JPH0530888B2 - - Google Patents

Info

Publication number
JPH0530888B2
JPH0530888B2 JP24396386A JP24396386A JPH0530888B2 JP H0530888 B2 JPH0530888 B2 JP H0530888B2 JP 24396386 A JP24396386 A JP 24396386A JP 24396386 A JP24396386 A JP 24396386A JP H0530888 B2 JPH0530888 B2 JP H0530888B2
Authority
JP
Japan
Prior art keywords
less
rolling
steel
yield ratio
total
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24396386A
Other languages
Japanese (ja)
Other versions
JPS63100126A (en
Inventor
Junichi Mano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP24396386A priority Critical patent/JPS63100126A/en
Publication of JPS63100126A publication Critical patent/JPS63100126A/en
Publication of JPH0530888B2 publication Critical patent/JPH0530888B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は加工性に優れた電縫鋼管用熱延高張力
鋼の製造方法に係り、引張強さ55Kg・f/mm2
上、降伏比が62%以下の熱延高張力鋼に関し、油
井管の分野で利用される。 〔従来の技術〕 電縫油井管用鋼は溶接性に優れていることは勿
論であるが、更に高強度で造管加工が容易な低降
伏比であることが望ましく、鋼種として
API5AK55鋼がある。 低降伏比を得るため、例えば自在丸らは熱延後
の冷却パターンを後半急冷に変えることにより降
伏比が65%未満の低降伏比材が得られることを示
した(R&D 神戸製鋼 技報 vol33、No.4)。
また、特開昭60−21325号では化学成分を規制す
ることにより、引張強さが60Kg・f/mm2以上で降
伏比75%未満の低降伏比材が得られることを示し
ている。しかしながら従来の方法では板厚が8mm
以下で降伏比が62%未満を平均して得ることはき
わめて困難であつた。 これは板厚が薄くなると仕上圧延での全圧下率
が必然的に高くなり、γ粒が細粒化し、変態後の
フエライト粒も細粒化するためである。結晶粒が
細粒化すると降伏点が上昇する効果は“Hall−
Petchの関係”として一般的に知られている事項
である。この結果、板厚の薄い材料では降伏比が
高くなり、実際上、62%未満を得ることは困難で
あつた。 〔発明が解決しようとする問題点〕 本発明の目的は、上記従来技術の問題点を解決
し、板厚8mm以下の材料で引張強さ55Kg・f/mm2
以上、降伏比62%以下を得ることのできる熱延高
張力鋼の製造方法を提供するにある。 〔問題点を解決するための手段および作用〕 本発明の上記の目的は次の2発明によつて達成
される。第1発明の要旨とするところは次の如く
である。すなわち、重量比にて C:0.60%以下 Si:0.50%以下 Mn:2.0%以下 全Al:0.05%以下 を含有し、かつC、Si、Mnの組成比が 97.6(%C)+11.0(%Si)+14.5(%Mn)≧52.4 なる関係式を満足し、残部がFeおよび不可避的
不純物より成る鋼片を加熱後粗圧延する工程と、
前記粗圧延後タンデム圧延機において温度範囲が
800〜1000℃で、かつ全圧下率が30〜80%で3〜
5のスタンドを使用して仕上圧延を行う工程と、
前記仕上圧延後水冷して550〜650℃の温度範囲で
巻取る工程と、を有して成り引張強さが55Kg・
f/mm2以上、降伏比が62%以下であることを特徴
とする板厚8mm以下の加工性に優れた電縫鋼管用
熱延高張力鋼の製造方法である。 第2発明の要旨とするところは、第1発明と同
一の基本成分のほかに、更にCa:0.0050%以下を
含有し、残部がFeおよび不可避的不純物より成
る鋼片を第1発明と同一条件で仕上圧延を行う電
縫鋼管用熱延高張力鋼の製造方法である。 本発明は主成分のC、Si、Mn、AlおよびCaの
含有量とその組成比を限定し、仕上圧延における
温度、全圧下傘、スタンド数およびコイル巻取温
度を制御することにより加工性に優れた高強度油
井管用熱延鋼を製造する方法である。 次に、本発明の成分限定理由を説明する。 C: Cは含有量が多い程引張強さ向上に有利である
が、0.60%を越すと中心偏析により溶接部の割れ
を生じやすくなるので上限を0.60%に限定した。 Si: Siはγ→α変態促進元素であるため、含有量が
多い程フエライト分率が高くなり延性と加工性が
向上する。しかし、一方で固溶強化元素としてフ
エライト地の降伏点を上昇させるため過度に多量
を添加するのは好ましくない。また、Siが0.50%
を越すと鋼板表面の赤スケールの発生が著しくな
り製品としての価値が損われるのでSiの上限を
0.50%にした。 Mn: Mnも引張強さを確保するため必要な元素であ
り、また熱間圧延時における低融点のFeSの形成
を防止するためにも必要な元素であるが、2.0%
を越えると中心偏析部に低温変態組織を生じ、溶
接時にその部分から割れが発生するのでMn量は
2.0%以下に限定した。 Al: Alは鋼を脱酸して清浄化する目的で添加する
が、添加量が多過ぎると置換型固溶原子として鋼
中に過剰に存在するAlが溶接時に酸素と結びつ
いてペネトレータを作りやすくなる。このように
全Alが製造コスト面でも不利となるため、全Al
の上限を0.05%に限定した。 上記C、Si、Mn、全Alの各限定量をもつて本
発明の高張力鋼の基本成分とするが、更に下記限
定量のCaを添加する場合にも、本発明の目的を
より有効に達成することができるので必要により
添加する。その限定理由は次の如くである。 Ca: Caは硫化物の形態制御をすることにより靭性
を向上させるので、靭性が要求される場合には必
要な元素であるが、0.0050%を越えるとCaOを作
り鋼の清浄性を劣化するので好ましくなく、Ca
の上限は0.0050%とした。 次に上記の如く限定したC、Si、Mnの組成比
とコイル巻取温度を限定した理由を説明する。第
1表に示す12種類の100Kg真空溶解鋼を熱間圧延
し厚さ50mm、幅200mm、長さ200mmの鋼片を作成
