JPH05312741A - Method and apparatus for measurement of thermal conductivity of filled resin - Google Patents

Method and apparatus for measurement of thermal conductivity of filled resin

Info

Publication number
JPH05312741A
JPH05312741A JP11783992A JP11783992A JPH05312741A JP H05312741 A JPH05312741 A JP H05312741A JP 11783992 A JP11783992 A JP 11783992A JP 11783992 A JP11783992 A JP 11783992A JP H05312741 A JPH05312741 A JP H05312741A
Authority
JP
Japan
Prior art keywords
sample
thermal conductivity
resin
sample chamber
filler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11783992A
Other languages
Japanese (ja)
Inventor
Eiji Kawai
Tetsuya Sonoda
徹也 園田
栄二 河合
Original Assignee
Ricoh Co Ltd
株式会社リコー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd, 株式会社リコー filed Critical Ricoh Co Ltd
Priority to JP11783992A priority Critical patent/JPH05312741A/en
Publication of JPH05312741A publication Critical patent/JPH05312741A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the measured result of a thermal conductivity with a high accuracy and high reliability by a method wherein a filled resin sample which is molded by an injection molding method is housed in the sample chamber of a measurement apparatus and heated to melt and the thermal conductivity is measured directly and under conditions similar to those of an actual molding process. CONSTITUTION:Resin filled with fillers such as glass fibers is molded by an injection molding method to form a spherical sample having a volume larger than the capacity of a sample chamber 16. The molded sample is housed in the sample chamber 16 under a room temperature and heated by a heater 12 to melt. As the volume of the sample is larger than the capacity of the sample chamber 16, an internal pressure is created in the sample. Then a heater probe 14 is inserted into the approximately central part of the melted sample and a voltage is applied to the heater probe 14 to heat the melted sample. The temperature rise at that time is measured by thermosensors 13a-13d and, by taking the measured results and thermal conductivities between the outer circumference of the sample chamber 16 and the sensors 13a-13d into account, the thermal conductivity of the melted sample is calculated to obtain the thermal conductivity of the sample.

