JPH05313395A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH05313395A
JPH05313395A JP11505192A JP11505192A JPH05313395A JP H05313395 A JPH05313395 A JP H05313395A JP 11505192 A JP11505192 A JP 11505192A JP 11505192 A JP11505192 A JP 11505192A JP H05313395 A JPH05313395 A JP H05313395A
Authority
JP
Japan
Prior art keywords
layer
refractive index
interference
conductive substrate
interference suppressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11505192A
Other languages
Japanese (ja)
Inventor
Hideki Kino
秀樹 喜納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP11505192A priority Critical patent/JPH05313395A/en
Publication of JPH05313395A publication Critical patent/JPH05313395A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an electrophotographic sensitive body capable of giving a satisfactory image free from an interference fringe pattern when used in an electrophotographic device with coherent light as light for exposure. CONSTITUTION:When an interference controlling layer 2, an electric charge transferring layer 3 and an electric charge generating layer 4 are successively laminated on an electric conductive substrate 1 to obtain an electrophotographic sensitive body, the thickness (d) of the electric charge transferring layer 3 brought into contact with the electric charge generating layer 4 from the substrate 1 side is specified so as to satisfy a numerical formula (1) 2.n.d./lambda=m+1/2 [where (n) is the refractive index of the interference suppressing layer or the electric charge transferring layer, lambda is the wavelength of light for exposure and (m) is an integer]. When a photosensitive layer is formed on an electric conductive substrate with an interference suppressing layer in-between to obtain an electrophotographic sensitive body, the interference suppressing layer is formed by alternately laminating layers of a low refractive index material and layers of a high refractive index material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、電子写真用感光体に
関し、詳しくは露光に可干渉性光を用いる電子写真装置
に搭載される電子写真用感光体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrophotographic photosensitive member, and more particularly to an electrophotographic photosensitive member mounted in an electrophotographic apparatus that uses coherent light for exposure.

【0002】[0002]

【従来の技術】近年、電子写真技術の応用分野におい
て、レーザープリンタ,デジタル複写機など露光光に可
干渉性光を用いる装置が大幅に普及してきている。とこ
ろが、このような電子写真装置において、得られる画像
に干渉縞模様が生じるという不具合がしばしば発生し、
市場で問題となる。
2. Description of the Related Art In recent years, apparatuses using coherent light as exposure light, such as laser printers and digital copying machines, have become widely used in the field of electrophotographic technology. However, in such an electrophotographic apparatus, a problem that an interference fringe pattern occurs in the obtained image often occurs,
It becomes a problem in the market.

【0003】このような干渉縞模様は、主として、使用
する電子写真用感光体の基体表面で露光光が反射し、こ
の反射光が干渉を起こすことによるものであり、その対
策として、従来、感光体の基体表面を微細に粗面化し反
射光を散乱させる方法、あるいは、基体表面に干渉抑制
層として光吸収層または光散乱層を設ける方法が採られ
てきた。
Such an interference fringe pattern is mainly due to the fact that the exposure light is reflected on the surface of the substrate of the electrophotographic photosensitive member to be used, and the reflected light causes interference. A method has been adopted in which the substrate surface of the body is finely roughened to scatter reflected light, or a method in which a light absorption layer or a light scattering layer is provided as an interference suppression layer on the substrate surface.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上述の
前者の方法においては、基体表面を所定の粗さに均一に
粗面化することが必要であるが、干渉縞模様をなくすた
めには粗面化加工精度に対する要求が厳しく、その要求
を満たすように加工設備,加工条件を一定に維持し再現
性良く加工することが難しいという問題があった。ま
た、後者の方法においては、電子写真特性を阻害するこ
となく干渉縞模様をなくすことのできる満足できる層は
まだ得られていない。
However, in the former method described above, it is necessary to uniformly roughen the surface of the substrate to a predetermined roughness, but in order to eliminate the interference fringe pattern, the rough surface is required. There is a problem that there is a strict requirement for chemical processing accuracy, and it is difficult to perform processing with good reproducibility by keeping the processing equipment and processing conditions constant so as to meet the requirement. Further, in the latter method, a satisfactory layer capable of eliminating the interference fringe pattern without impairing the electrophotographic characteristics has not yet been obtained.

