JPH05323101A - Electromagnetic wave shielding film having antireflection property and its production - Google Patents

Electromagnetic wave shielding film having antireflection property and its production

Info

Publication number
JPH05323101A
JPH05323101A JP4155684A JP15568492A JPH05323101A JP H05323101 A JPH05323101 A JP H05323101A JP 4155684 A JP4155684 A JP 4155684A JP 15568492 A JP15568492 A JP 15568492A JP H05323101 A JPH05323101 A JP H05323101A
Authority
JP
Japan
Prior art keywords
film
conductive layer
layer
electromagnetic wave
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4155684A
Other languages
Japanese (ja)
Inventor
Takao Igarashi
孝雄 五十嵐
Hiromi Sakuma
広美 佐久間
Hiroshi Uehara
浩 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP4155684A priority Critical patent/JPH05323101A/en
Publication of JPH05323101A publication Critical patent/JPH05323101A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an electromagnetic waves shielding film excellent in antireflection property and to provide the production method of this film. CONSTITUTION:The electromagnetic waves shielding film having antireflecting property is obtd. by forming a transparent inorg. conductive layer on the surface of a transparent synthetic resin film and further forming a layer having lower refractive index than that of the conductive layer. Moreover, the surface of the transparent inorg. conductive film formed on a transparent synthetic resin film is exposed to low temp. plasma, and then a layer having lower refractive index than that of the conductive layer is formed thereon.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、導電層の光線反射を防
止した電磁波シールドフィルム、およびその製造方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic wave shield film in which a conductive layer is prevented from reflecting light rays, and a method for producing the same.

【0002】[0002]

【従来技術および発明が解決しようとする課題】各種コ
ンピュータ、ワードプロセッサーなどの各種OAディス
プレイや家庭用テレビで使われている陰極線管(以後C
RTと略す)からは、有害な電磁波が多量に発生してお
り、これらの装置によるオペレーターへの健康障害が指
摘されている。
2. Description of the Related Art Cathode ray tubes (hereinafter C) used in various OA displays such as computers and word processors and home televisions.
It has been pointed out that a large amount of harmful electromagnetic waves are generated from RT (abbreviated as RT), and that health hazards to the operator due to these devices are impaired.

【0003】従来より上記障害を防ぐため種々の提案が
なされており、例えば導電性金属メッシュ自体をディス
プレイ全面に貼付けしたり、導電性金属メッシュをガラ
スや透明プラスチック板で挟んだ合わせ板をディスプレ
イ全面に装着したりするなどしていた。しかし、これら
の方法では導電性メッシュを使用しているため、オペレ
ーターにはディスプレイに表示された文字が見えにくい
という問題があった。この問題を解決するため、に可視
光線を透過しかつ導電性に優れ電磁波を有効に遮蔽でき
ることで知られる酸化インジウムと酸化スズの混合膜
(以下ITO膜という)を導電層として利用する方法が
考えられる。しかしながら、市販され広く用いられてい
るITO膜を設けたポリエチレンテレフタレートフィル
ムを用いた場合には、ITO膜がポリエチレンテレフタ
レートフィルムよりも屈折率が高く、光線反射率が大き
いため、各種コンピュータ、ワードプロセッサーなどの
各種OAディスプレイの前面板等、背景の写り込みを嫌
う用途では使えないという問題があった。
Various proposals have heretofore been made to prevent the above-mentioned obstacles. For example, a conductive metal mesh itself is stuck on the entire surface of the display, or a laminated plate in which the conductive metal mesh is sandwiched between glass and a transparent plastic plate is displayed on the entire display. I was wearing it on the. However, in these methods, since the conductive mesh is used, there is a problem that it is difficult for the operator to see the characters displayed on the display. In order to solve this problem, a method of using a mixed film of indium oxide and tin oxide (hereinafter referred to as an ITO film), which is known for transmitting visible light and excellent in conductivity and effectively shielding electromagnetic waves, as a conductive layer is considered. Be done. However, when a polyethylene terephthalate film provided with an ITO film which is commercially available and widely used is used, the ITO film has a higher refractive index and a larger light reflectance than the polyethylene terephthalate film. There is a problem that it cannot be used in applications such as the front plate of various OA displays where the reflection of the background is disliked.

【0004】したがって、本発明の目的は、反射防止性
に優れた電磁波シールドフィルムおよび該フィルムの製
造方法を提供することにある。
Therefore, an object of the present invention is to provide an electromagnetic wave shielding film excellent in antireflection property and a method for producing the film.

