate 1, and the via hole 2 is formed.
After forming the metal layers 2a and 3a in the chip separation groove 3, respectively, the second surface side of the semiconductor substrate 1 opposite to the first surface side is polished until the thickness of the substrate 1 becomes about 30 μm. Then, a power feeding layer 4 for electrolytic Au plating is formed on the second surface of the polished substrate 1.

【0016】その後、FETなどの素子発熱部およびバ
イアホール部2に位置合わせされた前記基板1の第1の
面側とは反対側の第2の面側の部分のみに、電解メッキ
により、選択的に厚さが約40μmのAuPHS5を形
成した後、該基板1の第2の面を亜硫酸系Au電解メッ
キ液中にて上向きに設置し、微量の酸の添加により上記
亜硫酸系Au電解メッキ液を分解して粒径が約 0.5〜1
μmの球状Au微粒子6を発生させ、該基板上に上記球
状Au微粒子6を沈降させる(図2(a) )。
After that, only the portion of the second surface side opposite to the first surface side of the substrate 1 aligned with the element heating portion such as FET and the via hole portion 2 is selected by electrolytic plating. After forming the AuPHS5 having a thickness of about 40 μm, the second surface of the substrate 1 is placed upward in a sulfite-based Au electroplating solution, and the above-mentioned sulfite-based Au electroplating solution is added by adding a trace amount of acid. And the particle size is about 0.5 to 1
The spherical Au fine particles 6 of μm are generated, and the spherical Au fine particles 6 are settled on the substrate (FIG. 2 (a)).

【0017】そして基板1の第2の面上に前記Au微粒
子6を少なくとも50μm以上堆積させ(図2(b) )、
その後、低電流密度のパルス電解により上記基板面と上
記微粒子あるいは上記微粒子同士を密着させてハニカム
状Au膜66とする。続いて該基板1の第2の面上に形
成された上記ハニカム状Au膜66を研磨して厚さ約4
0μmとする(図2(c) )。
Then, the Au particles 6 are deposited on the second surface of the substrate 1 at least 50 μm or more (FIG. 2 (b)),
Thereafter, the fine particles or the fine particles are brought into close contact with the substrate surface by pulse electrolysis with a low current density to form a honeycomb-shaped Au film 66. Subsequently, the honeycomb-shaped Au film 66 formed on the second surface of the substrate 1 is polished to a thickness of about 4
It is set to 0 μm (FIG. 2 (c)).

【0018】この後、AuPHS5及びハニカム状Au
膜66上に約3μm厚の補強用Au膜7を電解メッキに
よって形成し、ダイサーカットによりチップ分離溝3で
チップを切断してチップ分離を行い、図 1に示すような
半導体装置を得る。
After that, AuPHS5 and honeycomb-shaped Au
A reinforcing Au film 7 having a thickness of about 3 μm is formed on the film 66 by electrolytic plating, and the chip is cut in the chip separation groove 3 by dicer cutting to perform chip separation to obtain a semiconductor device as shown in FIG.

【0019】以上のように構成された半導体装置におい
て、ハニカム状Au膜66の空隙部は、前記半導体装置
すなわち半導体チップを安定化ベークしたりダイボンド
を行うときに、基板材とAu膜との熱膨張の違いによっ
て生じる基板材に対するAu膜の応力を緩和する作用を
有する。
In the semiconductor device configured as described above, the void portion of the honeycomb-shaped Au film 66 is heated by the substrate material and the Au film when the semiconductor device, that is, the semiconductor chip is subjected to stabilization baking or die bonding. It has the effect of relieving the stress of the Au film on the substrate material caused by the difference in expansion.

