JPH05343327A - Film-forming method - Google Patents

Film-forming method

Info

Publication number
JPH05343327A
JPH05343327A JP15255092A JP15255092A JPH05343327A JP H05343327 A JPH05343327 A JP H05343327A JP 15255092 A JP15255092 A JP 15255092A JP 15255092 A JP15255092 A JP 15255092A JP H05343327 A JPH05343327 A JP H05343327A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
film
temperature
gas
forming
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP15255092A
Other languages
Japanese (ja)
Inventor
Kiyohisa Kosugi
Ikuo Shiroki
Junichi Watabe
育夫 代木
清久 小杉
純一 渡部
Original Assignee
Fujitsu Ltd
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

PURPOSE: To form a good-quality film with high productivity by keeping a film-formed substrate in a water-vapor atmosphere under 0.1-10Torr pressure, while the temperature of the film-formed substrate is raised from room temperature to film-forming temperature, and thereafter by starting film forming in a film-forming method through an atomic layer deposition method.
CONSTITUTION: A rotator holding a sample S is placed in a reaction chamber 30 and rotated at 60rpm at the time of film forming or temperature rise. The inside of the reaction chamber 30 is exhausted of the air by a turbo-molecular pump VP to high vacuum. While the temperature of the reaction chamber rises from room temperature to 500°C film-forming temperature, water vapor is caused to continue to flow through control valve V2 from an inlet N2 and adjusted by an orifice valve OF so that the pressure in the reaction chamber is 1Torr. In this case, Ar gas is used as the carrier gas of water vapor and the flow rate of the Ar gas is 200SCCM. At the time of film forming, the control valve V1 is opened and a fixed quantity of TMA gas 32 is introduced by the use of Ar gas as carrier gas. The flow rates of raw material gases are 100SCCM in the case of H2O gas and 40SCCM in the case of TMA gas.
COPYRIGHT: (C)1993,JPO&Japio

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は成膜技術の一つである原子層堆積法に関する。 BACKGROUND OF THE INVENTION This invention relates to atomic layer deposition method which is one of the film forming technique. 近年の薄膜利用技術の高度化に伴い, 薄膜の結晶性, 均一性等の膜質向上が要求されている。 With the advancement of recent thin film application technologies crystalline thin film, the film quality such as uniformity is required. 特に, 量子サイズ効果を利用した機能デバイスを構成する半導体薄膜を単一原子層レベルで成長の制御ができる方法が必要となり,原子層堆積法による結晶性のよい半導体薄膜の形成が行われている。 In particular, requires a method capable to control the growth of a semiconductor thin film constituting the functional device utilizing a quantum size effect of a single atomic layer level, forming a good semiconductor thin film crystallinity by atomic layer deposition is performed .

【0002】また, 半導体薄膜に限らず, 絶縁膜を形成した場合も同様に高品質の薄膜が形成できる。 [0002] Further, not only the semiconductor thin film, as well as high-quality thin film can be formed even when the insulating film is formed. 例えば薄膜EL (エレクトロルミネセンス) パネルの絶縁膜は, 高耐圧, 無欠陥, 長寿命が要求され,薄膜中に不純物, 膜欠陥等を含まない高品質の膜質を実現する必要がある。 For example a thin film EL (electroluminescence) panels of the insulating film, a high breakdown voltage, defect-free, long life is required, it is necessary to realize a high-quality quality of free impurities, the film defects in the thin film.

【0003】原子層堆積法は薄膜を形成する際に, 原料となる複数のガスを交互に切り換えて薄膜形成領域に導入し,単一原子層レベルで1層ずつ形成していくため, [0003] Since in atomic layer deposition method for forming a thin film, a plurality of gas as a raw material is switched alternatively introduced into the thin film forming region, continue to form one layer in a single atomic layer level,
高品質の薄膜を形成できる。 Of high-quality thin film can be formed.