【0005】[0005]

【課題を解決するための手段】上記目的は、本発明によ
れば、透明合成樹脂フィルムの表面に透明無機導電層を
設け、さらにその表層に導電層よりも低い屈折率の層を
設けた反射防止性を有する電磁波シールドフィルム、お
よび透明合成樹脂フィルム上に設けられた透明無機導電
層の表面を低温プラズマに曝した後、透明無機導電層の
表面に導電層よりも低い屈折率の層を形成する反射防止
性を有する電磁波シールドフィルムの製造方法により達
成される。
According to the present invention, the above object is achieved by providing a transparent inorganic conductive layer on the surface of a transparent synthetic resin film, and further providing a layer having a refractive index lower than that of the conductive layer on the surface layer thereof. After exposing the surface of the transparent electromagnetic conductive layer provided on the electromagnetic wave shielding film and the transparent synthetic resin film having the prevention property to low temperature plasma, a layer having a lower refractive index than the conductive layer is formed on the surface of the transparent inorganic conductive layer. This is achieved by a method for producing an electromagnetic wave shielding film having antireflection property.

【0006】本発明で用いる透明合成樹脂フィルムとし
ては、この表層に透明導電層が密着性良好に形成され得
るものであればいかなるものであっても良いが、ロール
処理に適した機械的強度を有し、比較的安価に入手可能
なポリエチレンテレフタレート(以下PETと略称す
る)フィルムが最も好ましい。透明合成樹脂フィルムの
厚みは特に限定されるものではないが通常6μm〜35
0μm、好ましくは25μm〜150μm、最も好まし
くは50μm〜125μmである。
The transparent synthetic resin film used in the present invention may be any one as long as a transparent conductive layer can be formed on this surface layer with good adhesion, but it has a mechanical strength suitable for roll treatment. A polyethylene terephthalate (hereinafter abbreviated as PET) film, which is available at a relatively low cost, is most preferable. Although the thickness of the transparent synthetic resin film is not particularly limited, it is usually 6 μm to 35 μm.
It is 0 μm, preferably 25 μm to 150 μm, and most preferably 50 μm to 125 μm.

【0007】本発明で透明合成樹脂フィルムの表面に設
けられ透明無機導電層とは、濁りなどのない実質的に可
視光線を透過する無機質のものであればいかなるもので
あってもよいが、透明性、機械的強度の点からIn2
3 (酸化インジウム)、SnO2 (酸化スズ)、または
In23 とSnO2 の混合物(以下ITOという)か
らなる層が好ましく、ITOからなる層が最も好まし
い。上記導電層の膜厚は、本発明の性能を発揮できる程
度の膜厚であれば特に限定されるものではないが、通常
500Å〜5000Å、膜密着性、透明性の点から70
0Å〜2000Åが好ましい。上記ITOからなる層
は、一般にスパッタリング法や酸素プラズマ中でのイオ
ンプレーティング法などにより形成することができる。
In the present invention, the transparent inorganic conductive layer provided on the surface of the transparent synthetic resin film may be any inorganic material that is substantially transparent to visible light and has no turbidity. In 2 O from the viewpoint of the mechanical properties and mechanical strength
A layer made of 3 (indium oxide), SnO 2 (tin oxide), or a mixture of In 2 O 3 and SnO 2 (hereinafter referred to as ITO) is preferable, and a layer made of ITO is most preferable. The film thickness of the conductive layer is not particularly limited as long as it can exhibit the performance of the present invention, but is usually 500 Å to 5000 Å, 70 from the viewpoint of film adhesion and transparency.
0Å to 2000Å is preferable. The layer made of ITO can be generally formed by a sputtering method or an ion plating method in oxygen plasma.