し、それを加熱後800〜900℃の温度範囲で厚さ3
〜10mm、幅200mm、長さlmmに仕上圧延をした後、
500〜650℃までの任意の温度に水冷し、その後コ
イルに巻取後の熱履歴に相当する熱処理を行い、
材質を調査し、その結果650℃における引張強さ
TSと化学成分との間に次の関係があることを見
出した。 TS(Km・f/mm2)=2.6+97.6(%C) +11.0(%Si)+14.5(%Mn) ……(1)
[Industrial Application Field] The present invention relates to a method for producing hot-rolled high-strength steel for ERW steel pipes that has excellent workability, and has a tensile strength of 55 Kg・f/mm 2 or more and a yield ratio of 62% or less. Regarding high tensile strength steel, used in the field of oil country tubular goods. [Prior art] Steel for ERW oil country tubular goods has excellent weldability, of course, but it is also desirable that it has high strength and a low yield ratio that makes pipe manufacturing easy.
There is API5AK55 steel. In order to obtain a low yield ratio, for example, Jizaimaru et al. showed that a low yield ratio material with a yield ratio of less than 65% could be obtained by changing the cooling pattern after hot rolling to rapid cooling in the second half (R&D Kobe Steel Technical Report vol. 33). , No. 4).
Further, JP-A No. 60-21325 shows that by regulating the chemical components, a low yield ratio material with a tensile strength of 60 Kg·f/mm 2 or more and a yield ratio of less than 75% can be obtained. However, in the conventional method, the plate thickness is 8 mm.
It was extremely difficult to obtain a yield ratio of less than 62% on average. This is because as the plate thickness decreases, the total rolling reduction in finish rolling inevitably increases, the γ grains become finer, and the ferrite grains after transformation also become finer. The effect of increasing the yield point as the crystal grains become finer is “Hall−
This is generally known as the ``Petch relationship.'' As a result, thin materials have a high yield ratio, and in practice it has been difficult to obtain a yield ratio of less than 62%. [Problems to be Solved] The purpose of the present invention is to solve the above-mentioned problems of the prior art, and to achieve a tensile strength of 55 Kg・f/mm 2 using a material with a plate thickness of 8 mm or less.
The above provides a method for producing hot-rolled high-strength steel that can obtain a yield ratio of 62% or less. [Means and effects for solving the problems] The above objects of the present invention are achieved by the following two inventions. The gist of the first invention is as follows. That is, it contains C: 0.60% or less Si: 0.50% or less Mn: 2.0% or less Total Al: 0.05% or less in weight ratio, and the composition ratio of C, Si, and Mn is 97.6 (% C) + 11.0 ( %Si)+14.5(%Mn)≧52.4, and the remainder is Fe and unavoidable impurities.
The temperature range in the tandem rolling mill after rough rolling is
3 to 800 to 1000℃ and total reduction rate of 30 to 80%
A step of finishing rolling using the stand of No. 5;
After the final rolling, the process is water-cooled and coiled at a temperature range of 550 to 650℃, and the tensile strength is 55Kg.