【0020】従って本実施例によれば、安定化ベークや
ダイボンディング時のチップの反りが抑制されるので、
チップキャリアへのチップ実装時において、ダイボンデ
ィング,ワイヤーボンディングを容易に行うことができ
る。さらにはチップサイズを大型化しても、チップとチ
ップキャリアとの接触面積を大きくとることができるの
で、放熱特性を良好にでき、所望のRF特性を有するも
のを得ることができる。なお、本実施例ではPHSとし
てAuメッキを用いたが、Cuなどの熱伝導の良好な他
の金属材料あるいは合金を用いてもよい。
Therefore, according to this embodiment, the warp of the chip at the time of stabilizing baking and die bonding is suppressed,
When mounting a chip on a chip carrier, die bonding and wire bonding can be easily performed. Further, even if the size of the chip is increased, the contact area between the chip and the chip carrier can be increased, so that the heat dissipation characteristic can be improved and the one having desired RF characteristics can be obtained. Although Au plating is used as PHS in this embodiment, other metal material or alloy having good heat conductivity such as Cu may be used.

【0021】図3、図4はこの発明の第2の実施例によ
る高周波高出力半導体装置の構成を示す断面図、図5は
製造方法を示す主要断面図である。図において、1はG
aAs基板、8はFETなどの素子部、2はバイアホー
ル、4は第1Auメッキ層、10はAu−グラファイト
複合メッキ層、10aはグラファイト繊維、10bはメ
ッキ金属層、5はAuPHS、11はAu−Sn合金メ
ッキ層である。
3 and 4 are sectional views showing the structure of a high-frequency high-power semiconductor device according to the second embodiment of the present invention, and FIG. 5 is a main sectional view showing a manufacturing method. In the figure, 1 is G
aAs substrate, 8 is an element part such as FET, 2 is a via hole, 4 is a first Au plating layer, 10 is an Au-graphite composite plating layer, 10a is a graphite fiber, 10b is a plating metal layer, 5 is AuPHS, 11 is Au. -Sn alloy plating layer.

【0022】図3は、半導体チップの第1の面側のFE
T8などの素子発熱部及びバイアホール部2に位置合わ
せされた前記チップの第1の面側とは反対側の第2の面
側の部分に、厚さが約40μmのAuPHS5を形成
し、その他の前記基板の第2の面側の部分には約40μ
mのAu−グラファイト複合メッキ層10を配したもの
である。常温における線膨張係数はそれぞれGaAsが
6、Auが14.2、グラファイトが3.1(〔×10
-6-1〕以下単位は省略して示す)であるから、メッキ
金属10bをAuとし、前記分散メッキ層10中のグラ
ファイト繊維10aとAuが、それぞれ約7:3の組成
比となるようにすれば基板材1に対する応力の符号が互
いに相殺され、チップ反りを低減できる。
FIG. 3 shows the FE on the first surface side of the semiconductor chip.
An AuPHS5 having a thickness of about 40 μm is formed on a portion of the chip that is aligned with the element heating portion such as T8 and the via hole portion 2 on the second surface side opposite to the first surface side. About 40μ on the second surface side of the substrate of
m of Au-graphite composite plating layer 10 is arranged. The linear expansion coefficient at room temperature is 6 for GaAs, 14.2 for Au, and 3.1 for graphite ([× 10
-6 ° C. −1 ] The following units are omitted.) Therefore, the plating metal 10b is Au, and the graphite fibers 10a and Au in the dispersion plating layer 10 have a composition ratio of about 7: 3, respectively. In this case, the signs of the stress applied to the substrate material 1 are offset from each other, and the chip warp can be reduced.

【0023】前記グラファイト複合メッキ10におい
て、メッキ金属層10bをNi(線膨張係数13.4)
とし、グラファイト繊維10aとメッキ金属10bとの
組成比を約13:7としても同様な効果がある。ただし
この場合、マイクロストリップ線路の導体損失をできる
だけ少なくするため、該分散メッキ10の下層に電気伝
導のよい約1〜2μm厚の第1Auメッキ層4を配した
構造をとる必要がある。
In the graphite composite plating 10, the plating metal layer 10b is made of Ni (coefficient of linear expansion 13.4).
The same effect can be obtained by setting the composition ratio of the graphite fiber 10a and the plated metal 10b to about 13: 7. However, in this case, in order to reduce the conductor loss of the microstrip line as much as possible, it is necessary to take a structure in which the first Au plating layer 4 having a thickness of about 1 to 2 μm having good electrical conductivity is arranged under the dispersion plating 10.