【0005】この発明は、上述の点に鑑みてなされたも
のであって、可干渉性光を露光光とする電子写真装置に
用いて干渉縞模様のない良好な画像を得ることができる
電子写真用感光体を提供することを解決しようとする課
題とする。
The present invention has been made in view of the above points, and is used in an electrophotographic apparatus using coherent light as exposure light to obtain an excellent image without interference fringe patterns. The problem to be solved is to provide a photoconductor for use.

【0006】[0006]

【課題を解決するための手段】上記の課題は、この発明
によれば、導電性基体上に干渉抑制層を介して電荷発生
層および電荷輸送層からなる機能分離積層型感光層が形
成されてなる電子写真用感光体において、電荷発生層に
導電性基体側から接する干渉抑制層または電荷輸送層の
膜厚dが下記数式(1)の条件を満たす電子写真用感光
体とすることによって解決される。
According to the present invention, a function-separated laminated type photosensitive layer comprising a charge generation layer and a charge transport layer is formed on a conductive substrate via an interference suppressing layer. In the electrophotographic photoconductor, the electrophotographic photoconductor has a film thickness d of the interference suppressing layer or the charge transport layer which is in contact with the charge generation layer from the side of the conductive substrate and satisfies the condition of the following mathematical expression (1). It

【0007】[0007]

【数2】 2・n・d/λ=m+1/2 ─────────────(1) [数式(1)において、nは干渉抑制層または電荷輸送
層の屈折率,λは露光光波長,mは整数を表す。]ま
た、上記の課題は、導電性基体上に干渉抑制層を介して
機能分離積層型感光層が形成されてなる電子写真用感光
体において、前記干渉抑制層が低屈折率材料からなる層
と高屈折率材料からなる層とが交互に形成されてなる多
段積層である電子写真用感光体とすることによって解決
される。低屈折率材料としてはMgF 2 またはSiO2
が好適であり、高屈折率材料としてはZrO2 ,Ta2
5 ,TiO2 およびCeO2 のうちのいずれかかまた
はこれらの材料のうちのいくつかを組み合わせた混合物
が好適である。
[Formula 2] 2 · n · d / λ = m + 1/2 ─────────────────── (1) [In the formula (1), n is an interference suppression layer or a charge transport layer.
The refractive index of the layer, λ is the exposure light wavelength, and m is an integer. ]
Also, the above-mentioned problem is caused by interposing an interference suppression layer on the conductive substrate.
Electrophotographic photosensitive material having a function-separated laminated photosensitive layer
In the body, the interference suppressing layer is a layer made of a low refractive index material.
And a layer made of a high refractive index material are alternately formed.
Solved by using a multi-layered electrophotographic photoreceptor
To be done. MgF as a low refractive index material 2Or SiO2
Is preferable, and ZrO is used as the high refractive index material.2, Ta2
OFive, TiO2And CeO2One of
Is a mixture of some of these ingredients
Is preferred.

【0008】[0008]