【0004】 [0004]

【従来の技術】従来の原子層堆積法は,成膜温度まで被成膜基板の温度を上昇させる際に原料ガスを成長チャンバ内に導入しないで,成膜温度になってから始めて原料ガスを導入し,成膜を開始する方法がとられていた。 Conventional atomic layer deposition method, without introducing a material gas into the growth chamber when raising the temperature of the target substrate to a deposition temperature, the raw material gas starting from when the film forming temperature introduced, how to start the deposition had been taken.

【0005】また,昇温中に水蒸気雰囲気にする方法があるが,この方法を用いる場合でも水蒸気の圧力は10 -2 Further, there is a method to steam atmosphere during temperature rise, the pressure of the water vapor even if this method is used 10-2
Torr 以下の比較的低い圧力で行われていた。 Torr was done in the following relatively low pressure. 薄膜トランジスタ(TFT) のゲートは下地のアルミニウム(Al)膜にチタン(Ti)を被覆成膜した2層構造が用いられてきており,ゲート絶縁膜にプラズマ気相成長(CVD) 法を用いる限りにおいてはその信頼性は低かった。 The gate of the thin film transistor (TFT) has been two-layer structure is used coated film of titanium (Ti) to the underlying aluminum (Al) film, a gate insulating film as long as the use of plasma vapor deposition (CVD) that was low reliability. ゲート絶縁膜を形成する際に,ゲートのパターニングに用いたレジストが残留し,重大欠陥を生ずる可能性があった。 In forming the gate insulating film, the resist may remain used for patterning of the gate, there can result a serious defect.

【0006】 [0006]

【発明が解決しようとする課題】従来の原子層堆積法で成膜された薄膜(ALD膜) の膜質が安定せず,白濁や点状のムラ等が発生する場合が多かった。 Film quality is not stable OF THE INVENTION Problems to be Solved] is deposited by conventional atomic layer deposition thin film (ALD film), cloudiness or point like unevenness or the like in many cases to occur. また, このような In addition, like this
ALD 膜でTFT 方式のLCD(液晶表示装置) のゲート絶縁膜を形成して評価素子を作成し,TFT 特性を測定しても耐圧試験による絶縁破壊, しきい値電圧のシフト等が発生していた。 In ALD film to form the gate insulating film of the LCD (liquid crystal display) of the TFT type creates an evaluation device, also dielectric breakdown due to pressure test measures the TFT characteristics, have shifted like the threshold voltage is generated It was.

【0007】また,従来のゲートはTi/Al の2層構造であり,製造工程も複雑となるため,単層ゲートのTFT の作成も望まれている。 Further, conventional gates are two-layer structure of Ti / Al, since the manufacturing process is complicated, it is desired also create a single-layer gate TFT. 本発明は上記の諸問題を改善し, The present invention improves the above problems,
膜質のよい成膜を生産性よく行えるようにすることを目的とする。 And an object thereof is to a good deposition film quality to allow good productivity.

【0008】 [0008]

【課題を解決するための手段】上記課題の解決は,1) Solving the problems SUMMARY OF THE INVENTION may, 1)
複数の原料ガス雰囲気中に交互に被成膜基板を曝す原子層堆積法による成膜方法であって,該被成膜基板の温度を室温から成膜温度まで上昇させる間に該被成膜基板を圧力が 0.1〜10 Torr の水蒸気雰囲気内に保ち,その後成膜を開始する成膜方法,あるいは2)前記水蒸気雰囲気に不活性ガスが添加されている前記1)記載の成膜装置,あるいは3)前記被成膜基板が金属膜配線が配設された絶縁性基板であり,その上に絶縁膜を成長する前記1)あるいは2)記載の成膜装置により達成される。 A film forming method according to atomic layer deposition of exposing the deposition target substrate alternately in a plurality of raw material gas atmosphere, 該被 deposition substrate while raising the temperature of 該被 deposition substrate from room temperature to the film-forming temperature was maintained at pressure within a water vapor atmosphere at 0.1 to 10 Torr, then a film formation method to start the deposition or 2) said water vapor atmosphere in the inert gas is added 1) film-forming apparatus according, or 3, ) wherein a insulating substrate deposition target substrate is a metal film wires is disposed, it is achieved by the 1) or 2) film forming apparatus according to grow an insulating film thereon.