【0024】図4の構造は上記第2の実施例の構造のA
uPHS5とグラファイト複合メッキ層10の上層にA
u−Sn複合メッキ層11を配したものである。
The structure shown in FIG. 4 corresponds to the structure A of the second embodiment.
A on top of uPHS5 and graphite composite plating layer 10
The u-Sn composite plating layer 11 is arranged.

【0025】次に形成プロセスフローについて説明す
る。図5(a) はFETなどの素子部8、バイアホール2
などを形成したGaAs基板1の第2の面を研磨し、約
30μmとした後、第1Auメッキ層4を形成した状態
である。このあと前記第1Auメッキ層4を給電層と
し、フォトレジストをマスクとした選択電解メッキによ
り、厚さ約40μmのAuPHSを形成する((図5
(b))。この状態であらかじめ表面を無電解Niメッキ
などでコーティングした太さ約6〜8μmのグラファイ
ト線を編んだ繊維10aを該PHSを避ける形で前記基
板1の第2の面と水の表面張力で貼りあわせ、位置がず
れないように物理的に固定しておく(図5(c))。しか
る後にAu,Cu,Niなどの電解メッキを行い、両者
を密着させる。このときメッキ液は該グラファイト繊維
の間に染み込むが、メッキ反応が拡散律速のためメッキ
方法としてはパルスメッキが望ましい。このようにして
Au−グラファイト複合メッキ層10を得る(図5(d)
)。該複合メッキ層10を平坦化した状態(図5(e)
)でチップ分離を行うと、図3の構造が得られる。
Next, the formation process flow will be described. FIG. 5 (a) shows an element portion 8 such as a FET and a via hole 2
The second surface of the GaAs substrate 1 on which the above are formed is polished to about 30 μm, and then the first Au plating layer 4 is formed. Then, selective electroplating using the first Au plating layer 4 as a power supply layer and a photoresist as a mask forms an AuPHS having a thickness of about 40 μm ((FIG. 5
(b)). In this state, the fiber 10a, which is woven with graphite wire having a thickness of about 6 to 8 μm, the surface of which is previously coated with electroless Ni plating, is attached to the second surface of the substrate 1 by the surface tension of water so as to avoid the PHS. At the same time, it is physically fixed so that the position does not shift (Fig. 5 (c)). After that, electrolytic plating of Au, Cu, Ni or the like is performed to bring them into close contact. At this time, the plating solution permeates between the graphite fibers, but since the plating reaction is diffusion-controlled, pulse plating is preferable as the plating method. Thus, the Au-graphite composite plating layer 10 is obtained (FIG. 5 (d)).
). The composite plating layer 10 is flattened (FIG. 5 (e)).
), The structure shown in FIG. 3 is obtained.

【0026】また図5(e) の状態の後Au−Sn合金メ
ッキ層11を形成した状態(図5(f) )でチップ分離を
行うと、図4の構造が得られる。該Au−Sn合金メッ
キ層11はAu:Sn=8:2の組成比となるようにメ
ッキ電流密度を調整して形成する。
When the chip separation is performed after the state of FIG. 5 (e) and the Au--Sn alloy plating layer 11 is formed (FIG. 5 (f)), the structure of FIG. 4 is obtained. The Au—Sn alloy plating layer 11 is formed by adjusting the plating current density so that the composition ratio is Au: Sn = 8: 2.

【0027】上記のように構成した半導体装置において
は、FETなどの素子発熱部に位置合わせされた前記基
板の第1の面側とは反対側の第2の面側の部分にAuP
HSを形成し、その他の前記基板の第2の面の部分には
基板材に熱膨張係数を合わせたグラファイト繊維複合メ
ッキを配したので実装時のチップ反りが低減される。
In the semiconductor device constructed as described above, the AuP is formed on the portion of the second surface side opposite to the first surface side of the substrate aligned with the element heating portion such as FET.
Since the HS is formed and the other part of the second surface of the substrate is provided with a graphite fiber composite plating having a thermal expansion coefficient matched to that of the substrate material, chip warpage during mounting is reduced.