【作用】機能分離積層型感光体の層構成としては、導電
性基体上に干渉抑制層,電荷輸送層,電荷発生層を順次
設けた構成と、導電性基体上に干渉抑制層,電荷発生
層,電荷輸送層を順次設けた構成とがある。干渉縞模様
は、感光体表面から入射した露光光のうち電荷発生層で
吸収されずに透過し電荷発生層より基体側にある各層表
面および基体表面で反射して電荷発生層に再入射してく
る反射光の干渉に起因する。従って、これらの反射光を
少なくすることにより、干渉縞模様の発生を抑制するこ
とができる。そのためには、前者の構成の感光体の場合
には、基体,干渉抑制層,電荷輸送層からなる多段積層
の全体の反射率が最小となるようにすればよく、電荷発
生層に接する電荷輸送層の膜厚dを前記数式(1)を満
たすようにすればよい。また、後者の構成の感光体の場
合には、基体,干渉抑制層からなる積層の全体の反射率
が最小となるようにすればよく、電荷発生層に接する干
渉抑制層の膜厚dを前記数式(1)を満たすようにすれ
ばよい。
The layer structure of the function-separated laminated type photoreceptor is such that the interference suppressing layer, the charge transport layer and the charge generating layer are sequentially provided on the conductive substrate, and the interference suppressing layer and the charge generating layer are formed on the conductive substrate. , A structure in which a charge transport layer is sequentially provided. The interference fringe pattern is transmitted by the charge generation layer without being absorbed by the charge generation layer of the exposure light incident from the surface of the photoconductor, is reflected by the surface of each layer on the base side of the charge generation layer and the base surface, and re-enters the charge generation layer. It is caused by the interference of the reflected light coming in. Therefore, by reducing these reflected lights, it is possible to suppress the occurrence of interference fringe patterns. For that purpose, in the case of the photoreceptor having the former configuration, it is sufficient to minimize the total reflectance of the multi-layered stack including the substrate, the interference suppression layer, and the charge transport layer. The film thickness d of the layer may be set so as to satisfy the equation (1). In the case of the photoreceptor having the latter structure, the reflectance of the entire laminated body including the substrate and the interference suppressing layer may be minimized. The formula (1) may be satisfied.

【0009】また、反射光の大部分は基体表面からのも
のであるが、基体と感光層との間に高屈折率の材料から
なる層と低屈折率の材料からなる層とを交互に積層した
干渉抑制層を介在させることにより基体表面からの反射
光を散乱させ、電荷発生層より基体側にある層の全体の
反射率を最小にすることができる。
Most of the reflected light is from the surface of the substrate, but a layer made of a material having a high refractive index and a layer made of a material having a low refractive index are alternately laminated between the substrate and the photosensitive layer. By interposing the interference suppression layer, the reflected light from the surface of the substrate can be scattered, and the reflectance of the entire layer on the substrate side of the charge generation layer can be minimized.

【0010】[0010]

【実施例】【Example】

実施例1 図1は、この発明の感光体の一実施例の模式的断面図
で、導電性基体1上に干渉抑制層2,電荷輸送層3,電
荷発生層4が順次形成された構成を示す。この感光体の
電荷発生層4より基体側にある多段積層は、図2の模式
的断面図に示すように導電性基体1,干渉抑制層2,電
荷輸送層3からなり、入射光Aの反射光は電荷輸送層3
での反射光A3 ,干渉抑制層2での反射光A2 ,導電性
基体1での反射光A1 からなり、導電性基体1,干渉抑
制層2,電荷輸送層3各層の反射率をγ1 ,γ2 ,γ3
とし、干渉抑制層2の屈折率をn2 ,膜厚をd2 とし、
電荷輸送層3の屈折率をn3 ,膜厚をd3 とすると、多
段積層の全体の反射率Rは下記数式(2)で表される。
Example 1 FIG. 1 is a schematic cross-sectional view of an example of a photoconductor of the present invention, showing a structure in which an interference suppression layer 2, a charge transport layer 3, and a charge generation layer 4 are sequentially formed on a conductive substrate 1. Show. The multi-layered stack of the photoconductor on the substrate side of the charge generation layer 4 comprises a conductive substrate 1, an interference suppression layer 2 and a charge transport layer 3 as shown in the schematic sectional view of FIG. Light is the charge transport layer 3
Reflected light A 3 , reflected light A 2 from the interference suppression layer 2, and reflected light A 1 from the conductive substrate 1, and the reflectance of the conductive substrate 1, the interference suppression layer 2, and the charge transport layer 3 γ 1 , γ 2 , γ 3
And the interference suppression layer 2 has a refractive index of n 2 and a film thickness of d 2 .
When the charge transport layer 3 has a refractive index of n 3 and a film thickness of d 3 , the overall reflectance R of the multi-layer stack is represented by the following mathematical expression (2).