Description

【発明の詳細な説明】Detailed Description of the Invention
【0001】[0001]
【産業上の利用分野】本発明は充填剤入り樹脂の熱伝導
率の測定方法および測定装置に関し、詳しくは、ガラス
繊維や磁性材料等が充填された樹脂の熱伝導率の測定結
果を安定させることができる充填剤入り樹脂の熱伝導率
の測定方法および測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring the thermal conductivity of a resin containing a filler, and more specifically, it stabilizes the measurement result of the thermal conductivity of a resin filled with glass fiber, a magnetic material or the like. The present invention relates to a method and an apparatus for measuring the thermal conductivity of a resin containing a filler that can be used.
【0002】[0002]
【従来の技術】一般に、ガラス繊維や磁性材料等が充填
された樹脂は、機械強度が樹脂だけのものに比べて著し
く増加することから、複写機を始めとするOA機器等の
機構部品として広く普及している。ところで、このよう
な充填剤入りの樹脂にあっては、機械的性質を評価する
ことが容易であるのに対して、熱的性質を評価すること
は非常に困難であり、この熱的性質の中でも、特に熱伝
導率の測定結果が安定しない傾向にあるため、その測定
結果を安定させることが要求されている。
2. Description of the Related Art Generally, a resin filled with glass fiber, a magnetic material or the like has a mechanical strength remarkably increased as compared with a resin alone. Therefore, it is widely used as a mechanical component of OA equipment such as a copying machine. It is popular. By the way, in such a resin containing a filler, while it is easy to evaluate the mechanical properties, it is very difficult to evaluate the thermal properties. Especially, since the measurement result of the thermal conductivity tends to be unstable, it is required to stabilize the measurement result.
【0003】従来のこの種の充填剤入り樹脂の熱伝導率
の測定方法としては、例えば、磁性材料を充填した樹脂
の温度変化をセンサによって検出し、該センサの検出結
果から樹脂の熱伝導率を測定するようにしている。
As a conventional method for measuring the thermal conductivity of a resin containing a filler of this type, for example, a temperature change of the resin filled with a magnetic material is detected by a sensor, and the thermal conductivity of the resin is detected from the detection result of the sensor. I am trying to measure.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、このよ
うな従来の充填剤入り樹脂の熱伝導率の測定方法にあっ
ては、磁性材料を充填した樹脂の温度変化をセンサによ
って測定しているだけであったため、熱伝導率を効率良
く測定することができず、測定結果が不安定になってし
まうという問題があった。
However, in such a conventional method for measuring the thermal conductivity of a resin containing a filler, the temperature change of the resin filled with a magnetic material is simply measured by a sensor. Therefore, there was a problem that the thermal conductivity could not be measured efficiently and the measurement result became unstable.
【0005】この点を図2に示す磁性材料が充填された
ポリスチレンの熱伝導率の測定結果に基づいて説明す
る。本来、ポリスチレンよりも熱伝導率が高い磁性材料
を充填したものは、ボリスチレンナチュラル(すなわ
ち、ポリスチレンのみ)のものよりも熱伝導率が高くな
るはずであるが、磁性材料をそのまま充填した樹脂は図
2に示すように同一条件下の比較結果でもナチュラルな
樹脂の方が熱伝導率が高くなってしまう。
This point will be described based on the measurement result of the thermal conductivity of polystyrene filled with the magnetic material shown in FIG. Originally, the one filled with a magnetic material having a higher thermal conductivity than polystyrene should have a higher thermal conductivity than that of polystyrene natural (that is, polystyrene only), but a resin filled with a magnetic material as it is As shown in FIG. 2, the thermal conductivity of the natural resin is higher than that of the natural resin even in the comparison result under the same conditions.
【0006】すなわち、磁性材料をそのまま樹脂に充填
したものは、図3に示すように、磁性材料1とポリスチ
レン2との間に空気層3が存在するため、この空気層3
の量によって測定結果が安定せず、磁性材料1が充填さ
れたポリスチレン2の測定結果のデータと反対の測定結
果になってしまうのである。このような不具合を解消す
るために、充填剤入りの樹脂部品の伝熱を公知の有限要
素法等の数値解析の手法を使って計算し、熱設計を行う
場合に入力結果となる熱伝導率を充填剤と樹脂の重量パ
ーセントで算出したものを使用するようにしている。
That is, in the resin in which the magnetic material is directly filled, the air layer 3 exists between the magnetic material 1 and the polystyrene 2 as shown in FIG.
Depending on the amount, the measurement result is not stable, and the measurement result is opposite to the measurement result data of the polystyrene 2 filled with the magnetic material 1. In order to eliminate such a problem, the heat conductivity of the resin component containing the filler is calculated by using the numerical analysis method such as the well-known finite element method, and the thermal conductivity which is the input result when the thermal design is performed. Is calculated as the weight percentage of the filler and the resin.
【0007】ところが、この手法にあっては、理論解析
であるため、実際の熱伝導率を測定して安定した結果を
得ることができる充填剤入り樹脂の熱伝導率の測定方法
が要求されている。そこで請求項1記載の発明は、充填
剤周辺の空気を除去するようにして、充填剤入りの樹脂
自体の熱伝導率を直接的、かつ実成形過程に近い状態で
測定することができ、測定精度が高く、しかも信頼性の
高い安定した測定結果を得ることができる充填剤入り樹
脂の熱伝導率の測定方法を提供することを目的としてい
る。
However, since this method is a theoretical analysis, there is a demand for a method for measuring the thermal conductivity of a filled resin that can obtain a stable result by measuring the actual thermal conductivity. There is. Therefore, the invention according to claim 1 can measure the thermal conductivity of the resin containing the filler itself directly and in a state close to the actual molding process by removing the air around the filler. It is an object of the present invention to provide a method for measuring the thermal conductivity of a resin containing a filler, which is highly accurate and can obtain stable and highly reliable measurement results.