【0009】 [0009]

【作用】原子層堆積法による成膜では,成膜開始初期の段階での核成長がその後の成膜状態を支配し,初期の成長条件を確実に設定して成膜を行えば,成長の中期以後の成膜条件の設定は難しくないことが多い。 In film formation by [action] atomic layer deposition, nucleation at the stage of the film formation initial stage dominates the subsequent film formation state, by performing the film formation by setting surely the initial growth conditions, the growth set of medium-term after the film formation conditions are often not difficult. しかしながら,初期条件を確実に設定しても,白濁,成膜ムラ等の欠陥が出る場合が多く,成膜開始前の処理が重要である。 However, setting the initial condition reliably, turbidity, may be out of defects such as deposition unevenness is large and the processing before the start of film deposition is important.

【0010】そこで,従来は, 成膜前の温度上昇時に前記のように低圧力の水蒸気雰囲気中で昇温を行うことにより,ゲート材にAl等を用いた時にその表面を酸化させ,アルミナの核成長を容易に行わせて欠陥の少ないAL [0010] Therefore, conventionally, by performing the heating in the low pressure water vapor atmosphere as above when the temperature rises before film formation, the surface is oxidized when using Al or the like to the gate material, alumina less AL defects by easily performed nucleus growth
D 膜を成長させるようにしていた。 I had to grow a D film.

【0011】しかし,水蒸気雰囲気で昇温を行う際に, [0011] However, when performing the temperature increase in the water vapor atmosphere,
水蒸気圧力が10 -2 Torr 以下と低い場合はアルミナ核の異常成長を促進する。 If water vapor pressure is less and less 10 -2 Torr promotes abnormal growth of the alumina core. そこで, 圧力を0.1 〜10 Torr と比較的高くするとアルミナ核の異常成長を抑え, 膜質のよい成膜ができることが本発明者の実験により判明した。 Therefore, to suppress the abnormal growth of the alumina core when relatively high 0.1 to 10 Torr pressure, that can be deposited film quality has been found by the inventors of the experiment. この際, 水蒸気雰囲気に不活性ガス(He, Ar, Ne,K At this time, the inert gas in a water vapor atmosphere (He, Ar, Ne, K
r, Xe 等) を添加して水蒸気圧を調整してもよい。 r, may be adjusted water vapor pressure was added to Xe, etc.).

【0012】なお,この水蒸気圧の限界は成長被膜の白濁, 欠陥の有無を確かめて実験的に決定した。 [0012] Incidentally, the limit of the water vapor pressure clouding growth film was determined experimentally verified for defects. また,このアルミナALD 膜をTFT 方式LCD パネルのゲート絶縁膜に使用する場合はゲートはAlの単層構造にすることが可能である。 Also, when using this alumina ALD film as the gate insulating film of the TFT type LCD panel gate can be a single-layer structure of Al. その理由は, アルミナALD膜とAlゲートは密着性がよく, 被覆性もよいからである。 The reason is that alumina ALD film and an Al gate adhesion good, because may coverage. その結果他の材料を使用したときよりもゲート絶縁膜の耐圧が高く, LC High withstand voltage of the gate insulating film than when using the results of other materials, LC
D パネルの画素欠陥特に点欠陥を防止することができる。 In particular pixel defect D panel can be prevented point defects.

【0013】さらに, ゲートをパターニングする際に生ずるレジスト残渣も,アルミナALD膜形成前に硫酸系エッチャントで除去することで, ゲート絶縁膜の信頼性を向上できる。 Furthermore, also the resist residue occurring at the time of patterning the gate, by removing a sulfuric acid-based etchant before the alumina ALD film formation, thereby improving the reliability of the gate insulating film.