【0011】[0011]

【数3】 R=1+{(γ1 2−1)・(γ2 2−1)・(γ3 2−1)/D}─(2) 数式(2)のDは、## EQU00003 ## R = 1 + {(γ 1 2 -1). (Γ 2 2 -1). (Γ 3 2 -1) / D}-(2) D in the mathematical expression (2) is

【0012】[0012]

【数4】 D=1+(γ1 ・γ2 2 +(γ2 ・γ3 2 +(γ3 ・γ1 2 −2γ2 ・γ3 (1+γ1 2)cosε3 −2γ1 ・γ2 (1+γ3 2)cosε2 +2γ3 ・γ1 {cos(ε2 +ε3 )+γ2 2cos(ε2 −ε3 )} であり、ε2 ,ε3 [Equation 4] D = 1 + (γ 1 · γ 2 ) 2 + (γ 2 · γ 3 ) 2 + (γ 3 · γ 1 ) 2 −2γ 2 · γ 3 (1 + γ 1 2 ) cosε 3 −2γ 1 · γ 2 (1 + γ 3 2 ) cos ε 2 + 2γ 3 · γ 1 {cos (ε 2 + ε 3 ) + γ 2 2 cos (ε 2 −ε 3 )}, where ε 2 and ε 3 are

【0013】[0013]

【数5】ε2 =4π・n2 ・d2 /λ ε3 =4π・n3 ・d3 /λ である。ところで、ε2 ,ε3 は感光体の一般的サイズ
を考慮する必要があり、感光体設計に際しては、
[Equation 5] ε 2 = 4π · n 2 · d 2 / λ ε 3 = 4π · n 3 · d 3 / λ. By the way, for ε 2 and ε 3, it is necessary to consider the general size of the photoconductor, and when designing the photoconductor,

【0014】[0014]

【数6】 (λ・ε2 /2π)=2・n3 ・d3 ──────────────(3) とされる。上述の反射率Rはcosε2 に支配される。
cos(ε2 −ε3 )はγ3 ・γ 1 ・γ2 2が乗ぜられる
ので無視できる。各層の屈折率の大小および金属物質表
面での反射光の位相反転を考慮すると、反射率γ1 ,γ
2 ,γ3 はそれぞれγ1 <0,γ2 >0,γ3 <0であ
り、cosε2 が−1のときRが最小となる。すなわ
ち、電荷輸送層3の膜厚d3
(6) (λ ・ ε2/ 2π) = 2 · n3・ D3────────────── (3) The above reflectance R is cosε2Is dominated by.
cos (ε2−ε3) Is γ3・ Γ 1・ Γ2 2Is loaded
So it can be ignored. Refractive index magnitude of each layer and metal substance table
Considering the phase inversion of the reflected light on the surface, the reflectance γ1, Γ
2, Γ3Is γ1<0, γ2> 0, γ3<0
, Cosε2Is -1, R becomes the minimum. Sanawa
The film thickness d of the charge transport layer 33To

【0015】[0015]

【数7】 (2・n3 ・d3 /λ)=m+1/2 (mは整数) を満足する厚さとすることにより、電荷発生層4に再入
射してくる反射光を最小にすることができ、干渉抑制層
から電荷輸送層に入射してくる反射光がゼロでない場合
でも干渉縞模様の発生を防ぐ充分な効果が期待できる。
例えば、露光光として波長780nmの半導体レーザー
ビームが用いられ、電荷輸送層3がポリカーボネートを
主成分とする層であるときには、n3 は1.59,λは
780nmであり、干渉縞模様の発生を防ぐのに効果的
な電荷輸送層3の膜厚d3 は、整数mが1のとき、36
8nmとなる。
By minimizing the reflected light that is re-incident on the charge generation layer 4, the thickness is set to satisfy (2 · n 3 · d 3 / λ) = m + 1/2 (m is an integer). Therefore, even if the reflected light entering the charge transport layer from the interference suppression layer is not zero, a sufficient effect of preventing the occurrence of interference fringe patterns can be expected.
For example, when a semiconductor laser beam having a wavelength of 780 nm is used as the exposure light and the charge transport layer 3 is a layer containing polycarbonate as a main component, n 3 is 1.59 and λ is 780 nm, which causes an interference fringe pattern. The film thickness d 3 of the charge transport layer 3 effective for preventing is 36 when the integer m is 1.
8 nm.