【0008】請求項2記載の発明は、測定用の試料に内
圧を発生させた状態で熱伝導率を測定することができる
とともに、測定中に空気が混入するのを防止することが
でき、熱伝導率の測定精度をより一層高くすることがで
き、しかもより一層信頼性の高い安定した測定結果を得
ることができる充填剤入り樹脂の熱伝導率の測定方法を
提供することを目的としている。
According to the second aspect of the present invention, the thermal conductivity can be measured while the internal pressure is generated in the measurement sample, and at the same time, it is possible to prevent air from being mixed in during the measurement. An object of the present invention is to provide a method for measuring the thermal conductivity of a resin containing a filler, which can further improve the measurement accuracy of the conductivity and can obtain a more reliable and stable measurement result.
【0009】請求項3記載の発明は、充填剤周辺の空気
を除去するようにして、充填剤入りの樹脂自体の熱伝導
率を直接的、かつ実成形過程に近い状態で測定すること
ができ、測定精度が高く、しかも信頼性の高い安定した
測定結果を得ることができるとともに、溶融試料内への
ヒータプローブの挿入位置を任意の位置に設定可能にし
て、熱伝導率の測定効率を向上させることができる充填
剤入り樹脂の熱伝導率の測定装置を提供することを目的
としている。
According to the third aspect of the invention, the thermal conductivity of the resin containing the filler itself can be measured directly and in a state close to the actual molding process by removing the air around the filler. Highly accurate and reliable measurement results can be obtained, and the insertion position of the heater probe into the molten sample can be set at any position to improve the thermal conductivity measurement efficiency. An object of the present invention is to provide a device for measuring the thermal conductivity of a resin containing a filler that can be used.
【0010】[0010]
【課題を解決するための手段】請求項1記載の発明は、
上記課題を解決するために、所定の充填剤が充填された
樹脂の熱伝導率を測定する方法であって、予め射出成形
加工によって成形された充填剤入り樹脂の試料を準備
し、該試料を測定装置の試料室に収納した後、該試料を
加熱して溶融させ、この状態で熱伝導率を測定するよう
にしたことを特徴としている。
The invention according to claim 1 is
In order to solve the above problems, a method of measuring the thermal conductivity of a resin filled with a predetermined filler, prepare a sample of the filled resin molded by injection molding in advance, the sample After being stored in the sample chamber of the measuring device, the sample is heated and melted, and the thermal conductivity is measured in this state.
【0011】請求項2記載の発明は、上記課題を解決す
るために、前記試料が、予め試料室の容積よりも大きい
体積を有する球体に加工されることを特徴としている。
請求項3記載の発明は、上記課題を解決するために、前
記請求項1または2記載の充填剤入り樹脂の熱伝導率の
測定装置であって、前記樹脂の試料を収納可能な試料室
と、該試料室内に収納された試料を加熱可能なヒータ
と、該試料室の外周部から略等距離に離隔するとともに
該試料室の外周部に略等間隔で離隔して配設され、試料
室近傍の温度を測定する複数の温度センサーと、試料室
に対して挿脱自在に設けられ、試料室内に収納された試
料の温度を測定するとともに、溶融樹脂を加熱可能なヒ
ータプローブと、を備え、試料が溶融された状態でヒー
タプローブが試料内に挿入されることを特徴としてい
る。
In order to solve the above-mentioned problems, the invention according to claim 2 is characterized in that the sample is previously processed into a sphere having a volume larger than the volume of the sample chamber.
In order to solve the above-mentioned problems, a third aspect of the present invention is an apparatus for measuring the thermal conductivity of a resin containing a filler according to the first or second aspect, which comprises a sample chamber capable of storing a sample of the resin. A heater capable of heating a sample stored in the sample chamber, and a heater which is arranged at a substantially equal distance from the outer peripheral portion of the sample chamber and at a substantially equal distance to the outer peripheral portion of the sample chamber. Equipped with a plurality of temperature sensors that measure the temperature in the vicinity and a heater probe that is provided so that it can be inserted into and removed from the sample chamber and that measures the temperature of the sample stored in the sample chamber and that can heat the molten resin. The heater probe is inserted into the sample while the sample is melted.
【0012】[0012]
【作用】請求項1記載の発明では、予め射出成形加工に
よって成形された充填剤入り樹脂の試料が準備され、該
試料が測定装置の試料室に収納された後、該試料が加熱
されて溶融され、この状態で熱伝導率が測定されるよう
になっている。したがって、充填剤入りの試料が射出成
形機のシリンダ内で充分に混練されるとともに、射出時
に高圧で成形され、充填剤と樹脂の間に空気層が発生す
ることがなく、樹脂自体の熱伝導率が直接的に測定され
る。これに加えて、試料が溶融された状態で熱伝導率が
測定され、樹脂の実成形過程に近い状態で熱伝導率が測
定される。この結果、熱伝導率の測定精度が高くなり、
しかも信頼性の高い安定した測定結果が得られる。
According to the first aspect of the invention, the sample of the resin containing the filler, which is molded by the injection molding process in advance, is prepared, the sample is stored in the sample chamber of the measuring device, and then the sample is heated and melted. The thermal conductivity is measured in this state. Therefore, the sample containing the filler is sufficiently kneaded in the cylinder of the injection molding machine, and is molded at high pressure during injection, so that an air layer is not generated between the filler and the resin, and the heat conduction of the resin itself does not occur. The rate is measured directly. In addition to this, the thermal conductivity is measured in a molten state of the sample, and the thermal conductivity is measured in a state close to the actual molding process of the resin. As a result, the measurement accuracy of the thermal conductivity increases,