【0008】本発明で用いる前記導電層よりも低い屈折
率の層とは、特に限定されるものではないが、例えば、
SiO2 (二酸化珪素)、MgF2 (フッ化マグネシウ
ム)、Al23 (酸化アルミニウム)などの無機誘電
体、有機ポリシロキサン重縮合膜、メタクリル酸エステ
ル化合物の架橋膜などの有機物塗膜などからなる層であ
る。これらのうち、反射防止性能と耐擦傷性などの機械
的強度の点でSiO2からなる層が最も好ましい。上記
低屈折率層の膜厚は可視光線の反射を防止できる程度で
あれば特に限定されるものではないが、可視光線領域に
おける光学膜厚(幾何学膜厚×膜の屈折率)がλ/4と
なる膜厚が最も好ましい(ここでλは光線の波長(n
m)である)。無機誘電体からなる層の形成方法として
は、スパッタリング法、イオンプレーティング法あるい
は真空蒸着法があげられるが、これらの方法により形成
された無機誘電体層は、ITO膜との密着性が十分とは
いえず、使用状態によっては無機誘電体層がITO膜か
ら剥離したり、傷がついたりする可能性があり、膜強度
の点で、透明無機導電層の表面に前記無機誘電体層を形
成する前に、透明導電層の表面を低温プラズマに曝す処
理を施すことがより好ましい。特に成膜装置の制限、ラ
ンニングコスト、装置メンテナンス等の点で最も有利な
真空蒸着法によって密着性良好な上記無機誘電体層を形
成する場合には、上記低温プラズマによる透明無機導電
層の表面前処理が必要である。低温プラズマは、減圧状
態の槽内にガスを導入し、槽内の電極に、直流、交流、
高周波電圧を印加することによって発生される。ここで
使用されるガスは、特に限定されるものではないが、好
ましくは酸素、アルゴンであり、ITO膜の電気的特性
劣化の危険性をなくする目的からアルゴンガスが最も好
ましい。用いられるガスの圧力は、プラズマ状態が安定
する範囲であれば特に限定されるものではないが、好ま
しくは5×10-5〜1×10-1Torrである。低温プ
ラズマ処理時間は、プラズマの状態により異なるが、通
常約10秒以上で十分な処理効果が得られる。無機誘電
体層の形成は、透明無機導電層の表面を低温プラズマ処
理した後に一旦大気中にさらした後でもさしつかえない
が、大気中のゴミによる汚染を防ぐ目的から、透明無機
導電層の表面を低温プラズマ処理した直後に行うことが
より好ましい。
The layer having a refractive index lower than that of the conductive layer used in the present invention is not particularly limited.
From inorganic dielectrics such as SiO 2 (silicon dioxide), MgF 2 (magnesium fluoride), Al 2 O 3 (aluminum oxide), organic polysiloxane polycondensation films, organic coating films such as crosslinked films of methacrylic acid ester compounds It is a layer. Among these, a layer made of SiO 2 is most preferable in terms of antireflection performance and mechanical strength such as scratch resistance. The film thickness of the low refractive index layer is not particularly limited as long as it can prevent reflection of visible light, but the optical film thickness in the visible light region (geometric film thickness × refractive index of film) is λ / A film thickness of 4 is most preferable (where λ is the wavelength of the light beam (n
m)). Examples of the method for forming the layer made of an inorganic dielectric include a sputtering method, an ion plating method, and a vacuum vapor deposition method. An inorganic dielectric layer formed by these methods has sufficient adhesion to the ITO film. However, the inorganic dielectric layer may be peeled off or scratched from the ITO film depending on the usage conditions. In terms of film strength, the inorganic dielectric layer is formed on the surface of the transparent inorganic conductive layer. It is more preferable to perform a treatment of exposing the surface of the transparent conductive layer to low-temperature plasma before the treatment. In particular, when the inorganic dielectric layer having good adhesion is formed by the vacuum vapor deposition method, which is most advantageous in terms of film forming apparatus limitation, running cost, apparatus maintenance, etc., in front of the surface of the transparent inorganic conductive layer by the low temperature plasma. Processing is required. The low-temperature plasma introduces gas into the tank under reduced pressure, and directs, AC,
It is generated by applying a high frequency voltage. The gas used here is not particularly limited, but is preferably oxygen or argon, and argon gas is most preferable from the viewpoint of eliminating the risk of deterioration of electrical characteristics of the ITO film. The pressure of the gas used is not particularly limited as long as the plasma state is stable, but is preferably 5 × 10 −5 to 1 × 10 −1 Torr. Although the low-temperature plasma treatment time varies depending on the plasma state, a sufficient treatment effect is usually obtained when it is about 10 seconds or longer. The formation of the inorganic dielectric layer may be carried out after the surface of the transparent inorganic conductive layer is exposed to the air after low-temperature plasma treatment, but the surface of the transparent inorganic conductive layer is formed to prevent contamination by dust in the air. More preferably, it is performed immediately after the low temperature plasma treatment.

【0009】本発明によれば、透明無機導電層を導線な
どで接地しなくても電磁波シールド効果が発現すること
が確認されている。しかし、帯電防止性や加温による防
曇性等の付与のために、透明無機導電層の接地や導線と
の接続を必要とする場合は、各々目的に適したマスク技
術により、導電層の一部が絶縁体層に被覆されないよう
な工夫をすることができる。
According to the present invention, it has been confirmed that the electromagnetic wave shielding effect is exhibited even if the transparent inorganic conductive layer is not grounded by a conductor or the like. However, when it is necessary to ground the transparent inorganic conductive layer or connect it to a conductive wire in order to impart antistatic property or antifogging property due to heating, etc. It is possible to devise such that the portion is not covered with the insulating layer.

【0010】[0010]

【実施例】以下実施例を挙げて本発明をさらに具体的に
説明する。
EXAMPLES The present invention will be described in more detail with reference to the following examples.

