JPH0531489A - Controlling device for sludge amount in activated sludge process - Google Patents

Controlling device for sludge amount in activated sludge process

Info

Publication number
JPH0531489A
JPH0531489A JP3193969A JP19396991A JPH0531489A JP H0531489 A JPH0531489 A JP H0531489A JP 3193969 A JP3193969 A JP 3193969A JP 19396991 A JP19396991 A JP 19396991A JP H0531489 A JPH0531489 A JP H0531489A
Authority
JP
Japan
Prior art keywords
sludge
svi
amount
meter
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3193969A
Other languages
Japanese (ja)
Inventor
Takao Sekine
孝夫 関根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP3193969A priority Critical patent/JPH0531489A/en
Publication of JPH0531489A publication Critical patent/JPH0531489A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To follow a disturbance factor in a simple system with sufficient precision by calculating the target value of excess sludge amount according to fuzzy rule on the basis of suspended solid amount of activated sludge in an aeration tank, sludge volume index, the set value of retaining time of sludge and the flow rate of excess sludge. CONSTITUTION:A sludge volume index (SVI) meter 7 is provided which inputs both the activated sludge suspended solid amount MLSS of an activated sludge suspended solid meter 5 and the activated sludge sedimentation efficiency SV of a meter 6 therefor. A fuzzy controlling part 9 is constituted of both an arithmetic processor 8 which inputs SVI and the flow rate Qw of excess sludge in a flowmeter 4 therefor and performs fuzzy calculation and this SVI meter 7. The SVI meter 7 is provided in the vicinity of the outlet of an aeration tank 1. A detection signal is inputted to the arithmetic processor 8. This arithmetic processor 8 calculates the targeted sludge withdrawal amount from the SVI value and the set value (SRTset value) of the sludge retaining time. The operation time of an excess sludge pump 3 and an excess sludge flow rate controlling valve are controlled on the basis of this value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は活性汚泥プロセスの汚泥
量制御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sludge amount control device for an activated sludge process.

【0002】[0002]

【従来の技術】一般に、排水は、活性汚泥微生物により
好気的(脱窒,脱リンが必要な場合は一部嫌気的プロセ
スを含む)に分解処理される。この分解と同時に活性汚
泥微生物は増殖するため、その汚泥の一部は、余剰汚泥
として処理系外に排出される。
2. Description of the Related Art Generally, wastewater is decomposed aerobically (including partly anaerobic process when denitrification and dephosphorization are required) by activated sludge microorganisms. At the same time as this decomposition, the activated sludge microorganisms proliferate, so that a part of the sludge is discharged out of the treatment system as excess sludge.

【0003】現在までに、余剰汚泥の制御方式として、
(1)1日当たりの目標引き抜き汚泥量を設定し、余剰
の積算流量がその設定値になるまで引き抜く方法(定量
引き抜き方式)、(2)曝気槽内汚泥量の一定割合を毎
日引き抜く(汚泥日令制御,SA制御)、(3)処理系
内汚泥量の一定割合を毎日引き抜く(平均汚泥滞留時間
制御,SRT制御)等が提案され、一部実用化されてい
る。
To date, as a control system for excess sludge,
(1) A method to set the target amount of sludge to be drawn per day and pull out until the surplus integrated flow rate reaches the set value (quantitative pulling method), (2) Pull out a certain percentage of the amount of sludge in the aeration tank every day (sludge day (Age control, SA control), (3) withdrawing a certain proportion of the amount of sludge in the treatment system every day (average sludge retention time control, SRT control), etc. have been proposed and partially put into practical use.