In addition, reliable and stable measurement results can be obtained.
【0013】請求項2記載の発明では、試料が、予め試
料室の容積よりも大きい体積を有する球体に加工され
る。したがって、溶融試料に内圧が発生された状態で熱
伝導率が測定され、測定時に空気が混入することがな
い。この結果、熱伝導率の測定精度が高くなり、しかも
信頼性の高い安定した測定結果が得られる。請求項3記
載の発明では、樹脂の試料を収納可能な試料室と、該試
料室内に収納された試料を加熱可能なヒータと、該試料
室の外周部から略等距離に離隔するとともに該試料室の
外周部に略等間隔で離隔して配設され、試料室近傍の温
度を測定する複数の温度センサーと、試料室に対して挿
脱自在に設けられ、試料室内に収納された試料の温度を
測定するとともに、溶融樹脂を加熱可能なヒータプロー
ブと、が備えられ、試料が溶融された状態でヒータプロ
ーブが試料内に挿入される。
According to the second aspect of the invention, the sample is preliminarily processed into a sphere having a volume larger than the volume of the sample chamber. Therefore, the thermal conductivity is measured while the internal pressure is generated in the molten sample, and air is not mixed during the measurement. As a result, the measurement accuracy of the thermal conductivity is increased, and a reliable and stable measurement result can be obtained. In the invention according to claim 3, a sample chamber capable of accommodating a resin sample, a heater capable of heating the sample accommodated in the sample chamber, and a sample chamber which is separated from the outer peripheral portion of the sample chamber at an approximately equal distance. A plurality of temperature sensors that are arranged at substantially equal intervals on the outer periphery of the chamber to measure the temperature in the vicinity of the sample chamber and a sample that is inserted into and removed from the sample chamber and is stored in the sample chamber. A heater probe capable of measuring the temperature and heating the molten resin is provided, and the heater probe is inserted into the sample while the sample is melted.
【0014】したがって、試料が試料室内で加熱されて
溶融状態になり、その内圧が高くなる。このため、充填
剤と樹脂の間に空気層が発生することがなく、樹脂自体
の熱伝導率が直接的に測定される。これに加えて、試料
が溶融された状態で熱伝導率が測定され、樹脂の実成形
過程に近い状態で熱伝導率が測定される。この結果、熱
伝導率の測定精度が高くなり、しかも信頼性の高い安定
した測定結果が得られる。
Therefore, the sample is heated in the sample chamber to be in a molten state and its internal pressure becomes high. Therefore, an air layer is not generated between the filler and the resin, and the thermal conductivity of the resin itself can be directly measured. In addition to this, the thermal conductivity is measured in a molten state of the sample, and the thermal conductivity is measured in a state close to the actual molding process of the resin. As a result, the measurement accuracy of the thermal conductivity is increased, and a reliable and stable measurement result can be obtained.
【0015】また、試料室の外周部に配設された複数の
温度センサによって試料室近傍の温度測定値が平均化さ
れ、ヒータプローブが溶融樹脂の任意の位置に挿入され
ても該樹脂の熱伝導率が容易に測定される。この結果、
熱伝導率の測定効率が向上する。
Further, the temperature measurement values in the vicinity of the sample chamber are averaged by a plurality of temperature sensors arranged on the outer periphery of the sample chamber, and even if the heater probe is inserted at an arbitrary position of the molten resin, the heat of the resin is The conductivity is easily measured. As a result,
The measurement efficiency of thermal conductivity is improved.
【0016】[0016]
【実施例】以下、本発明を実施例に基づいて説明する。
図1は請求項1〜3記載の発明に係る充填剤入り樹脂の
熱伝導率の測定装置の一実施例を示す図であり、その上
面図を示している。まず、構成を説明する。図1におい
て、11は測定装置としてのバレルであり、該バレル11
は、ヒータ12と、複数のセンサ13a〜13dと、ヒータブ
ローブ14と、エアシリンダ15と、から構成されている。
EXAMPLES The present invention will be described below based on examples.
FIG. 1 is a view showing an embodiment of the apparatus for measuring the thermal conductivity of a resin containing a filler according to the invention described in claims 1 to 3, and shows a top view thereof. First, the configuration will be described. In FIG. 1, 11 is a barrel as a measuring device.
Is composed of a heater 12, a plurality of sensors 13a to 13d, a heater probe 14, and an air cylinder 15.
【0017】ヒータ12は、中心部を境にして第1ヒータ
12a、第2ヒータ12bに分割可能になっており、互いの
当接面に球状の試料室16が画成され、該試料室16内には
後述する試料が収納されるようになっている。センサ13
a〜13dは、試料室16の外周部から略等距離に離隔する
とともに試料室16の外周部に略等間隔で離隔して配設さ
れており、試料室16近傍の温度を測定するようになって
いる。
The heater 12 is the first heater with the center part as a boundary.
12a and the second heater 12b can be divided, and a spherical sample chamber 16 is defined on the contact surfaces thereof, and a sample to be described later is stored in the sample chamber 16. Sensor 13
a to 13d are arranged at substantially equal distances from the outer peripheral portion of the sample chamber 16 and are also arranged at substantially equal intervals on the outer peripheral portion of the sample chamber 16 so as to measure the temperature in the vicinity of the sample chamber 16. Is becoming
【0018】ヒータプローブ14は、図示しない電源に接
続されており、該電源から電圧が加えられることによっ
て試料室内16に収納された試料を加熱するようになって
いる。また、ヒータプローブ14は、温度センサーとして
の機能も有しており、試料室内16に収納された試料の温
度を測定可能になっている。エアシリンダ15は、ヒータ