【0014】 [0014]

【実施例】図1は本発明の実施例を説明するALD 装置の斜視図である。 DETAILED DESCRIPTION FIG. 1 is a perspective view of an ALD apparatus for explaining an embodiment of the present invention. 図において,反応室30の中に, 試料S を保持する回転体があり,成膜時, または昇温時にはこれを60rpm で回転させる。 In the figure, into the reaction chamber 30, there is rotary member for holding a sample S, which is rotated at 60rpm during deposition at, or heating. 反応室(成長チャンバ)内は, The reaction chamber (growth chamber), the
ターボ分子ポンプVPで排気して高真空となる。 A high vacuum is exhausted by the turbo molecular pump VP. 室温から成膜温度 500℃まで昇温する間, コントロールバルブV2 While raising the temperature from room temperature to the deposition temperature of 500 ° C., the control valve V2
を経て導入口N2より水蒸気を流し続け, オリフィス弁OF Continuous flow of steam from the inlet N2 through the orifice valve OF
で調節して反応室内の圧力を1 Torrにした。 And the pressure in the reaction chamber 1 Torr in adjusting to. この際, 水蒸気のキャリアガスとしてアルゴン(Ar)ガスを用い, その流量は 200 SCCM とした。 At this time, using argon (Ar) gas as a carrier gas of water vapor, the flow rate was 200 SCCM.

【0015】成膜時にはコントロールバルブV1を開き, [0015] to open the control valve V1 is at the time of film formation,
キャリアガスにArガスを用いてテトラメチルアルミ(TM Tetramethyl aluminum (TM using Ar gas as a carrier gas
A) ガス32を一定量導入した。 The A) gas 32 is introduced a certain amount. 該原料ガスの流量はH 2 O The flow rate of the raw material gas is H 2 O
ガスが 100 SCCM, TMAガスが 40 SCCMである。 Gas 100 SCCM, TMA gas is 40 SCCM. 各々の原料ガスが気相中で混合して反応しないように,バリアガスとしてArガス31をコントロールバルブV0を調節して導入口N0からカーテン状に 350 SCCM 流す。 As each of the source gas does not react by mixing in the gas phase, by adjusting the control valve V0 of the Ar gas 31 flow 350 SCCM from the inlet N0 like a curtain in a barrier gas.

【0016】各原料ガスは反応室に導入前にヒータによって加熱される。 [0016] Each raw material gas is heated by the heater prior to introduction into the reaction chamber. 加熱温度はH 2 O ガスが 80 ℃, TMA ガスが 65 ℃である。 The heating temperature is the H 2 O gas is 80 ° C., TMA gas is 65 ° C.. 実施例の試料としては,絶縁性ガラス基板上にAlゲートを形成したものを用い,その上にアルミナALD 膜を成膜した。 The sample of Example, used after forming the Al gate insulating glass substrate was formed an alumina ALD film thereon. 成膜前に硫酸系エッチャントでレジスト残渣の除去処理を行ったものと, 行わないものについて成膜を行った。 And having been subjected to the process of removing the resist residue in sulfuric acid-based etchant before the formation, the film formation for shall not conducted.

【0017】ALD 膜を約4000Å成膜するのに, 前記の回転数で5400回転の時間を要した。 [0017] to the ALD film about 4000Å deposition, it took 5400 rotation time at a rotational speed of the. このALD 膜の上にプラズマCVD 法により窒化シリコン(SiN) 膜を 500Å成長してゲート絶縁膜(層間絶縁膜)とした。 And a gate insulating film (interlayer insulating film) and silicon nitride (SiN) film is 500Å grown by plasma CVD on the ALD film.