【0016】上述の実施例では電荷輸送層の上に電荷発
生層がある感光体について述べたが、電荷発生層上に電
荷輸送層がある感光体についてもこの発明は有効で、そ
の場合には、電荷輸送層の膜厚のかわりに干渉抑制層の
膜厚を制御すればよい。 実施例2 次に、図3はこの発明の感光体の異なる実施例の模式的
断面図を示し、導電性基体1上にそれぞれ膜厚(光路長
nd)の異なるMgF2 層I(nd=44nm)11,
ZrO2 層I(nd=39nm)12,MgF2 層II
(nd=55nm)13,ZrO2 層II(nd=27
6nm)14,MgF2 層III(nd=128nm)
15を積層してなる干渉抑制層2が設けられ、その上に
機能分離型の感光層5が設けられている構成の感光体を
示す。
In the above-mentioned embodiments, the photoconductor having the charge generating layer on the charge transporting layer has been described, but the present invention is also effective for the photoconductor having the charge transporting layer on the charge generating layer. The thickness of the interference suppression layer may be controlled instead of the thickness of the charge transport layer. Example 2 Next, FIG. 3 is a schematic cross-sectional view of another example of the photoconductor of the present invention, in which a MgF 2 layer I (nd = 44 nm) having a different film thickness (optical path length nd) is formed on a conductive substrate 1. ) 11,
ZrO 2 layer I (nd = 39 nm) 12, MgF 2 layer II
(Nd = 55 nm) 13, ZrO 2 layer II (nd = 27
6 nm) 14, MgF 2 layer III (nd = 128 nm)
A photoreceptor having a structure in which an interference suppressing layer 2 formed by stacking 15 is provided, and a function-separated photosensitive layer 5 is provided thereon is shown.

【0017】このような干渉抑制層2と導電性基体1と
を合わせた全体の反射率を露光光の波長を変えて調べた
ところ、図4の線図に示す結果が得られた。図4より、
低屈折率材料のMgF2 からなる層と高屈折率材料のZ
rO2 からなる層とを交互に積層した多段積層の干渉抑
制層を設けることにより、波長が400nmから800
nmの範囲内の可干渉性光を露光光として用いたときに
も干渉縞模様の発生しない画像が得られる感光体が得ら
れることが判る。
When the total reflectance of the interference suppressing layer 2 and the conductive substrate 1 was examined by changing the wavelength of the exposure light, the results shown in the diagram of FIG. 4 were obtained. From Figure 4,
Layer of low refractive index material MgF 2 and high refractive index material Z
By providing a multi-layered interference suppression layer in which layers composed of rO 2 are alternately laminated, a wavelength of 400 nm to 800 nm can be obtained.
It can be seen that a photoconductor can be obtained in which an image with no interference fringe pattern is obtained even when coherent light in the range of nm is used as the exposure light.

【0018】低屈折率材料としては、MgF2 のほかに
SiO2 を用いることができ、高屈折率材料としてはZ
rO2 のほかにTa2 5 ,TiO2 ,CeO2 などを
単独または混合して用いることができる。
As the low refractive index material, SiO 2 can be used in addition to MgF 2 , and as the high refractive index material, Z 2 can be used.
In addition to rO 2 , Ta 2 O 5 , TiO 2 , CeO 2 or the like can be used alone or in combination.