プローブ14に連結されており、ヒータプローブ14を図中
上下方向に移動させて該プローブ14を試料室16に対して
挿脱させるようになっている。
The heater probe 14 is connected to a power source (not shown) and heats the sample contained in the sample chamber 16 when a voltage is applied from the power source. The heater probe 14 also has a function as a temperature sensor and can measure the temperature of the sample stored in the sample chamber 16. The air cylinder 15 is connected to the heater probe 14, and the heater probe 14 is moved up and down in the drawing to insert and remove the probe 14 into and from the sample chamber 16.
【0019】次に、作用を説明する。まず、本実施例で
は、予め、ガラス繊維、炭素繊維あるいは磁性材料等の
充填剤が充填された樹脂からなる試料を公知の射出成形
法によって試料室16の容積よりも大きい体積で球体にな
るように成形する。このとき、高密度な試料が得られる
ように保圧工程で充分な保持圧力を加える。このため、
射出成形機のシリンダ内で試料が充分に混練されるとと
もに、射出時に高圧で成形され、充填剤と樹脂の間に空
気層が発生するのを抑制することができる。
Next, the operation will be described. First, in the present embodiment, a sample made of a resin filled with a filler such as glass fiber, carbon fiber or magnetic material in advance is formed into a sphere with a volume larger than the volume of the sample chamber 16 by a known injection molding method. To mold. At this time, a sufficient holding pressure is applied in the pressure holding step so that a high-density sample can be obtained. For this reason,
The sample can be sufficiently kneaded in the cylinder of the injection molding machine, and can be molded at a high pressure during injection to suppress the formation of an air layer between the filler and the resin.
【0020】次いで、射出成形法によって成形された試
料の温度を測定するために、常温状態の試料室16に試料
を収納した後、ヒータ12を加熱する。このとき、複数の
温度センサー13a〜13dの温度差が1℃以下の分布状態
になるようにヒータ12を加熱する。次いで、加熱を加え
て試料を溶融させる。このとき、試料の体積が試料室16
の容積よりも大きく、成形時に高密度に形成され、さら
に溶融状態になるため、試料室樹16内で所定の内圧が発
生する。次いで、エアシリンダ15によってヒータプロー
ブ14を溶融試料の略中心の任意の位置に挿入、保持す
る。
Next, in order to measure the temperature of the sample molded by the injection molding method, after the sample is stored in the sample chamber 16 at room temperature, the heater 12 is heated. At this time, the heater 12 is heated so that the temperature difference among the plurality of temperature sensors 13a to 13d is in a distribution state of 1 ° C. or less. Then, heat is applied to melt the sample. At this time, the sample volume is
Since the volume is larger than that of the sample chamber, it is formed at high density during molding, and is in a molten state, a predetermined internal pressure is generated in the sample chamber tree 16. Next, the heater probe 14 is inserted and held at an arbitrary position in the approximate center of the molten sample by the air cylinder 15.
【0021】次いで、ヒータプローブ14に電圧を一定時
間与えて溶融試料を加熱する。このため、溶融試料が、
例えばΔT℃温度上昇する。このときの温度の上昇を複
数の温度センサー13a〜13dによって測定し、この測定
結果と試料室16外周部およびセンサ13a〜13d間の熱伝
導率を加味することにより、溶融試料の熱伝導率を算出
して試料の熱伝導率を測定する。
Next, a voltage is applied to the heater probe 14 for a certain period of time to heat the molten sample. Therefore, the molten sample
For example, the temperature rises by ΔT ° C. The temperature rise at this time is measured by the plurality of temperature sensors 13a to 13d, and the thermal conductivity of the molten sample is calculated by adding the measurement result and the thermal conductivity between the outer peripheral portion of the sample chamber 16 and the sensors 13a to 13d. Calculate and measure the thermal conductivity of the sample.
【0022】このように本実施例では、予め射出成形加
工によって成形された充填剤入り樹脂の試料を準備し、
該試料を試料室16に収納した後、該試料を加熱溶融し、
この状態で熱伝導率を測定するようにしているため、充
填剤入りの試料を射出成形機のシリンダ内で充分に混練
することができるとともに、射出時に高圧で成形するこ
とができ、充填剤と樹脂の間に空気層が発生するのを防
止して樹脂自体の熱伝導率を直接的に測定することがで
きる。これに加えて、試料が溶融された状態で熱伝導率
を測定しているため、樹脂の実成形過程に近い状態で熱
伝導率を測定することができる。この結果、熱伝導率の
測定精度を高くすることができ、しかも信頼性の高い安
定した測定結果を得ることができる。
As described above, in this embodiment, a sample of the resin containing a filler, which was previously molded by injection molding, was prepared,
After storing the sample in the sample chamber 16, the sample is heated and melted,
Since the thermal conductivity is measured in this state, the sample containing the filler can be sufficiently kneaded in the cylinder of the injection molding machine, and can be molded at high pressure during injection. The thermal conductivity of the resin itself can be directly measured by preventing the formation of an air layer between the resins. In addition to this, since the thermal conductivity is measured in the molten state of the sample, the thermal conductivity can be measured in a state close to the actual molding process of the resin. As a result, it is possible to increase the measurement accuracy of the thermal conductivity and obtain a reliable and stable measurement result.
【0023】また、試料を予め試料室の容積よりも大き
い体積を有する球体に加工しているため、溶融試料に内
圧が発生した状態で熱伝導率を測定することができ、し
かも測定時に空気が混入するのを防止することができ
る。この結果、熱伝導率の測定精度を高くすることがで
き、しかも信頼性の高い安定した測定結果を得ることが
できる。