【0004】[0004]

【発明が解決しようとする課題】現在の余剰汚泥制御方
式(定量引き抜き制御,SA制御,SRT制御)は汚泥
の沈降特性が変化すると制御が発散状態となる場合があ
る。ここで、汚泥の沈降特性は、例えば、汚泥容量示標
(sludge volume index,以下、S
VIと略す)によって定量的な評価が可能である。一般
に糸状細菌が多量に増殖すると、汚泥の沈降特性は悪化
し、SVI値は上昇する。SVIが上昇すると(イ)最
終沈澱池における汚泥の滞留時間が長くなる、(ロ)沈
澱した汚泥の圧密濃度が低下することが知られている。
In the present excess sludge control system (quantitative extraction control, SA control, SRT control), the control may be in a divergent state when the sedimentation characteristics of sludge change. Here, the sedimentation characteristics of sludge are, for example, sludge volume index (hereinafter referred to as S).
(Abbreviated as VI) enables quantitative evaluation. Generally, when filamentous bacteria grow in a large amount, the sedimentation characteristics of sludge deteriorate and the SVI value increases. It is known that when the SVI rises, (a) the retention time of sludge in the final settling basin becomes longer, and (b) the compaction concentration of the settled sludge decreases.

【0005】最終沈澱池における汚泥滞留時間が長くな
ると、最終沈澱池内汚泥量が増加し、その結果、曝気槽
内汚泥量は減少する。即ち、SVI値が変動すると最終
沈澱池内汚泥量(MF)と曝気槽内汚泥量(MA)との
比(MF/MA比)が変化すると言いかえることができ
る。従って、曝気槽内汚泥量の一定割合を毎日引き抜く
SA制御の場合、SVI変動により引き抜き目標値が変
化し、適正な制御ができなくなる。また、SVIが上昇
すると、沈澱した汚泥の圧密濃度が低下するため、これ
に伴って返送および余剰汚泥濃度も低下する。この場
合、定量引き抜き制御では、正味の引き抜き固形物量
(Kg/日)が変化するため、SA制御と同様適正な制
御ができない。一方、SRT制御の場合、処理系内汚泥
量、特に最終沈澱池内汚泥量を、正確に把握することが
困難であるため実用化が難しい。
When the sludge retention time in the final settling tank increases, the amount of sludge in the final settling tank increases, and as a result, the amount of sludge in the aeration tank decreases. That is, it can be said that when the SVI value fluctuates, the ratio (MF / MA ratio) between the final sludge pond sludge amount (MF) and the aeration tank sludge amount (MA) changes. Therefore, in the case of SA control in which a certain proportion of the amount of sludge in the aeration tank is withdrawn every day, the withdrawal target value changes due to SVI fluctuations, making proper control impossible. Further, as the SVI increases, the consolidation density of the sludge that has settled decreases, so that the concentration of returned sludge and excess sludge also decreases. In this case, in the quantitative withdrawal control, the net amount of the withdrawn solid matter (Kg / day) changes, and therefore the appropriate control cannot be performed as in the SA control. On the other hand, in the case of SRT control, it is difficult to put into practical use because it is difficult to accurately grasp the amount of sludge in the treatment system, especially the amount of sludge in the final settling basin.

【0006】本発明は上述の問題点に鑑みてなされたも
ので、その目的はファジイ規則を応用して簡単なシステ
ムで外乱因子に対して十分な精度で追従できる高性能な
活性汚泥制御装置を提供することである。
The present invention has been made in view of the above problems, and an object thereof is to apply a fuzzy rule to a high-performance activated sludge control device capable of following a disturbance factor with sufficient accuracy by a simple system. Is to provide.

【0007】[0007]

【課題を解決するための手段】本発明は、上記目的を達
成するために、曝気槽内の活性汚泥浮遊物量と活性汚泥
沈澱率を基に汚泥容量示標を算出する汚泥容量示標計
と、この汚泥容量示標と汚泥滞留時間設定値および余剰
汚泥流量を基にファジイ規則に従って余剰汚泥量の目標
値を算出する演算処理器によってファジィ制御部を構成
する。
In order to achieve the above object, the present invention provides a sludge capacity indicator for calculating a sludge capacity indicator based on the amount of activated sludge suspended matter in the aeration tank and the activated sludge sedimentation rate. A fuzzy control unit is configured by an arithmetic processing unit that calculates a target value of the excess sludge amount according to the fuzzy rule based on the sludge capacity indicator, the sludge retention time set value, and the excess sludge flow rate.