【0019】[0019]

【発明の効果】この発明によれば、導電性基体上に干渉
抑制層を介して電荷発生層および電荷輸送層からなる機
能分離積層型感光層が形成されてなる電子写真用感光体
において、電荷発生層に導電性基体側から接する干渉抑
制層または電荷輸送層の膜厚dが前記数式(1)の条件
を満たす感光体とすることにより、可干渉性光を露光光
とする場合にも干渉縞模様の発生しない画像の得られる
感光体を得ることが可能となる。
According to the present invention, an electrophotographic photosensitive member comprising a conductive substrate, on which a function-separated laminated photosensitive layer comprising a charge generation layer and a charge transport layer is formed via an interference suppressing layer, is provided. Even when the coherent light is used as the exposure light, the interference is suppressed even when the coherent light is used as the exposure light by making the photoconductor in which the film thickness d of the interference suppression layer or the charge transport layer which is in contact with the generation layer from the side of the conductive substrate satisfies the condition of the above-mentioned mathematical expression (1). It is possible to obtain a photoreceptor on which an image having no stripe pattern can be obtained.

【0020】また、導電性基体上に干渉抑制層を介して
機能分離積層型感光層が形成されてなる電子写真用感光
体において、前記干渉抑制層が低屈折率材料からなる層
と高屈折率材料からなる層とが交互に形成されてなる多
段積層である感光体とすることによって、同様に、可干
渉性光を露光光とする場合にも干渉縞模様の発生しない
画像の得られる感光体を得ることができる。
Further, in an electrophotographic photosensitive member comprising a conductive substrate and a function-separated laminated type photosensitive layer formed on the conductive substrate via an interference suppressing layer, the interference suppressing layer has a layer of a low refractive index material and a high refractive index. Similarly, by using a photoreceptor having a multi-layered structure in which layers of materials are alternately formed, an photoreceptor without an interference fringe pattern can be obtained even when coherent light is used as exposure light. Can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の感光体の一実施例の模式的断面図FIG. 1 is a schematic sectional view of an embodiment of a photoconductor of the present invention.

【図2】電荷発生層に入射してくる反射光の説明図FIG. 2 is an explanatory diagram of reflected light incident on a charge generation layer.

【図3】この発明の感光体の異なる実施例の模式的断面
FIG. 3 is a schematic cross-sectional view of another embodiment of the photoconductor of the present invention.

【図4】図4の干渉抑制層2と導電性基体1とを合わせ
た全体の反射率と露光光の波長との関係を示す線図
4 is a diagram showing the relationship between the total reflectance of the interference suppressing layer 2 and the conductive substrate 1 of FIG. 4 and the wavelength of exposure light.

【符号の説明】[Explanation of symbols]

1 導電性基体 2 干渉抑制層 3 電荷輸送層 4 電荷発生層 5 感光層 11 MgF2 層I 12 ZrO2 層I 13 MgF2 層II 14 ZrO2 層II 15 MgF2 層III1 Conductive Substrate 2 Interference Suppression Layer 3 Charge Transport Layer 4 Charge Generation Layer 5 Photosensitive Layer 11 MgF 2 Layer I 12 ZrO 2 Layer I 13 MgF 2 Layer II 14 ZrO 2 Layer II 15 MgF 2 Layer III