Further, since the sample is preliminarily processed into a sphere having a volume larger than the volume of the sample chamber, the thermal conductivity can be measured in a state where the internal pressure is generated in the molten sample, and air is not generated during the measurement. It is possible to prevent mixing. As a result, it is possible to increase the measurement accuracy of the thermal conductivity and obtain a reliable and stable measurement result.
【0024】また、複数の温度センサー13a〜13dを、
試料室16の外周部から略等距離に離隔させるとともに該
試料室16の外周部に略等間隔で離隔して配設し、ヒータ
プローブ14を、試料室16に対して挿脱自在に設けている
ため、試料室16近傍の温度測定値を平均化することがで
き、ヒータブローブ14を溶融試料の任意の位置に挿入し
ても該試料の熱伝導率を容易に測定することができる。
この結果、熱伝導率の測定効率を向上させることができ
る。
In addition, a plurality of temperature sensors 13a-13d,
The heater probe 14 is provided at a substantially equidistant distance from the outer peripheral portion of the sample chamber 16 and is arranged at the outer peripheral portion of the sample chamber 16 at substantially equal intervals, and the heater probe 14 is detachably attached to the sample chamber 16. Therefore, the temperature measurement values in the vicinity of the sample chamber 16 can be averaged, and the thermal conductivity of the sample can be easily measured even when the heater probe 14 is inserted at an arbitrary position of the sample.
As a result, the measurement efficiency of thermal conductivity can be improved.
【0025】[0025]
【発明の効果】請求項1記載の発明によれば、充填剤入
りの試料を射出成形機のシリンダ内で充分に混練するこ
とができるとともに、射出時に高圧で成形することがで
き、充填剤と樹脂の間に空気層が発生するのを防止して
樹脂自体の熱伝導率を直接的に測定することができる。
これに加えて、試料が溶融された状態で熱伝導率を測定
しているため、樹脂の実成形過程に近い状態で熱伝導率
を測定することができる。この結果、熱伝導率の測定精
度を高くすることができ、しかも信頼性の高い安定した
測定結果を得ることができる。
According to the invention described in claim 1, the sample containing the filler can be sufficiently kneaded in the cylinder of the injection molding machine and can be molded at a high pressure during injection. The thermal conductivity of the resin itself can be directly measured by preventing the formation of an air layer between the resins.
In addition to this, since the thermal conductivity is measured in the molten state of the sample, the thermal conductivity can be measured in a state close to the actual molding process of the resin. As a result, it is possible to increase the measurement accuracy of the thermal conductivity and obtain a reliable and stable measurement result.
【0026】請求項2記載の発明によれば、試料室近傍
の温度測定値を平均化することができ、ヒータブローブ
を溶融試料の任意の位置に挿入しても該試料の熱伝導率
を容易に測定することができる。この結果、熱伝導率の
測定効率を向上させることができる。請求項3記載の発
明によれば、試料を試料室内で加熱して溶融状態にする
ことができ、その内圧を高くすることができる。このた
め、充填剤と樹脂の間に空気層が発生するのを防止する
ことができ、樹脂自体の熱伝導率を直接的に測定するこ
とができる。これに加えて、試料が溶融した状態で熱伝
導率を測定しているため、樹脂の実成形過程に近い状態
で熱伝導率を測定することができる。この結果、熱伝導
率の測定精度を高くすることができ、しかも信頼性の高
い安定した測定結果を得ることができる。
According to the second aspect of the present invention, the temperature measurement values in the vicinity of the sample chamber can be averaged, and even if the heater probe is inserted at an arbitrary position of the molten sample, the thermal conductivity of the sample can be easily adjusted. Can be measured. As a result, the measurement efficiency of the thermal conductivity can be improved. According to the invention of claim 3, the sample can be heated in the sample chamber to be in a molten state, and the internal pressure thereof can be increased. Therefore, it is possible to prevent the formation of an air layer between the filler and the resin, and it is possible to directly measure the thermal conductivity of the resin itself. In addition to this, since the thermal conductivity is measured in the molten state of the sample, the thermal conductivity can be measured in a state close to the actual molding process of the resin. As a result, it is possible to increase the measurement accuracy of the thermal conductivity and obtain a reliable and stable measurement result.
【0027】また、試料室の外周部に配設された複数の
温度センサによって試料室近傍の温度測定値を平均化す
ることができ、ヒータブローブを溶融試料の任意の位置
に挿入しても該試料の熱伝導率を容易に測定することが
できる。この結果、熱伝導率の測定効率を向上させるこ
とができる。
Further, the temperature measurement values in the vicinity of the sample chamber can be averaged by a plurality of temperature sensors arranged on the outer periphery of the sample chamber, and even if the heater probe is inserted at an arbitrary position of the molten sample, The thermal conductivity of the sample can be easily measured. As a result, the measurement efficiency of thermal conductivity can be improved.
【図面の簡単な説明】[Brief description of drawings]
【図1】請求項1〜3記載の発明に係る充填剤入り樹脂
の熱伝導率の測定装置の一実施例を示す図である。
FIG. 1 is a diagram showing an example of an apparatus for measuring the thermal conductivity of a resin containing a filler according to the present invention.
【図2】従来の充填剤入りの樹脂の熱伝導率の測定結果
を示す図である。
FIG. 2 is a diagram showing measurement results of thermal conductivity of a conventional resin containing a filler.
【図3】従来の充填剤入りの樹脂の断面図である。FIG. 3 is a cross-sectional view of a conventional resin containing a filler.
【符号の説明】[Explanation of symbols]
11 バレル(測定装置) 12 ヒータ 13a〜13d 温度センサー 14 ヒータプローブ 16 試料室 11 Barrel (Measuring device) 12 Heaters 13a to 13d Temperature sensor 14 Heater probe 16 Sample chamber