【0008】[0008]

【作用】本発明においては、ファジイ制御規則に基づき
SRT制御を行う。SVI計(SV計+MLSS計)か
らの出力値を本制御装置への入力とし、このSVI値と
SRT目標値からファジイ制御規則に従って余剰汚泥量
の目標値を出力する。ファジイ制御の後件部規則の線形
式に含まれるパラメータを重回帰分析により求める。こ
の場合、重回帰分析に必要な入力データは、直接実処理
施設において測定するか、または、数式モデルによる定
常解析より求めることができる。数式モデルを利用する
場合は、数式モデルに含まれる各種プラントモデル用パ
ラメータを解析による出力値と実処理施設における測定
値との差が最小になるように最適化した後、利用する。
ここで、重回帰分析への入力データとは、SVI値が安
定しているときの、SRT−SVI−Qwのデータであ
る。
In the present invention, SRT control is performed based on the fuzzy control rule. The output value from the SVI meter (SV meter + MLSS meter) is used as an input to this control device, and the target value of the excess sludge amount is output from this SVI value and the SRT target value according to the fuzzy control rule. The parameters included in the linear form of the consequent rule of fuzzy control are obtained by multiple regression analysis. In this case, the input data required for the multiple regression analysis can be directly measured in an actual processing facility or can be obtained by steady-state analysis using a mathematical model. When a mathematical model is used, the parameters for various plant models included in the mathematical model are optimized so that the difference between the output value by analysis and the measured value at the actual processing facility is minimized and then used.
Here, the input data to the multiple regression analysis is SRT-SVI-Qw data when the SVI value is stable.

【0009】[0009]

【実施例】以下に本発明の実施例を図1〜図8を参照し
ながら説明する。
Embodiments of the present invention will be described below with reference to FIGS.

【0010】図1は本発明の実施例による活性汚泥プロ
セスの汚泥量制御装置を示すもので、同図において1は
曝気槽、2は最終沈澱池、3は余剰汚泥ポンプ、4は余
剰汚泥流量計である。5は活性汚泥浮遊物計、6は活性
汚泥沈澱率計、7は活性汚泥浮遊物計5の活性汚泥浮遊
物量MLSSと活性汚泥沈澱率計6の活性汚泥沈澱率S
Vを入力として汚泥容量示標(SVI)を算出する汚泥
容量示標計である。8はこの汚泥容量示標計7によって
算出された汚泥容量示標と余剰汚泥流量計4の余剰汚泥
流量Qwを入力としてファジイ演算する演算処理器で、
この演算処理器8と汚泥容量示標計7によってファジイ
制御部9が構成される。
FIG. 1 shows a sludge amount control device for an activated sludge process according to an embodiment of the present invention. In FIG. 1, 1 is an aeration tank, 2 is a final settling tank, 3 is an excess sludge pump, and 4 is an excess sludge flow rate. It is total. 5 is an activated sludge suspension meter, 6 is an activated sludge sedimentation rate meter, 7 is an activated sludge flotation meter 5 of activated sludge suspended matter amount MLSS and activated sludge sedimentation rate 6 is an activated sludge sedimentation rate S
It is a sludge capacity indicator which calculates sludge capacity indicator (SVI) by inputting V. Reference numeral 8 is a processor for performing a fuzzy operation by inputting the sludge capacity indicator calculated by the sludge capacity indicator 7 and the surplus sludge flow rate Qw of the surplus sludge flow meter 4.
The arithmetic processor 8 and the sludge capacity indicator 7 constitute a fuzzy controller 9.