【0011】実施例1、比較例1 市販のPETフィルム(東レ株式会社製“ルミラー”T
タイプ)の50μm品の片面にITO膜をイオンプレー
ティング法で成膜した。ITOは、SnO2 5重量%含
有の焼結ペレット品を使用し、酸素低温プラズマ中で、
電子ビームで加熱し蒸発させた。PETフィルム上への
堆積速度は約1.5Å/秒、膜厚は約800Åであっ
た。一旦大気中に取りだし、次にITO膜付きPETフ
ィルムを真空蒸着装置((株)昭和真空製SGCー16
WA)の真空槽内のプラネタリーに取付け、真空槽内を
真空ポンプで排気し、3×10-5Torrに到達したと
ころでアルゴンガスを1×10-4Torrまで槽内に導
入しながら、槽内に配置したコイル状電極に13.56
MHzの高周波電力を出力600W印加したところ、真
空槽内全体に赤紫色のプラズマが発生した。ITO膜面
を上記プラズマ雰囲気に1分間曝した後、電極への高周
波電力の印加とアルゴンガスの導入を停止しプラズマ処
理を終えた。真空槽内の圧力は5×10-5Torrであ
った。続いてSiO2 を電子ビームで加熱蒸発させ上記
ITO膜上に堆積させた。堆積速度は約18Å/秒、膜
厚は約940Åであった。得られた表面処理フィルムに
ついて5度正光線反射率、膜の密着性、表面の耐擦傷
性、および電磁波シールド性の各項目について評価し
た。5度正光線反射率は日立製作所製自記分光光度計U
−3400型で測定した。SiO2 膜を形成する前のフ
ィルムの可視光線領域の分光光線反射率スペクトル(I
TO膜側から測定)を図1に、ITO膜上にSiO2
を形成したフィルムの可視光線領域の分光光線反射率ス
ペクトル(SiO2膜側から測定)を図2に示す。55
0nm波長での光線反射率は、SiO2 膜を形成する前
は約20%(裏面反射を含む)であった(比較例1)の
に対し、ITO膜上にSiO2 膜を形成したフィルムの
それは約6%(裏面反射を含む)に低減し、光線反射に
よるギラつき感は全く感じられなかった。膜の密着性
は、ITO膜およびSiO2 膜側からカッターナイフに
よって約1cm2面積中に100ケの碁盤目を切り込
み、その上にセロハンテープを均一に貼り付けた後に9
0度の角度ですばやく引き剥がす方法で評価したとこ
ろ、共に膜の剥離はなく、密着性良好であった。表面の
耐擦傷性は、ネル布で400g/cm2の荷重をかけな
がら100往復擦ったときの傷の発生状況を観察する方
法で評価したところ、共に傷の発生はなく良好であっ
た。電磁波シールド性は、(財)関西電子工業振興セン
ター法のセルを使用した近接電界シールド効果測定にて
評価したところ、周波数300MHzにおける電磁波の
減衰率は、共に17デシベルであった。さらに、50℃
・90%RHの環境下に96時間放置した後に同様の評
価をおこなったが、いずれの項目も変化なく、耐久性も
良好であることがわかった。以上の結果を表1に示し
た。
Example 1, Comparative Example 1 Commercial PET film ("Lumirror" T manufactured by Toray Industries, Inc.
An ITO film was formed on one surface of a (type) 50 μm product by an ion plating method. For ITO, a sintered pellet product containing 5% by weight of SnO 2 was used.
It was heated with an electron beam and evaporated. The deposition rate on the PET film was about 1.5Å / sec and the film thickness was about 800Å. Once taken out into the atmosphere, the PET film with ITO film was then vacuum-deposited (Showa Vacuum SGC-16).
WA) attached to a planetary in a vacuum chamber, the vacuum chamber was evacuated by a vacuum pump, and when reaching 3 × 10 −5 Torr, while introducing argon gas into the chamber up to 1 × 10 −4 Torr, 13.56 on the coiled electrode placed inside
When high-frequency power of MHz was applied at an output of 600 W, reddish purple plasma was generated in the entire vacuum chamber. After the ITO film surface was exposed to the above plasma atmosphere for 1 minute, the application of high frequency power to the electrodes and the introduction of argon gas were stopped to complete the plasma treatment. The pressure in the vacuum chamber was 5 × 10 −5 Torr. Subsequently, SiO 2 was heated and evaporated by an electron beam to be deposited on the ITO film. The deposition rate was about 18Å / sec and the film thickness was about 940Å. The surface-treated film thus obtained was evaluated with respect to each item of 5 degree normal light reflectance, film adhesion, surface scratch resistance, and electromagnetic wave shielding property. 5 degree specular reflectance is Hitachi's own recording spectrophotometer U
It was measured with -3400 type. Spectral light reflectance spectrum (I in the visible light region of the film before forming the SiO 2 film)
FIG. 1 shows the TO film side (measured from the TO film side), and FIG. 2 shows the spectral reflectance spectrum (measured from the SiO 2 film side) in the visible light region of the film in which the SiO 2 film is formed on the ITO film. 55
The light reflectance at the wavelength of 0 nm was about 20% (including the back surface reflection) before the SiO 2 film was formed (Comparative Example 1), whereas the film having the SiO 2 film formed on the ITO film was compared. It was reduced to about 6% (including back reflection), and no glare due to light reflection was felt. The adhesiveness of the film was determined by cutting 100 cross-cuts in an area of about 1 cm 2 from the ITO film and SiO 2 film side with a cutter knife, and applying 9 pieces of cellophane tape evenly on it.
When evaluated by a method of quickly peeling off at an angle of 0 degree, neither film peeled off, and the adhesion was good. The scratch resistance of the surface was evaluated by a method of observing the occurrence of scratches when rubbing with a flannel cloth under a load of 400 g / cm 2 for 100 reciprocations. The electromagnetic wave shielding property was evaluated by a near electric field shield effect measurement using a cell of the Kansai Electronics Industry Promotion Center method. As a result, the electromagnetic wave attenuation rate at a frequency of 300 MHz was 17 decibels. Furthermore, 50 ℃
-The same evaluation was performed after leaving it in an environment of 90% RH for 96 hours, and it was found that all the items did not change and the durability was good. The above results are shown in Table 1.