【0028】またAu−Sn合金ハンダを電解メッキで
形成することによって実装時にハンダ量を制御しなくて
もフラットな状態でチップをチップキャリアに張りつけ
ることができる。
By forming the Au--Sn alloy solder by electrolytic plating, the chip can be attached to the chip carrier in a flat state without controlling the amount of solder during mounting.

【0029】なお本実施例ではPHSとしてAuメッキ
を用いたが、Cuなどの熱伝導の良好な他の金属材料あ
るいは合金を用いてもよい。また半導体基板としてGa
As基板を用いたが、Si基板,InP基板,Si基板
上にGaAs層をエピタキシャル成長したものなどの半
導体基板やセラミック基板を用いてもよい。さらにグラ
ファイト繊維を用いたが、線膨張係数が3×10-6程度
の材料からなる繊維であればこれを用いてもよい。
Although Au plating is used as PHS in this embodiment, other metal material or alloy having good heat conductivity such as Cu may be used. Ga is used as a semiconductor substrate.
Although the As substrate is used, a semiconductor substrate such as a Si substrate, an InP substrate, or a Si substrate on which a GaAs layer is epitaxially grown, or a ceramic substrate may be used. Further, although graphite fiber is used, any fiber made of a material having a linear expansion coefficient of about 3 × 10 −6 may be used.

【0030】[0030]

【発明の効果】以上のように本発明によれば、FETな
どの素子発熱部に位置合わせされた基板の第1の面側と
は反対側の第2の面側の部分に、メッキにより良熱伝導
性材料からなる層を形成し、その他の基板の第2の面の
部分にはハニカム状の良熱伝導性材料からなる層を配し
たので、前記ハニカム状の層を構成する微粒子の空隙部
が、チップのダイボンディング時に基板材と良熱伝導性
材料層との熱膨張係数の違いによって生じる基板材に対
する良熱伝導性材料層の応力を緩和し、これにより、素
子発熱部からの放熱効果を損なうことなしにチップ反り
が低減でき、チップサイズの大型化が図れるという効果
がある。
As described above, according to the present invention, the portion of the second surface side of the substrate, which is aligned with the element heat generating portion such as the FET, opposite to the first surface side, is preferably plated. Since a layer made of a heat conductive material is formed and a layer made of a good honeycomb heat conductive material is arranged on the other portion of the second surface of the substrate, the voids of the fine particles forming the honeycomb layer are formed. Part relaxes the stress of the good thermal conductive material layer on the substrate material caused by the difference in the thermal expansion coefficient between the substrate material and the good thermal conductive material layer during die bonding of the chip, and as a result, heat dissipation from the element heat generating part The warp of the chip can be reduced without impairing the effect, and the chip size can be increased.

【0031】また、この発明によれば、FETなどの素
子発熱部に位置合わせされた前記基板の第1の面側とは
反対側の第2の面側の部分に、メッキにより良熱伝導性
材料からなる層を形成し、その他の前記基板の第2の面
の部分には、基板材に熱膨張係数を合わせたグラファイ
ト繊維複合メッキにより形成した、第2の層を配したの
で、素子発熱部からの放熱効果を損なうことなしにチッ
プ反りを低減でき、チップの大型化をはかれるという効
果がある。
Further, according to the present invention, the portion of the second surface side opposite to the first surface side of the substrate, which is aligned with the element heat generating portion such as the FET, has good thermal conductivity by plating. Since a layer made of a material is formed and a second layer formed by graphite fiber composite plating in which the coefficient of thermal expansion is adjusted to the substrate material is arranged on the other portion of the second surface of the substrate, the device heat generation is improved. The warp of the chip can be reduced without impairing the heat radiation effect from the part, and the size of the chip can be increased.

【0032】またAu−Sn合金ハンダを電解メッキで
形成することによって実装時にハンダ量を制御しなくて
もフラットな状態でチップをキャリアに張りつけること
ができ、チップ反りが低減できるという効果がある。
By forming the Au—Sn alloy solder by electrolytic plating, the chip can be attached to the carrier in a flat state without controlling the amount of solder during mounting, and the chip warpage can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例による高周波高出力半導
体装置の構成を示す断面図である。
FIG. 1 is a sectional view showing a configuration of a high frequency and high power semiconductor device according to a first embodiment of the present invention.