【0018】図2(A),(B) は実施例と従来例のTFT の断面図である。 [0018] FIG. 2 (A), the cross-sectional views (B) in the embodiment and the conventional example of the TFT. 図において,1はガラス基板,2は実施例のゲートバスラインGBでAl膜, 2A,2Bは従来例のゲートバスラインGBでそれぞれAl膜, Ti膜, 3,4は実施例のゲート絶縁膜でそれぞれアルミナALD 膜, SiN 膜, In FIG, 1 is a glass substrate, Al film with the gate bus lines GB of Example 2, 2A, 2B the conventional example, respectively Al film with the gate bus lines GB of, Ti film, a gate insulating film of Examples 3 and 4 alumina ALD film, SiN film in each
3',4は従来例のゲート絶縁膜でSiO 2膜, SiN 膜, 5 3 ', 4 SiO 2 film with a gate insulating film of the conventional example, SiN film, 5
はチャネル層でアモルファスシリコン(a-Si)層, 6はコンタクト層で n +型a-Si層, 7はソースドレイン電極でチタン(Ti)膜, 8はチャネル保護膜でSiN 膜,9はドレインバスラインDBでAl膜, 10は画素電極(ITO 透明電極)である。 Amorphous silicon (a-Si) layer on the channel layer, n + -type a-Si layer in the contact layer 6, a titanium (Ti) film on the source drain electrode 7, 8 SiN film on the channel protection film, the drain 9 Al film in the bus line DB, 10 denotes a pixel electrode (ITO transparent electrode).

【0019】基板上において,各TFT のゲートを接続するゲートバスラインと直交して, 各TFT のドレインを接続するドレインバスラインDBまたは各TFT のソースを接続するソースバスラインとがゲート絶縁膜を介して配置されている。 [0019] In the substrate, perpendicular to the gate bus line connecting the gate of each TFT, the drain bus line DB or the source bus line and the gate insulating film to connect the source of each TFT connecting drain of each TFT It is arranged through.

【0020】 [0020]

【発明の効果】本発明によれば,膜質のよいALD 成膜が得られた。 According to the present invention, it was obtained good ALD deposition film quality. TFT 方式のLCD パネルの製造に本発明を適用すると,ALD 成膜前にゲート電極またはゲートバスラインと層間絶縁膜(ゲート絶縁膜)との界面においてアルミナ核の異常成長をさせることなく,アルミナ核形成を促進し,膜質のよいALD 膜が得られる。 When applying the present invention in the manufacture of LCD panel TFT type, without abnormal growth of alumina nuclei before ALD deposition at the interface between the gate electrode or the gate bus line and the interlayer insulating film (gate insulating film), alumina core It promotes the formation, quality good ALD film.

【0021】実施例に示した方法で形成されたALD 膜は, 水蒸気雰囲気中の昇温を行わないもの, または低圧力の水蒸気雰囲気中の昇温を行ったものに比べて白濁, [0021] ALD film formed by the method shown in Example, white turbidity as compared to that carried out those not perform the Atsushi Nobori of the steam atmosphere, or a low pressure heating in a steam atmosphere,
膜厚のムラ, 点状欠陥のないものが得られた。 Unevenness of the film thickness, those without point defects was obtained. また, 実施例のALD 膜で形成したパネルは絶縁耐圧が高く, TFT Further, the panel formed by ALD films of Examples have high withstand voltage, TFT
特性がよく, 表示ムラのないものが得られた。 Characteristics well, it was obtained having no display unevenness.