【0012】実施例2 PETフィルムにITO膜を成膜する代わりに市販の透
明導電膜(ITO)付PETフィルム(東洋メタライジ
ング(株)製“メタクリスタ”T−R60、PETの厚
み50μm)を用いる以外は、実施例1と同様にして、
ITO膜面をアルゴンガス低温プラズマ処理し、SiO
2 膜を蒸着した。得られた表面処理フィルムの性能を実
施例1と同様の方法で評価したとこころ、600nm波
長での光線反射率は約6%(裏面反射を含む)であり、
光線反射によるギラつき感は全く感じられなかった。S
iO2 膜の密着性、耐擦傷性共に良好であり、周波数3
00MHzにおける電磁波の減衰率は19デシベルであ
った。さらに、50℃・90%RHの環境下に96時間
放置した後に同様の評価をおこなったが、いずれの項目
も変化なく、耐久性も良好であることがわかった。以上
の結果の表1に示した。
Example 2 Instead of forming an ITO film on a PET film, a commercially available PET film with a transparent conductive film (ITO) (“METASTAR” T-R60 manufactured by Toyo Metalizing Co., Ltd., PET thickness 50 μm) is used. Except for the above, in the same manner as in Example 1,
The ITO film surface is subjected to low temperature plasma treatment with argon gas,
Two films were deposited. When the performance of the obtained surface-treated film was evaluated by the same method as in Example 1, the light reflectance at a wavelength of 600 nm was about 6% (including backside reflection),
No glare due to light reflection was felt. S
The adhesion and scratch resistance of the iO 2 film are good, and the frequency 3
The attenuation rate of electromagnetic waves at 00 MHz was 19 decibels. Furthermore, the same evaluation was performed after leaving it in an environment of 50 ° C. and 90% RH for 96 hours, and it was found that all the items did not change and the durability was good. The results are shown in Table 1.

【0013】実施例3 ITO膜面のアルゴンガス低温プラズマ処理条件を、真
空槽内の到達圧力3×10-5Torr、アルゴンガス導
入後圧力1×10-4Torr、周波数13.56MH
z、出力200Wで処理時間15秒とした以外は実施例
2と同様にしてPET/ITO/SiO2 フィルムを得
た。得られた表面処理フィルムの性能を実施例1と同様
の方法で評価したとこころ、600nm波長での光線反
射率は約6%(裏面反射を含む)であり、光線反射によ
るギラつき感は全く感じられなかった。SiO2 膜の密
着性、耐擦傷性共に良好であり、周波数300MHzに
おける電磁波の減衰率は19デシベルであった。さら
に、50℃・90%RHの環境下に96時間放置した後
に同様の評価をおこなったが、いずれの項目も変化な
く、耐久性も良好であることがわかった。以上の結果を
表1に示した。
Example 3 Argon gas low temperature plasma treatment conditions on the ITO film surface were as follows: ultimate pressure in the vacuum chamber was 3 × 10 −5 Torr, pressure after introducing argon gas was 1 × 10 −4 Torr, frequency 13.56 MH.
A PET / ITO / SiO 2 film was obtained in the same manner as in Example 2 except that the z and the output were 200 W and the processing time was 15 seconds. When the performance of the obtained surface-treated film was evaluated in the same manner as in Example 1, the light reflectance at a wavelength of 600 nm was about 6% (including back surface reflection), and no glare due to light reflection was observed. I couldn't feel it. The SiO 2 film had good adhesion and scratch resistance, and the attenuation factor of electromagnetic waves at a frequency of 300 MHz was 19 decibels. Furthermore, the same evaluation was performed after leaving it in an environment of 50 ° C. and 90% RH for 96 hours, and it was found that all the items did not change and the durability was good. The above results are shown in Table 1.