Claims (3)

    【特許請求の範囲】[Claims]
  1. 【請求項1】所定の充填剤が充填された樹脂の熱伝導率
    を測定する方法であって、予め射出成形加工によって成
    形された充填剤入り樹脂の試料を準備し、該試料を測定
    装置の試料室に収納した後、該試料を加熱して溶融さ
    せ、この状態で熱伝導率を測定するようにしたことを特
    徴とする充填剤入り樹脂の熱伝導率の測定方法。
    1. A method for measuring the thermal conductivity of a resin filled with a predetermined filler, which comprises preparing a sample of a resin filled with a filler, which is molded in advance by an injection molding process, and measuring the sample in a measuring device. A method for measuring the thermal conductivity of a resin containing a filler, characterized in that after the sample is stored in a sample chamber, the sample is heated and melted, and the thermal conductivity is measured in this state.
  2. 【請求項2】前記試料が、予め試料室の容積よりも大き
    い体積を有する球体に加工されることを特徴とする請求
    項1記載の充填剤入り樹脂の熱伝導率の測定方法。
    2. The method for measuring the thermal conductivity of a filled resin according to claim 1, wherein the sample is previously processed into a sphere having a volume larger than that of the sample chamber.
  3. 【請求項3】前記請求項1または2記載の充填剤入り樹
    脂の熱伝導率の測定装置であって、前記樹脂の試料を収
    納可能な試料室と、該試料室内に収納された試料を加熱
    可能なヒータと、該試料室の外周部から略等距離に離隔
    するとともに該試料室の外周部に略等間隔で離隔して配
    設され、試料室近傍の温度を測定する複数の温度センサ
    ーと、試料室に対して挿脱自在に設けられ、試料室内に
    収納された試料の温度を測定するとともに、溶融樹脂を
    加熱可能なヒータプローブと、を備え、試料が溶融され
    た状態でヒータプローブが試料内に挿入されることを特
    徴とする充填剤入り樹脂の熱伝導率の測定装置。
    3. An apparatus for measuring the thermal conductivity of a resin containing a filler according to claim 1 or 2, wherein a sample chamber in which the resin sample can be stored and a sample stored in the sample chamber are heated. A possible heater and a plurality of temperature sensors which are arranged at substantially equal distances from the outer peripheral portion of the sample chamber and are arranged at substantially equal intervals on the outer peripheral portion of the sample chamber, and measure the temperature in the vicinity of the sample chamber. , A heater probe that can be inserted into and removed from the sample chamber and that can measure the temperature of the sample stored in the sample chamber and that can heat the molten resin, and the heater probe in the molten state A device for measuring the thermal conductivity of a resin containing a filler, which is inserted into a sample.
JP11783992A 1992-05-12 1992-05-12 Method and apparatus for measurement of thermal conductivity of filled resin Pending JPH05312741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11783992A JPH05312741A (en) 1992-05-12 1992-05-12 Method and apparatus for measurement of thermal conductivity of filled resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11783992A JPH05312741A (en) 1992-05-12 1992-05-12 Method and apparatus for measurement of thermal conductivity of filled resin