【0022】また,成膜前に硫酸系エッチャントでレジスト残渣の除去処理を行ったものは, 行わないものと比較してさらに良質な膜を得ることができた。 Further, having been subjected to the process of removing the resist residue in sulfuric acid-based etchant before the formation, it was possible to obtain a more high-quality film in comparison with not performed.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】 本発明の実施例を説明するALD 装置の斜視図 Perspective view of an ALD apparatus for explaining an embodiment of the invention, FIG

【図2】 実施例と従来例のTFT の断面図 2 is a cross-sectional view of the embodiment and the conventional example of TFT

【符号の説明】 DESCRIPTION OF SYMBOLS

1 ガラス基板 2 実施例のゲートバスラインGBでAl膜 2A, 2B 従来例のゲートバスラインGBでそれぞれAl膜, Al film 2A in one gate bus line GB of the glass substrate 2 Example, 2B conventional example, respectively Al film with the gate bus lines GB of
Ti膜 3,4 実施例のゲート絶縁膜でそれぞれアルミナALD Each alumina ALD gate insulating film of the Ti film 3 and 4 Example
膜,SiN 膜 3',4 従来例のゲート絶縁膜でSiO 2膜, SiN 膜 5 チャネル層でa-Si層 6 コンタクト層で n +型a-Si層 7 ソースドレイン電極でTi膜 8 チャネル保護膜でSiN 膜 9 ドレインバスラインDBでAl膜 10 画素電極(ITO 透明電極) Film, SiN film 3 ', 4 SiO 2 film with a gate insulating film of the conventional example, Ti film 8 channels protected with n + -type a-Si layer 7 source drain electrode in a-Si layer 6 contact layer is SiN film 5 channel layer Al film 10 pixel electrode in SiN film 9 drain bus line DB in film (ITO transparent electrode)

Claims (3)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 複数の原料ガス雰囲気中に交互に被成膜基板を曝す原子層堆積法による成膜方法であって,該被成膜基板の温度を室温から成膜温度まで上昇させる間に該被成膜基板を圧力が 0.1〜10 Torr の水蒸気雰囲気内に保ち,その後成膜を開始することを特徴とする成膜方法。 1. A film forming method according to a plurality of raw material gas atomic layer deposition exposing the deposition target substrate alternately in an atmosphere, the temperature of 該被 deposition substrate while raising from room temperature to the film forming temperature film forming method, wherein a 該被 deposition substrate pressure maintained in the water vapor atmosphere at 0.1 to 10 Torr, and then start the deposition.
  2. 【請求項2】 前記水蒸気雰囲気に不活性ガスが添加されていることを特徴とする請求項1記載の成膜装置。 2. A film forming apparatus according to claim 1, wherein the inert gas in the water vapor atmosphere is added.
  3. 【請求項3】 前記被成膜基板が金属膜配線が配設された絶縁性基板であり,その上に絶縁膜を成長することを特徴とする請求項1あるいは2記載の成膜装置。 Wherein a said insulating substrate deposition target substrate is a metal film wires are arranged, the film forming apparatus according to claim 1 or 2, wherein the growing the insulating film is formed thereon.
JP15255092A 1992-06-12 1992-06-12 Film-forming method Withdrawn JPH05343327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15255092A JPH05343327A (en) 1992-06-12 1992-06-12 Film-forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15255092A JPH05343327A (en) 1992-06-12 1992-06-12 Film-forming method

Publications (1)

Publication Number Publication Date
JPH05343327A true true JPH05343327A (en) 1993-12-24

Family

ID=15542921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15255092A Withdrawn JPH05343327A (en) 1992-06-12 1992-06-12 Film-forming method

Country Status (1)