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】導電性基体上に干渉抑制層を介して電荷発
生層および電荷輸送層からなる機能分離積層型感光層が
形成されてなる電子写真用感光体において、電荷発生層
に導電性基体側から接する干渉抑制層または電荷輸送層
の膜厚dが下記数式(1)の条件を満たすことを特徴と
する電子写真用感光体。 【数1】 2・n・d/λ=m+1/2 ─────────────(1) [数式(1)において、nは干渉抑制層または電荷輸送
層の屈折率,λは露光光波長,mは整数を表す。]
1. A photoreceptor for electrophotography comprising a functionally separated laminated photosensitive layer comprising a charge generating layer and a charge transporting layer formed on a conductive substrate via an interference suppressing layer, wherein the charge generating layer is a conductive substrate. A photoreceptor for electrophotography, characterized in that the film thickness d of the interference suppressing layer or the charge transport layer contacting from the side satisfies the condition of the following mathematical expression (1). [Equation 1] 2 · n · d / λ = m + 1/2 ──────────────────────────────────────────────── (1) [where n is the refractive index of the interference suppression layer or the charge transport layer] , Λ is the exposure light wavelength, and m is an integer. ]
【請求項2】導電性基体上に干渉抑制層を介して機能分
離積層型感光層が形成されてなる電子写真用感光体にお
いて、前記干渉抑制層が低屈折率材料からなる層と高屈
折率材料からなる層とが交互に形成されてなる多段積層
であることを特徴とする電子写真用感光体。
2. An electrophotographic photoreceptor comprising a function-separated laminate type photosensitive layer formed on a conductive substrate via an interference suppressing layer, wherein the interference suppressing layer is a layer made of a low refractive index material and a high refractive index. An electrophotographic photoreceptor, which is a multi-layered laminate in which layers of materials are alternately formed.
【請求項3】低屈折率材料がMgF2 またはSiO2
あり、高屈折率材料がZrO2 ,Ta2 5 ,TiO2
およびCeO2 のうちのいずれかかまたはこれらの材料
のうちのいくつかを組み合わせた混合物であることを特
徴とする請求項2記載の電子写真用感光体。
3. The low refractive index material is MgF 2 or SiO 2 , and the high refractive index material is ZrO 2 , Ta 2 O 5 , TiO 2.
3. The electrophotographic photoreceptor according to claim 2, which is a mixture of any one of CeO 2 and CeO 2 or a combination of some of these materials.
JP11505192A 1992-05-08 1992-05-08 Electrophotographic sensitive body Pending JPH05313395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11505192A JPH05313395A (en) 1992-05-08 1992-05-08 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11505192A JPH05313395A (en) 1992-05-08 1992-05-08 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH05313395A true JPH05313395A (en) 1993-11-26

Family

ID=14652968

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11505192A Pending JPH05313395A (en) 1992-05-08 1992-05-08 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH05313395A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002006525A (en) * 2000-05-22 2002-01-09 Xerox Corp Blocking layer containing light-scattering particle having rough surface

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002006525A (en) * 2000-05-22 2002-01-09 Xerox Corp Blocking layer containing light-scattering particle having rough surface
JP4740473B2 (en) * 2000-05-22 2011-08-03 ゼロックス コーポレイション Blocking layer comprising light scattering particles having a rough surface

Similar Documents

Publication Publication Date Title
JP3080325B2 (en) Image recording medium and raster output scanning system using it
KR102003650B1 (en) A phase shift mask blank and a method for manufacturing phase shift mask using the same, and a method for manufacturing the display device
CA2044340C (en) Novel photosensitive imaging member
JPH05313395A (en) Electrophotographic sensitive body
JPS6129851A (en) Electrophotographic device
JPS5957247A (en) Electrophotographic receptor
US5962174A (en) Multilayer reflective mask
JPS6086550A (en) Electrophotographic recording device
JP2634061B2 (en) Electrophotographic equipment
US5162182A (en) Photosensitive member for electrophotography with interference control layer
KR20210156461A (en) A reticle in apparatus for EUV lithography
JPS59107306A (en) Exposing filter in electrophotography
JP3582028B2 (en) Method for forming halftone phase shift mask
JPS60169866A (en) Image forming method
JPS62192753A (en) Electrophotographic sensitive body
JPH02171722A (en) Liquid crystal light shutter
JPH0259765A (en) Electrophotographic sensitive body
JPH0210948B2 (en)
Bourke et al. Experimental demonstration of evanescent-coupled antireflection coatings
JPH07159971A (en) Optical mask blank, optical mask and production of the same
JPH02232917A (en) Semiconductor exposing device and exposing method
KR950004969B1 (en) Exposure method for semicondutor device
JPS6163850A (en) Electrophotographic sensitive body
JPS6054433A (en) Forming method for pattern
KR20060128893A (en) Lithographic projection device, method and substrate for manufacturing electronic devices, and obtained electronic device