【0011】すなわち、図1の汚泥量制御装置では、曝
気槽1の出口付近にSVI計7(SV計5+MLSS計
6)を設置し、演算処理器8に検出信号を入力する。演
算処理器8ではSVI値と汚泥滞留時間SRTの設定値
SRTset値から目標引き抜き汚泥量を算出し、この
値に基づいて余剰汚泥ポンプ3の運転時間(間欠引き抜
きの場合)や余剰汚泥流量調節弁(連続引き抜きの場
合)を制御する。
That is, in the sludge amount control device of FIG. 1, an SVI meter 7 (SV meter 5 + MLSS meter 6) is installed near the outlet of the aeration tank 1 and a detection signal is input to the arithmetic processing unit 8. The processor 8 calculates the target withdrawal sludge amount from the SVI value and the set value SRTset value of the sludge retention time SRT, and based on this value, the operating time of the excess sludge pump 3 (in the case of intermittent withdrawal) and the excess sludge flow control valve. Control (for continuous extraction).

【0012】ファジイ制御部9で使われるファジイ制御
規則とこれに基づく推論の形式は種々あるが、ここで
は、その構造およびパラメータの同定を行った。
There are various types of fuzzy control rules used in the fuzzy control section 9 and inference forms based on them, but here, the structure and the parameters are identified.

【0013】ファジイ制御部9による制御規則の一般式
を式1に示す。
A general formula of the control rule by the fuzzy control unit 9 is shown in Formula 1.

【0014】[0014]

【数1】 [Equation 1]

【0015】ここで、mは入力変数の数、i=1,2,
3,……n:ルール数である。
Where m is the number of input variables, i = 1, 2,
3, ... n: number of rules.

【0016】ここでは一例として次の6つの制御規則を
考える。
As an example, consider the following six control rules.

【0017】[0017]

【数2】 [Equation 2]

【0018】入力(SRT設定値(SRT0),SVI
(SVI0))に対する前件部の適合度ω1,ω2,ω
3,ω4,ω5,ω6は、
Input (SRT set value (SRT0), SVI
(SVI0)) fitness of the antecedent part ω1, ω2, ω
3, ω4, ω5, ω6 are

【0019】[0019]

【数3】 [Equation 3]

【0020】全体の推論結果(出力,Qw0)は、これ
らの重み付き平均値とする。
The overall inference result (output, Qw0) is a weighted average value of these.

【0021】[0021]

【数4】 [Equation 4]

【0022】パラメータの同定手順を図2に示す。ここ
での実施例は、対象プロセスを数式モデル化し、シミュ
レーションにより検討した結果である。まず第一に、定
常解析により種々のSRT設定値におけるSVIと余剰
汚泥量(Qw)の関係を求めた。この結果を図3に示
す。これより、Qw−SRT−SVIの関係が明らかと
なる。
The parameter identification procedure is shown in FIG. The example here is the result of studying the target process by mathematical modeling and simulation. First, the relationship between the SVI and the excess sludge amount (Qw) at various SRT set values was obtained by steady-state analysis. The result is shown in FIG. From this, the relationship of Qw-SRT-SVI becomes clear.

【0023】このQw−SRT−SVIの関係を入力デ
ータとし、重回帰分析により後件部に含まれるパラメー
タ、a11〜a63の同定を行った。まず、式(2)の
制御規則を用いて前件部の適合度ω1〜ω6を求め、式
(4)より出力である余剰汚泥量(Qw0)を算出す
る。ただし、ここでは前件部のメンバーシップ関数とし
て図4と図5を用いた(従って、A11=3,A12=
6,A21=4,A22=8,A23=12,A24=
16,A31=14,A32=18,A41=50,A
42=300,A51=150,A52=400)。重
回帰分析では、定常解析より求められるQwと前述した
ファジイ規則より算出されるQw(Qw0)との差の自
乗和が最小になるように後件部パラメータ、a11〜a
63および定数項を決定することになる。表1に同定結
果の一例を示す。
Using this Qw-SRT-SVI relationship as input data, the parameters a11 to a63 included in the consequent part were identified by multiple regression analysis. First, the suitability ω1 to ω6 of the antecedent part is obtained using the control rule of the equation (2), and the excess sludge amount (Qw0) that is the output is calculated from the equation (4). However, here, FIG. 4 and FIG. 5 are used as the membership function of the antecedent part (thus, A11 = 3, A12 =
6, A21 = 4, A22 = 8, A23 = 12, A24 =
16, A31 = 14, A32 = 18, A41 = 50, A
42 = 300, A51 = 150, A52 = 400). In the multiple regression analysis, the consequent part parameters a11 to a11 are used so that the sum of squares of the difference between the Qw obtained by the steady analysis and the Qw (Qw0) calculated by the fuzzy rule described above is minimized.
63 and the constant term will be determined. Table 1 shows an example of the identification result.