【0014】実施例4 ITO膜面のアルゴンガス低温プラズマ処理条件を、真
空槽内の到達圧力3×10-5Torr、アルゴンガス導
入後圧力1×10-4Torr、周波数13.56MH
z、出力800Wで処理時間5分とした以外は実施例2
と同様にしてPET/ITO/SiO2 フィルムを得
た。得られた表面処理フィルムの性能を実施例1と同様
の方法で評価したとこころ、600nm波長での光線反
射率は約6%(裏面反射を含む)であり、光線反射によ
るギラつき感は全く感じられなかった。SiO2 膜の密
着性、耐擦傷性共に良好であり、周波数300MHzに
おける電磁波の減衰率は19デシベルであった。さら
に、50℃・90%RHの環境下に96時間放置した後
に同様の評価をおこなったが、いずれの項目も変化な
く、耐久性も良好であることがわかった。以上の結果を
表1に示した。
Example 4 The conditions of low temperature argon gas plasma treatment of the ITO film surface were as follows: ultimate pressure in the vacuum chamber was 3 × 10 −5 Torr, pressure after introducing argon gas was 1 × 10 −4 Torr, frequency 13.56 MH.
Example 2 except that the processing time was 5 minutes at z and an output of 800 W
A PET / ITO / SiO 2 film was obtained in the same manner as in. When the performance of the obtained surface-treated film was evaluated in the same manner as in Example 1, the light reflectance at a wavelength of 600 nm was about 6% (including back surface reflection), and no glare due to light reflection was observed. I couldn't feel it. The SiO 2 film had good adhesion and scratch resistance, and the attenuation factor of electromagnetic waves at a frequency of 300 MHz was 19 decibels. Furthermore, the same evaluation was performed after leaving it in an environment of 50 ° C. and 90% RH for 96 hours, and it was found that all the items did not change and the durability was good. The above results are shown in Table 1.

【0015】実施例5 SiO2 の代わりにMgF2 (フッ化マグネシウム)を
真空蒸着法で成膜する以外は実施例2と同様にしてPE
T/ITO/MgF2 フィルムを得た。成膜条件は、真
空槽内圧力5×10-5Torr、電子ビーム加熱、堆積
速度は約25Å/秒、膜厚は約1000Åであった。こ
のフィルムの性能を実施例1と同様の方法で評価したと
ころ、600nm波長での光線反射率は約6%(裏面反
射を含む)であり、光線反射によるギラつき感は全く感
じられなかった。MgF2 膜の密着性、耐擦傷性共に良
好であり、周波数300MHzにおける電磁波の減衰率
は19デシベルであった。50℃・90%RHの環境下
に96時間放置した後に同様の評価をおこなったとこ
ろ、耐擦傷性試験において若干の傷の発生が見られた。
しかし、それ以外は、変化なく耐久性も良好であった。
以上の結果を表1に示した。
[0015] except for forming by vacuum deposition MgF 2 (magnesium fluoride) in place of Example 5 SiO 2 in the same manner as in Example 2 PE
A T / ITO / MgF 2 film was obtained. The film forming conditions were a vacuum chamber pressure of 5 × 10 −5 Torr, electron beam heating, a deposition rate of about 25Å / sec, and a film thickness of about 1000Å. When the performance of this film was evaluated by the same method as in Example 1, the light reflectance at a wavelength of 600 nm was about 6% (including back surface reflection), and no glare due to light reflection was felt. The adhesion and scratch resistance of the MgF 2 film were good, and the attenuation factor of electromagnetic waves at a frequency of 300 MHz was 19 decibels. When the same evaluation was performed after leaving it in the environment of 50 ° C. and 90% RH for 96 hours, some scratches were found in the scratch resistance test.
However, other than that, the durability was good without any change.
The above results are shown in Table 1.

【0016】比較例2 ITO膜面のアルゴンガス低温プラズマ処理を実施しな
い以外は実施例1と同様にしてPET/ITO/SiO
2 フィルムを得た。SiO2 膜の密着性を実施例1と同
様に評価したところ、セロハンテープに密着した全面積
でSiO2 膜が剥離した。結果を表1に示した。
Comparative Example 2 PET / ITO / SiO was prepared in the same manner as in Example 1 except that the low temperature argon gas plasma treatment of the ITO film surface was not carried out.
2 films were obtained. When the adhesion of the SiO 2 film was evaluated in the same manner as in Example 1, the SiO 2 film was peeled off in the entire area of adhesion to the cellophane tape. The results are shown in Table 1.