Country Link
JP (1) JPH05343327A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001068639A (en) * 1999-06-28 2001-03-16 Hyundai Electronics Ind Co Ltd Semiconductor device and its manufacture
US7498059B2 (en) * 1994-11-28 2009-03-03 Asm America, Inc. Method for growing thin films
DE102008010041A1 (en) * 2007-09-28 2009-04-02 Osram Opto Semiconductors Gmbh Layer deposition apparatus, e.g. for epitaxial deposition of compound semiconductor layers, has segmented process gas enclosure in which substrate is moved relative to partition
JP2009147108A (en) * 2007-12-14 2009-07-02 Denso Corp Semiconductor chip and manufacturing method thereof
US7781326B2 (en) 2001-02-02 2010-08-24 Applied Materials, Inc. Formation of a tantalum-nitride layer
US8419855B2 (en) 2008-09-29 2013-04-16 Applied Materials, Inc. Substrate processing chamber with off-center gas delivery funnel
JP2016129243A (en) * 2016-02-25 2016-07-14 東京エレクトロン株式会社 Deposition method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7498059B2 (en) * 1994-11-28 2009-03-03 Asm America, Inc. Method for growing thin films
US8507039B2 (en) 1994-11-28 2013-08-13 Asm America, Inc. Method for growing thin films
US20090181169A1 (en) * 1994-11-28 2009-07-16 Asm America, Inc. Method for growing thin films
JP2001068639A (en) * 1999-06-28 2001-03-16 Hyundai Electronics Ind Co Ltd Semiconductor device and its manufacture
US7781326B2 (en) 2001-02-02 2010-08-24 Applied Materials, Inc. Formation of a tantalum-nitride layer
US9080237B2 (en) 2007-09-28 2015-07-14 Osram Opto Semiconductors Gmbh Layer depositing device and method for operating it
DE102008010041A1 (en) * 2007-09-28 2009-04-02 Osram Opto Semiconductors Gmbh Layer deposition apparatus, e.g. for epitaxial deposition of compound semiconductor layers, has segmented process gas enclosure in which substrate is moved relative to partition
JP2009147108A (en) * 2007-12-14 2009-07-02 Denso Corp Semiconductor chip and manufacturing method thereof
US8419855B2 (en) 2008-09-29 2013-04-16 Applied Materials, Inc. Substrate processing chamber with off-center gas delivery funnel
US8425977B2 (en) 2008-09-29 2013-04-23 Applied Materials, Inc. Substrate processing chamber with off-center gas delivery funnel
JP2016129243A (en) * 2016-02-25 2016-07-14 東京エレクトロン株式会社 Deposition method

Similar Documents

Publication Publication Date Title
US5374570A (en) Method of manufacturing active matrix display device using insulation layer formed by the ale method
US5733816A (en) Method for depositing a tungsten layer on silicon
US5489552A (en) Multiple layer tungsten deposition process
US6537910B1 (en) Forming metal silicide resistant to subsequent thermal processing
US5242530A (en) Pulsed gas plasma-enhanced chemical vapor deposition of silicon
US6017779A (en) Fabrication method for a thin film semiconductor device, the thin film semiconductor device itself, liquid crystal display, and electronic device
US6429097B1 (en) Method to sputter silicon films
US5972178A (en) Continuous process for forming improved titanium nitride barrier layers
US6436820B1 (en) Method for the CVD deposition of a low residual halogen content multi-layered titanium nitride film having a combined thickness greater than 1000 Å
US6355943B1 (en) Thin film transistor, method of producing the same, liquid crystal display, and thin film forming apparatus
US5858184A (en) Process for forming improved titanium-containing barrier layers
JPH11135774A (en) High-dielectric constant silicate gate dielectric
US5817576A (en) Utilization of SiH4 soak and purge in deposition processes
US5314848A (en) Method for manufacturing a semiconductor device using a heat treatment according to a temperature profile that prevents grain or particle precipitation during reflow
JPH1187341A (en) Film formation and film-forming apparatus
US20090029532A1 (en) Method for forming a microcrystalline silicon film
JP2001338922A (en) Film forming method and film forming apparatus
JP2002164345A (en) Method of depositing film
US5387542A (en) Polycrystalline silicon thin film and low temperature fabrication method thereof
JPH05102189A (en) Formation method of thin film, silicon thin film and formation method of silicon thin-film transistor
US5707744A (en) Solid phase epitaxial crystallization of amorphous silicon films on insulating substrates
JP2000235962A (en) Manufacture of barrier film
US7446023B2 (en) High-density plasma hydrogenation
JPH1050685A (en) Cvd apparatus and cleaning thereof
JPH09251996A (en) Manufacturing method for semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990831