【0024】[0024]

【表1】 [Table 1]

【0025】動的シミュレーションによる性能検証とし
て、同定したパラメータを用いて、次の2種類の制御方
式(RUN1,RUN2)についてそれぞれシミュレー
ションを行い、本ファジイ制御方式の有効性を検証し
た。
As the performance verification by the dynamic simulation, the identified two parameters were used to perform simulations for the following two types of control systems (RUN1, RUN2) to verify the effectiveness of the fuzzy control system.

【0026】RUN1:本ファジイ制御方式 RUN2:1日当たりの余剰汚泥量を一定に制御した場
合 ただし、ここでは、外乱因子としてSVIを図6に示す
ように、ランプ状に変動させた場合についてシミュレー
ションした。結果を図7と図8に示す。本ファジイ制御
方式(RUN1)の場合、余剰汚泥量を操作することに
より、SVI変動時でもプロセス内の総汚泥量(M)は
ほぼ一定に維持されているのに対して、余剰汚泥量を一
定に制御(RUN2)の場合は、SVI値の上昇に伴い
処理系内の汚泥分布(MF/MA比変動など)が変化
し、また、汚泥の圧密濃度や余剰汚泥濃度が低下するた
め、定量引き抜き条件下では実質的な引き抜き固形物量
が減少する。この結果、図8に示すように、処理系内汚
泥量(M)は徐々に増加する。即ち、SRTやF/M比
は一定に維持できなくなる。
RUN1: This fuzzy control method RUN2: When the amount of surplus sludge per day is controlled to be constant. However, here, a simulation was performed in which the SVI as a disturbance factor was varied like a ramp as shown in FIG. .. The results are shown in FIGS. 7 and 8. In the case of this fuzzy control method (RUN1), by operating the excess sludge amount, the total sludge amount (M) in the process is maintained almost constant even when the SVI changes, while the excess sludge amount is kept constant. In the case of control (RUN2), the sludge distribution in the treatment system (MF / MA ratio fluctuation, etc.) changes as the SVI value rises, and the consolidation concentration and excess sludge concentration of sludge decrease, so quantitative extraction Under conditions, a substantial amount of drawn solids is reduced. As a result, as shown in FIG. 8, the sludge amount (M) in the treatment system gradually increases. That is, the SRT and F / M ratio cannot be maintained constant.

【0027】[0027]

【発明の効果】本発明は以上の如くであって、余剰汚泥
の制御にあたってファジイ制御を用い、このファジイ制
御部を、曝気槽内の活性汚泥浮遊物量と活性汚泥沈澱率
を基に沈澱容量示標を算出する汚泥容量示標計と、この
汚泥容量示標と汚泥滞留時間設定値および余剰汚泥流量
を基にファジイ規則に従って余剰汚泥量の目標値を算出
する演算処理器によって構成したものである。従って、
下記のような効果が得られる。
The present invention is as described above, and fuzzy control is used for controlling excess sludge, and this fuzzy control unit is used to display the settling capacity based on the amount of suspended solids in the aeration tank and the activated sludge settling rate. It is composed of a sludge capacity indicator that calculates the target, and an arithmetic processor that calculates the target value of the excess sludge amount according to the fuzzy rule based on the sludge capacity indicator, the sludge retention time set value, and the excess sludge flow rate. .. Therefore,
The following effects can be obtained.