【0017】比較例3 ITO膜面のアルゴンガス低温プラズマ処理を実施しな
い以外は、実施例5と同様にしてPET/ITO/Mg
2フィルムを得た。MgF2 膜の密着性を実施例1と
同様に評価したところ、セロハンテープに密着した全面
積でMgF2 膜が剥離した。結果を表1に示した。
Comparative Example 3 PET / ITO / Mg was prepared in the same manner as in Example 5 except that the argon gas low temperature plasma treatment was not performed on the ITO film surface.
An F 2 film was obtained. When the adhesiveness of the MgF 2 film was evaluated in the same manner as in Example 1, the MgF 2 film was peeled off in the entire area in which it was adhered to the cellophane tape. The results are shown in Table 1.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【発明の効果】本発明は以上述べたように、透明合成樹
脂フィルムの表面に透明無機導電層を設け、その表層に
前記導電層よりも低い屈折率の層を設けた構成を有する
電磁波シールドフィルムであるから、電磁波シールド性
を有し、かつ視認性に優れ、導電層の光線反射を防止し
た電磁波シールドフィルムを提供することができる。さ
らに、透明無機導電層の表面をアルゴンガスなどの低温
プラズマに曝した後に、透明無機導電層の表面に導電層
よりも低い屈折率の層を形成する方法により、膜密着
性、耐擦傷性などの膜強度の耐久性が優れた、電磁波シ
ールド性を有し、かつ視認性に優れ、導電層の光線反射
を防止した電磁波シールドフィルムを提供することがで
きる。
As described above, the present invention provides an electromagnetic wave shielding film having a structure in which a transparent inorganic conductive layer is provided on the surface of a transparent synthetic resin film and a layer having a refractive index lower than that of the conductive layer is provided on the surface layer thereof. Therefore, it is possible to provide an electromagnetic wave shielding film having an electromagnetic wave shielding property, excellent visibility, and preventing the conductive layer from reflecting light rays. Furthermore, by exposing the surface of the transparent inorganic conductive layer to low temperature plasma such as argon gas, and then forming a layer having a refractive index lower than that of the conductive layer on the surface of the transparent inorganic conductive layer, film adhesion, scratch resistance, etc. It is possible to provide an electromagnetic wave shielding film having excellent film strength durability, electromagnetic wave shielding property, excellent visibility, and preventing light reflection of the conductive layer.

【図面の簡単な説明】[Brief description of drawings]

【図1】SiO2膜を形成する前のフィルムの可視光線
領域の分光光線反射率スペクトルを示す図である。
FIG. 1 is a diagram showing a spectral reflectance spectrum in a visible light region of a film before forming a SiO 2 film.

【図2】ITO膜上にSiO2膜を形成したフィルムの
可視光線領域の分光光線反射率スペクトルを示す図であ
る。
FIG. 2 is a diagram showing a spectral reflectance spectrum in a visible light region of a film having a SiO 2 film formed on an ITO film.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 透明合成樹脂フィルムの表面に透明無機
導電層を設け、さらにその表層に導電層よりも低い屈折
率の層を設けたことを特徴とする反射防止性を有する電
磁波シールドフィルム。
1. An electromagnetic wave shielding film having antireflection properties, comprising a transparent inorganic conductive layer provided on the surface of a transparent synthetic resin film, and a layer having a refractive index lower than that of the conductive layer provided on the surface thereof.
【請求項2】 透明合成樹脂フィルムがポリエチレンテ
レフタレート樹脂フィルムであり、透明無機導電層がI
23 とSnO2 の混合物からなる層であり、かつ導
電層よりも低い屈折率の層がSiO2 からなる層である
請求項1記載の電磁波シールドフィルム。
2. The transparent synthetic resin film is a polyethylene terephthalate resin film, and the transparent inorganic conductive layer is I.
The electromagnetic wave shielding film according to claim 1, wherein the layer made of a mixture of n 2 O 3 and SnO 2 and having a lower refractive index than the conductive layer is a layer made of SiO 2 .
【請求項3】 透明合成樹脂フィルム上に設けられた透
明無機導電層の表面を低温プラズマに曝した後、前記導
電層の表面に、導電層よりも低い屈折率の層を形成する
ことを特徴とする反射防止性を有する電磁波シールドフ
ィルムの製造方法。
3. A surface of a transparent inorganic conductive layer provided on a transparent synthetic resin film is exposed to low temperature plasma, and then a layer having a refractive index lower than that of the conductive layer is formed on the surface of the conductive layer. And a method for producing an electromagnetic wave shielding film having antireflection property.
JP4155684A 1992-05-22 1992-05-22 Electromagnetic wave shielding film having antireflection property and its production Pending JPH05323101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4155684A JPH05323101A (en) 1992-05-22 1992-05-22 Electromagnetic wave shielding film having antireflection property and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4155684A JPH05323101A (en) 1992-05-22 1992-05-22 Electromagnetic wave shielding film having antireflection property and its production

Publications (1)

Publication Number Publication Date
JPH05323101A true JPH05323101A (en) 1993-12-07

Family

ID=15611304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4155684A Pending JPH05323101A (en) 1992-05-22 1992-05-22 Electromagnetic wave shielding film having antireflection property and its production

Country Status (1)