Publications (1)

Publication Number Publication Date
JPH05312741A true JPH05312741A (en) 1993-11-22

Family

ID=14721540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11783992A Pending JPH05312741A (en) 1992-05-12 1992-05-12 Method and apparatus for measurement of thermal conductivity of filled resin

Country Status (1)

Country Link
JP (1) JPH05312741A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6142662A (en) * 1998-06-16 2000-11-07 New Jersey Institute Of Technology Apparatus and method for simultaneously determining thermal conductivity and thermal contact resistance
CN102012382A (en) * 2010-10-25 2011-04-13 上海海事大学 Heat conductivity coefficient quick test device and method of vacuum insulating board
KR101143779B1 (en) * 2010-01-22 2012-05-11 전북대학교산학협력단 Thermal conductivity measurement system under high pressure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6142662A (en) * 1998-06-16 2000-11-07 New Jersey Institute Of Technology Apparatus and method for simultaneously determining thermal conductivity and thermal contact resistance
KR101143779B1 (en) * 2010-01-22 2012-05-11 전북대학교산학협력단 Thermal conductivity measurement system under high pressure
CN102012382A (en) * 2010-10-25 2011-04-13 上海海事大学 Heat conductivity coefficient quick test device and method of vacuum insulating board

Similar Documents

Publication Publication Date Title
KR100978428B1 (en) Determination of the gas pressure in an evacuated thermal insulating board vacuum panel by using a heat sink and test layer that are integrated therein
Gale et al. Molten Salt Techniques: Volume 2
Greywall et al. 3 He-melting-curve thermometry
Meyer Glass transition temperature as a guide to selection of polymers suitable for PTC materials
Abel et al. Low-Temperature Heat Capacity of Liquid He 3
US5983711A (en) Temperature controlled gravimetric moisture analyzer and method therefor
US4104509A (en) Self-regulating heating element
US7585166B2 (en) System for monitoring temperature and pressure during a molding process
US4342633A (en) Oxygen sensor
US5209571A (en) Device for measuring the temperature of a molten metal
EP1565299B1 (en) Apparatus for retaining a heater and thermocouple on an injection molding nozzle
JP2559651B2 (en) Injection molding control method and apparatus
US4777431A (en) Apparatus for monitoring dielectric changes in polymeric materials
EP0348245A3 (en) Measurement of thermal conductivity and specific heat
US5419858A (en) Method for controlling fluctuation in flow property of resin in injection molding machine
US6649095B2 (en) Method and apparatus for controlling a mold melt-flow process using temperature sensors
US4370115A (en) Injection molding method and device
Parpia et al. Viscosity of Liquid He 3-B near the Superfluid Transition
US4964736A (en) Immersion measuring probe for use in molten metals
Baek et al. Effect of processing conditions on warpage of film insert molded parts
SE444817B (en) PROCEDURE FOR THE PREPARATION OF CASTING IRON
CA2125537C (en) Method and apparatus for thermal conductivity measurements
WO2016135776A1 (en) Temperature sensor
US7126343B1 (en) Conductivity probe with toroid keeper
US4551807A (en) Cure-control method for thermosetting polymeric material