【0028】(イ)SVI値やSRT目標値の変更に対
して速やかに追従し、そのSRT目標量に対応する、処
理系内汚泥量(M)やF/M比に制御できる。 (ロ)SVI変動時もMやF/M比を一定にできるた
め、最終沈澱池からの汚泥の流出を最少限に抑えること
ができる。即ち、SVI変動による最終沈澱池内汚泥量
を予測し、フィードフォワード的に余剰汚泥量を制御す
ることが可能となる。 (ハ)水質計測項目はSVI(SV+MLSS濃度)の
みでよく、維持管理が容易である。 (ニ)ファジイ規則を用いることにより、制御系が簡素
化される。
(A) It is possible to quickly follow changes in the SVI value and the SRT target value and control the sludge amount (M) in the treatment system and the F / M ratio corresponding to the SRT target amount. (B) Since the M and F / M ratio can be kept constant even when the SVI changes, the outflow of sludge from the final settling basin can be minimized. That is, it becomes possible to predict the amount of sludge in the final sedimentation basin due to SVI fluctuations and control the amount of excess sludge in a feedforward manner. (C) Only SVI (SV + MLSS concentration) is required for water quality measurement, and maintenance is easy. (D) By using the fuzzy rule, the control system is simplified.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の活性汚泥プロセスの汚泥量制御装置の
ブロック図。
FIG. 1 is a block diagram of a sludge amount control device for an activated sludge process according to the present invention.

【図2】本発明で用いるファジイ制御システムのパラメ
ータ同定手順を示すフロー図。
FIG. 2 is a flowchart showing a parameter identification procedure of a fuzzy control system used in the present invention.

【図3】余剰汚泥流量Qwに対する汚泥容量示標SVI
の特性図。
[Fig. 3] Sludge capacity indicator SVI for surplus sludge flow rate Qw
Characteristic diagram of.

【図4】SRTのファジイ演算特性図。FIG. 4 is a fuzzy calculation characteristic diagram of an SRT.

【図5】SVIのファジイ演算特性図。FIG. 5 is a fuzzy calculation characteristic diagram of SVI.

【図6】SVIの特性図。FIG. 6 is a characteristic diagram of SVI.

【図7】余剰汚泥流量Qwと総汚泥量の特性図。FIG. 7 is a characteristic diagram of the excess sludge flow rate Qw and the total sludge amount.

【図8】余剰汚泥流量Qwと総汚泥量の特性図。FIG. 8 is a characteristic diagram of the excess sludge flow rate Qw and the total sludge amount.

【符号の説明】[Explanation of symbols]

1…曝気槽、2…最終沈澱池、4…余剰汚泥流量計、7
…汚泥容量示標計、8…演算処理器、9…ファジイ制御
部。
1 ... Aeration tank, 2 ... Final settling tank, 4 ... Excess sludge flowmeter, 7
... Sludge capacity indicator, 8 ... Arithmetic processor, 9 ... Fuzzy controller.

Claims (1)

【特許請求の範囲】 【請求項1】 曝気槽内の活性汚泥浮遊物量と活性汚泥
沈澱率を基に汚泥容量示標を算出する汚泥容量示標計
と、この汚泥容量示標と汚泥滞留時間設定値および余剰
汚泥流量を基にファジイ規則に従って余剰汚泥量の目標
値を算出する演算処理器によってファジィ制御部を構成
したことを特徴とする活性汚泥プロセスの汚泥量制御装
置。
Claims: 1. A sludge capacity indicator that calculates a sludge capacity indicator based on the amount of suspended sludge in the aeration tank and the activated sludge sedimentation rate, and this sludge capacity indicator and sludge retention time. A sludge amount control device for an activated sludge process, characterized in that a fuzzy control unit is constituted by an arithmetic processing unit that calculates a target value of the excess sludge amount according to a fuzzy rule based on a set value and an excess sludge flow rate.
JP3193969A 1991-08-02 1991-08-02 Controlling device for sludge amount in activated sludge process Pending JPH0531489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3193969A JPH0531489A (en) 1991-08-02 1991-08-02 Controlling device for sludge amount in activated sludge process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3193969A JPH0531489A (en) 1991-08-02 1991-08-02 Controlling device for sludge amount in activated sludge process