【図2】本発明の第1の実施例による高周波高出力半導
体装置の製造方法を示す断面図である。
FIG. 2 is a cross-sectional view showing the method of manufacturing the high-frequency high-power semiconductor device according to the first embodiment of the present invention.

【図3】本発明の第2の実施例による高周波高出力半導
体装置の構成を示す断面図である。
FIG. 3 is a sectional view showing a configuration of a high frequency and high power semiconductor device according to a second embodiment of the present invention.

【図4】本発明の第2の実施例による高周波高出力半導
体装置の構成を示す断面図である。
FIG. 4 is a sectional view showing the structure of a high frequency and high power semiconductor device according to a second embodiment of the present invention.

【図5】本発明の第2の実施例による高周波高出力半導
体装置の製造方法を示す断面図である。
FIG. 5 is a cross-sectional view showing the method of manufacturing the high frequency high power semiconductor device according to the second embodiment of the invention.

【図6】従来の高周波高出力半導体装置を示す断面図で
ある。
FIG. 6 is a sectional view showing a conventional high-frequency high-power semiconductor device.

【図7】従来の高周波高出力半導体装置の製造方法を示
す断面図である。
FIG. 7 is a cross-sectional view showing a method of manufacturing a conventional high-frequency high-power semiconductor device.

【図8】従来の高周波高出力半導体チップの反り量とチ
ップ長辺長との関係を示す図である。
FIG. 8 is a diagram showing a relationship between a warp amount and a long side length of a conventional high frequency and high output semiconductor chip.

【符号の説明】[Explanation of symbols]

1 GaAs基板 2 バイアホール 4 第1Auメッキ層 5 AuPHS 8 FETなどの素子部 10 Au−グラファイト繊維複合メッキ層 10a グラファイト繊維 10b 複合メッキ中のメッキ金属 11 Au−Sn合金ハンダメッキ層 δ チップの反り量 l チップ長辺長 1 GaAs substrate 2 via holes 4 First Au plating layer 5 AuPHS 8 FET and other elements 10 Au-graphite fiber composite plating layer 10a Graphite fiber 10b Plating metal in composite plating 11 Au-Sn alloy solder plating layer δ Chip warp amount l Chip long side length