Country Link
JP (1) JPH05323101A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997026566A1 (en) * 1996-01-18 1997-07-24 Toyo Metallizing Co., Ltd. Plastic optical article having multi-layered antireflection film
US6086979A (en) * 1997-11-11 2000-07-11 Hitachi Chemical Company, Ltd. Electromagnetically shielding bonding film, and shielding assembly and display device using such film
US6207266B1 (en) 1997-06-03 2001-03-27 Hitachi Chemical Company, Ltd. Electromagnetically shielding bonding film
US6583935B1 (en) * 1998-05-28 2003-06-24 Cpfilms Inc. Low reflection, high transmission, touch-panel membrane
US6733869B2 (en) 2002-02-21 2004-05-11 Dai Nippon Printing Co., Ltd. Electromagnetic shielding sheet and method of producing the same
US7236064B2 (en) 2004-09-23 2007-06-26 Samsung Electro-Mechanics Co. Ltd. Laminated balun transformer
WO2009151056A1 (en) 2008-06-10 2009-12-17 ダイセル化学工業株式会社 Layered product having porous layer and functional layered product made with the same
US7732038B2 (en) 2004-07-12 2010-06-08 Dai Nippon Printing Co., Ltd. Electromagnetic wave shielding filter
DE10393020B4 (en) * 2002-08-08 2011-11-17 Dai Nippon Printing Co., Ltd. Electromagnetic shielding sheet and method of making the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997026566A1 (en) * 1996-01-18 1997-07-24 Toyo Metallizing Co., Ltd. Plastic optical article having multi-layered antireflection film
US6207266B1 (en) 1997-06-03 2001-03-27 Hitachi Chemical Company, Ltd. Electromagnetically shielding bonding film
US6086979A (en) * 1997-11-11 2000-07-11 Hitachi Chemical Company, Ltd. Electromagnetically shielding bonding film, and shielding assembly and display device using such film
US6197408B1 (en) 1997-11-11 2001-03-06 Hitachi Chemical Company, Ltd. Electromagnetically shielding bonding film, and shielding assembly and display device using such film
US6583935B1 (en) * 1998-05-28 2003-06-24 Cpfilms Inc. Low reflection, high transmission, touch-panel membrane
US6733869B2 (en) 2002-02-21 2004-05-11 Dai Nippon Printing Co., Ltd. Electromagnetic shielding sheet and method of producing the same
DE10393020B4 (en) * 2002-08-08 2011-11-17 Dai Nippon Printing Co., Ltd. Electromagnetic shielding sheet and method of making the same
US7732038B2 (en) 2004-07-12 2010-06-08 Dai Nippon Printing Co., Ltd. Electromagnetic wave shielding filter
US7236064B2 (en) 2004-09-23 2007-06-26 Samsung Electro-Mechanics Co. Ltd. Laminated balun transformer
WO2009151056A1 (en) 2008-06-10 2009-12-17 ダイセル化学工業株式会社 Layered product having porous layer and functional layered product made with the same

Similar Documents

Publication Publication Date Title
US6905776B1 (en) Conductive transparent layers and method for their production
JP2000356706A (en) Light absorbing reflection preventing body and its manufacture
JPH0854507A (en) Conductive contrast-improved filter which can select contrast
KR100345759B1 (en) Organic Substrate Having an Absorbing Antireflection Film and Method for Producing the Same
US20100226005A1 (en) Optical Article and Process for Producing the Same
Sarto et al. Transparent films for electromagnetic shielding of plastics
US20100171406A1 (en) Electroconductive laminate
JPS61245449A (en) Light transmission board having electromagnetic wave shielding performance
JPH05323101A (en) Electromagnetic wave shielding film having antireflection property and its production
JPH0746570B2 (en) Light transmission plate having electromagnetic wave shielding property
JP3190240B2 (en) Light-absorbing antireflective body and method for producing the same
JPH10230558A (en) Organic substrate with photoabsorptive reflection preventive film and its manufacture
JP2002371350A (en) Method for manufacturing transparent laminate
JPH10264287A (en) Transparent laminate, dimmer using it and filer for display
JPH07249316A (en) Transparent conductive film and transparent substrate using the transparent conductive film
KR100603260B1 (en) Filter shielding electro magnetic wave of plasma display panel and manufacturing method thereof
JP2582859B2 (en) Static electricity, electromagnetic wave shielding material
JPH06130204A (en) Production of multilayered antireflection light transmission plate having electrical conductivity
JPH0789597B2 (en) Light transmission plate having electromagnetic wave shielding property
US20080174895A1 (en) High reflection mirror and process for its production
JPH0685001B2 (en) Optical article having multilayer antireflection film
JP2002025362A (en) Manufacturing method of silver series transparent conductive thin film and transparent laminate
JP2007223332A (en) Organic substrate provided with light absorptive antireflection film and manufacturing method thereof
JPH0637361Y2 (en) Antistatic multi-layer antireflection light transmission plate
JP2000062082A (en) Electromagnetic wave shielded film