Publications (1)

Publication Number Publication Date
JPH0531489A true JPH0531489A (en) 1993-02-09

Family

ID=16316787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3193969A Pending JPH0531489A (en) 1991-08-02 1991-08-02 Controlling device for sludge amount in activated sludge process

Country Status (1)

Country Link
JP (1) JPH0531489A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0790617A2 (en) * 1996-02-13 1997-08-20 Dai Nippon Printing Co., Ltd. Apparatus having a rewritable display portion
WO1997043027A1 (en) * 1996-05-16 1997-11-20 Baker Hughes Incorporated Method and apparatus for controlling thickeners, clarifiers and settling tanks
WO2000047525A1 (en) * 1999-02-11 2000-08-17 Zeolite Australia Limited Process for the removal of suspended and other material from waste water

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0790617A2 (en) * 1996-02-13 1997-08-20 Dai Nippon Printing Co., Ltd. Apparatus having a rewritable display portion
EP0790617A3 (en) * 1996-02-13 1998-01-07 Dai Nippon Printing Co., Ltd. Apparatus having a rewritable display portion
WO1997043027A1 (en) * 1996-05-16 1997-11-20 Baker Hughes Incorporated Method and apparatus for controlling thickeners, clarifiers and settling tanks
WO2000047525A1 (en) * 1999-02-11 2000-08-17 Zeolite Australia Limited Process for the removal of suspended and other material from waste water

Similar Documents

Publication Publication Date Title
Ingildsen et al. Dissolved oxygen controller based on on-line measurements of ammonium combining feed-forward and feedback
JPS6369595A (en) Method and device for controlling operation in intermittent-aeration activated sludge process
AU2021101438A4 (en) Adaptive control method and system for aeration process
JP4906788B2 (en) Monitoring and control system for water and sewage treatment plants
CN109879410A (en) Sewage treatment aeration control system
JP2001252691A (en) Water quality controlling device for sewage treatment plant
Holmberg Modelling of the activated sludge process for microprocessor-based state estimation and control
Piotrowski et al. Mixed integer nonlinear optimization of biological processes in wastewater sequencing batch reactor
CN114380378B (en) Intelligent phosphorus control drug feeding method and device and storage medium
Sotomayor et al. Software sensor for on-line estimation of the microbial activity in activated sludge systems
JPH0531489A (en) Controlling device for sludge amount in activated sludge process
CN116969616A (en) Soft measurement-based integrated sewage treatment facility control method, device and equipment
JP6219239B2 (en) Water treatment plant
JP2002045882A (en) Water quality controller for sewage treatment plant
JP6726954B2 (en) Sewage treatment control device
CN109019892A (en) A kind of regulation method based on data assimilation on-line optimization aeration quantity
JPH07124585A (en) Sludge amount control device for active sludge process
JPH06328091A (en) Sludge capacity index estimating method in control system for biological treatment device
JPS60106590A (en) Controller of sewage treatment
JPH06335694A (en) Controller of device for biologically treating waste water
Yoo et al. Comparisons of process identification methods and supervisory do control in the fullscale wastewater treatment plant
Chistiakova et al. Input-output stability design of an ammonium based aeration controller for wastewater treatment
JP2868826B2 (en) Support system and construction method thereof
JPH07222989A (en) Apparatus for controlling sludge quantity in active sludge process
JPS649077B2 (en)