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基板上の第1の面側に素子が形成され、
該第1の面側とは反対の第2の面側に放熱手段を備えた
半導体装置において、 前記放熱手段は、 前記基板の第2の面上の前記素子の発熱部に位置合わせ
された領域に、メッキにより形成した、良熱伝導性材料
からなる第1の層と、 前記基板の第2の面上の前記第1の層形成領域以外の部
分に、良熱伝導性材料からなる球状の微粒子を該微粒子
間に空隙が生じるように積層して形成した、ハニカム状
の第2の層とからなることを特徴とする半導体装置。
1. An element is formed on a first surface side of a substrate,
In a semiconductor device having a heat radiating means on a second surface side opposite to the first surface side, the heat radiating means is a region aligned with a heat generating portion of the element on the second surface of the substrate. A first layer made of a good heat conductive material formed by plating, and a spherical layer made of a good heat conductive material on a portion other than the first layer forming region on the second surface of the substrate. A semiconductor device comprising a honeycomb-shaped second layer formed by laminating fine particles such that voids are formed between the fine particles.
【請求項2】 基板上の第1の面側に素子を有し、該第
1の面側とは反対の第2の面側に放熱手段を有する半導
体装置を製造する方法において、 半導体基板の第1の面側に素子を形成する工程と、 前記基板の第2の面の全面に電解メッキ形成用の給電層
を形成する工程と、 前記第2の面上の前記素子の発熱部に位置合わせされた
領域のみに、電解メッキにより良熱伝導性の材質からな
る第1の層を形成する工程と、 前記基板の第2の面の前記第1の層形成領域以外の領域
に良熱伝導性の材質からなる球状の微粒子を堆積させ、
低電流密度の電解により上記基板面と上記微粒子あるい
は上記微粒子同士を密着させ、ハニカム状の第2の層を
形成する工程と、 該基板の第2の面上に形成された前記第1の層上および
ハニカム状の第2の層上に、第1の層及び第2の層を補
強するための良熱伝導性材料からなる第3の層を形成す
る工程とを含むことを特徴とする半導体装置の製造方
法。
2. A method of manufacturing a semiconductor device having an element on a first surface side of a substrate and having a heat radiating means on a second surface side opposite to the first surface side, the method comprising: A step of forming an element on the first surface side, a step of forming a power feeding layer for forming electrolytic plating on the entire second surface of the substrate, and a step of arranging a heat generating portion of the element on the second surface. A step of forming a first layer made of a material having good thermal conductivity by electrolytic plating only in the combined area; and a step of good thermal conductivity in an area other than the first layer forming area on the second surface of the substrate. Deposited spherical particles made of a flexible material,
A step of bringing the fine particles or the fine particles into close contact with the substrate surface by electrolysis with a low current density to form a honeycomb-shaped second layer; and the first layer formed on the second surface of the substrate. Forming a third layer made of a good heat conductive material for reinforcing the first layer and the second layer on the upper and the honeycomb-shaped second layer. Device manufacturing method.
【請求項3】 基板上の第1の面側に素子が形成され、
該第1の面側とは反対の第2の面側に放熱手段を備えた
半導体装置において、 前記放熱手段は、 前記基板の第2の面上の前記素子の発熱部に位置合わせ
された領域に、メッキにより形成した、良熱伝導性材料
からなる第1の層と、 前記基板の第2の面上の前記第1の層形成領域以外の部
分に、基板材料と線膨張係数をあわせたグラファイト繊
維複合メッキにより形成した、第2の層とからなること
を特徴とする半導体装置。
3. An element is formed on the first surface side of the substrate,
In a semiconductor device having a heat radiating means on a second surface side opposite to the first surface side, the heat radiating means is a region aligned with a heat generating portion of the element on the second surface of the substrate. In addition, the substrate material and the linear expansion coefficient were adjusted to the first layer formed by plating and made of a material having good thermal conductivity, and the portion other than the first layer formation region on the second surface of the substrate. A semiconductor device comprising a second layer formed by graphite fiber composite plating.
【請求項4】 上記複合メッキ膜の上層にAu−Sn合
金メッキ膜をその組成比が8:2の共晶合金となるよう
に電解メッキ法により形成したことを特徴とする請求項
3記載の半導体装置。
4. The Au-Sn alloy plating film is formed on the composite plating film by an electrolytic plating method so as to form a eutectic alloy having a composition ratio of 8: 2. Semiconductor device.
【請求項5】 基板上の第1の面側に素子を有し、該第
1の面側とは反対の第2の面側に放熱手段を有する半導
体装置を製造する方法において、 半導体基板の第1の面側に素子を形成する工程と、 前記基板の第2の面の全面に電解メッキ形成用の給電層
を形成する工程と、 前記第2の面上の前記素子の発熱部に位置合わせされた
領域のみに、電解メッキにより良熱伝導性の材質からな
る第1の層を形成する工程と、 前記基板の第2の面の前記第1の層形成領域以外の領域
に金属コートされたグラファイト繊維を圧着した状態で
電解メッキを行い、前記グラファイト繊維の隙間を埋め
ながら両者を密着する工程と、 該基板の第2の面を研磨して平坦化する工程とを含むこ
とを特徴とする半導体装置の製造方法。
5. A method of manufacturing a semiconductor device having an element on a first surface side of a substrate and having a heat radiation means on a second surface side opposite to the first surface side, the method comprising: A step of forming an element on the first surface side, a step of forming a power feeding layer for forming electrolytic plating on the entire second surface of the substrate, and a step of arranging a heat generating portion of the element on the second surface. A step of forming a first layer made of a material having good thermal conductivity by electrolytic plating only in the combined area; and a metal coating on an area other than the first layer forming area on the second surface of the substrate. And a step of performing electroplating in a state in which the graphite fibers are pressure-bonded, adhering the graphite fibers to each other while filling the gaps between the graphite fibers, and a step of polishing and flattening the second surface of the substrate. Of manufacturing a semiconductor device.
JP3334358A 1990-11-27 1991-11-22 Semiconductor device and manufacturing method thereof Expired - Lifetime JP2608658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3334358A JP2608658B2 (en) 1990-11-27 1991-11-22 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP33295090 1990-11-27
JP2-332950 1990-11-27
JP3334358A JP2608658B2 (en) 1990-11-27 1991-11-22 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH0536874A true JPH0536874A (en) 1993-02-12
JP2608658B2 JP2608658B2 (en) 1997-05-07

Family

ID=26574353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3334358A Expired - Lifetime JP2608658B2 (en) 1990-11-27 1991-11-22 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2608658B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0606522A3 (en) * 1993-01-12 1996-04-10 Mitsubishi Electric Corp Semiconductor device and methods for producing and mounting the semiconductor device.
US5786634A (en) * 1996-09-02 1998-07-28 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
US5872396A (en) * 1994-10-26 1999-02-16 Mitsubishi Denki Kabushiki Kaisha Semiconductor device with plated heat sink
JP2019050160A (en) * 2017-09-12 2019-03-28 学校法人 名城大学 Conductor and method of manufacturing conductor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0606522A3 (en) * 1993-01-12 1996-04-10 Mitsubishi Electric Corp Semiconductor device and methods for producing and mounting the semiconductor device.
US5770468A (en) * 1993-01-12 1998-06-23 Mitsubishi Denki Kabushiki Kaisha Process for mounting a semiconductor chip to a chip carrier by exposing a solder layer to a reducing atmosphere
US5872396A (en) * 1994-10-26 1999-02-16 Mitsubishi Denki Kabushiki Kaisha Semiconductor device with plated heat sink
US5998238A (en) * 1994-10-26 1999-12-07 Mitsubishi Denki Kabushiki Kaisha Method of fabricating semiconductor device
US5786634A (en) * 1996-09-02 1998-07-28 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
JP2019050160A (en) * 2017-09-12 2019-03-28 学校法人 名城大学 Conductor and method of manufacturing conductor

Also Published As

Publication number Publication date
JP2608658B2 (en) 1997-05-07

Similar Documents

Publication Publication Date Title
US4993148A (en) Method of manufacturing a circuit board
JP3386963B2 (en) Manufacturing method of laser diode device
KR100913762B1 (en) Metal-ceramic composite substrate and method for manufacturing same
US5770468A (en) Process for mounting a semiconductor chip to a chip carrier by exposing a solder layer to a reducing atmosphere
US3651562A (en) Method of bonding silicon to copper
CA2391218A1 (en) Cicuit board, method for manufacturing same, and high-output module
JP3417253B2 (en) Metal-graphite composite and radiator using the same
JP2505065B2 (en) Semiconductor device and manufacturing method thereof
CN108701665A (en) Method, heat sink, the method for manufacturing semiconductor module and semiconductor module for manufacturing heat sink
JP2009206200A (en) Substrate for mounting light emitting element, light emitting element package, and method of bonding ceramic and aluminum
JPH0536874A (en) Semiconductor device and manufacture thereof
JPS6318648A (en) Circuit board using aluminum nitride
US20230254970A1 (en) Circuit board
JP2783882B2 (en) Hybrid integrated circuit and method of manufacturing the same
JP3493833B2 (en) Plastic package for mounting semiconductor element and method of manufacturing the same
JP4146736B2 (en) Manufacturing method of semiconductor device
JP2509428B2 (en) Ultra-small electronic package
JP3520161B2 (en) Semiconductor device and manufacturing method thereof
JPS58147087A (en) Heat sink for semiconductor element
JP2000150741A (en) Semiconductor device
JPH05326743A (en) Insulated heat dissipating substrate for semiconductor element mounting
JP2004140199A (en) Module structure and its manufacturing method
JPS59227132A (en) Semiconductor device
JPS59140076A (en) Thermal head
JP2002314153A (en) Peltier-electrode board and manufacturing method thereof