This is a method for producing hot-rolled high-strength steel for ERW steel pipes having excellent workability and having a thickness of 8 mm or less and having a yield ratio of f/mm 2 or more and a yield ratio of 62% or less. The gist of the second invention is that, in addition to the same basic components as the first invention, a steel billet containing Ca: 0.0050% or less, with the balance consisting of Fe and unavoidable impurities, is prepared under the same conditions as the first invention. This is a method for producing hot-rolled high-strength steel for ERW steel pipes, in which finish rolling is performed at The present invention improves workability by limiting the content and composition ratio of the main components C, Si, Mn, Al, and Ca, and by controlling the temperature in finish rolling, the total pressure lower head, the number of stands, and the coil winding temperature. This is a method for producing excellent high-strength hot-rolled steel for oil country tubular goods. Next, the reason for limiting the components of the present invention will be explained. C: The higher the content of C, the more advantageous it is to improving the tensile strength, but if it exceeds 0.60%, cracks in the weld zone are likely to occur due to center segregation, so the upper limit was limited to 0.60%. Si: Since Si is an element that promotes γ→α transformation, the higher the content, the higher the ferrite fraction and the better the ductility and workability. However, on the other hand, as a solid solution strengthening element, it increases the yield point of the ferrite base, so it is not preferable to add an excessively large amount. Also, Si is 0.50%
If the Si content is exceeded, the occurrence of red scale on the surface of the steel sheet will become significant and the value of the product will be lost.
It was set to 0.50%. Mn: Mn is also an element necessary to ensure tensile strength and also to prevent the formation of low melting point FeS during hot rolling, but 2.0%
If the Mn content exceeds the
Limited to 2.0% or less. Al: Al is added for the purpose of deoxidizing and cleaning the steel, but if the amount added is too large, the excess Al present in the steel as substitutional solid solution atoms will combine with oxygen during welding, making it easy to form penetrators. Become. In this way, all-Al is disadvantageous in terms of manufacturing cost, so all-Al
The upper limit was set at 0.05%. Although the above-mentioned limited amounts of C, Si, Mn, and total Al are the basic components of the high-strength steel of the present invention, the purpose of the present invention can be more effectively achieved even when Ca is added in the following limited amounts. It can be added as necessary. The reason for this limitation is as follows. Ca: Ca improves toughness by controlling the form of sulfides, so it is a necessary element when toughness is required, but if it exceeds 0.0050%, it creates CaO and deteriorates the cleanliness of steel. Unfavorable, Ca
The upper limit was set at 0.0050%. Next, the reason why the composition ratios of C, Si, and Mn and the coil winding temperature are limited as described above will be explained. Twelve types of 100Kg vacuum melted steel shown in Table 1 were hot rolled to create steel slabs with a thickness of 50mm, a width of 200mm, and a length of 200mm.
After finish rolling to ~10mm, width 200mm, length lmm,
It is water-cooled to any temperature between 500 and 650℃, and then subjected to heat treatment corresponding to the thermal history after winding into a coil.
We investigated the material and found the tensile strength at 650℃.
We found the following relationship between TS and chemical components. TS (Km・f/mm 2 ) = 2.6 + 97.6 (%C) + 11.0 (%Si) + 14.5 (%Mn) ...(1)

【表】【table】

【表】 引張強さは一般にコイル巻取温度が低いほど高
くなるので650℃における引張強さが55Kg・f/
mm2以上となる成分の鋼は、巻取温度が550〜650℃
の範囲内にある場合は必ずTS≧55Kg・f/mm2
なる。従つて次の(2)式が成立する。 2.6+97.6(%C)+11.0(%Si) +14.5(%Mn)≧55(Kg・f/mm2)……(2) 従つて 97.6(%C)+11.0(%Si) +14.5(%Mn)≧52.4 ……(3) すなわち、引張強さを55Kg・f/mm2以上とする
ためには(3)式の条件が必要である。 前記(3)式の成分範囲から引張強さレベルを55
Kg・f/mm2以上とするためには巻取温度は650℃
以下とする必要がある。一方、巻取温度が550℃
未満になるとベイナイト変態が起り、強度が急激
に上昇し、板形状が乱れてしまうことが判明し
た。従つてコイル巻取温度を550〜650℃の範囲に
限定した。 なお、成分組成およびコイル巻取温度のみで
は、降伏比62%以下の熱延鋼が安定して得られな
いので、800〜1000℃における仕上全圧下率およ
び仕上タンデム圧延機の圧下スタンド数について
調査した。すなわち、第2表に示す2種類の成分
の鋼を転炉で溶製し連続鋳造した鋳片を同表の条
件で各種板厚に熱間圧延した後600℃近傍の温度
でコイルに巻取つた。製造した熱延鋼板の材質を
調査し、同じく第2表に示した。 第2表の結果をまとめて第1図に示した。第1
図において降伏比が62%以下のものを白抜きの記
号、62%を越えるものを黒塗りの記号で示し、記
号の右の数字は板厚(mm)を示している。 第1図から板厚8mm以下の材料をコイル巻取温
度を550〜650℃の範囲で巻取つて、降伏比が62%
以下の材質を得るために熱延条件は、仕上の圧下
スタンド数を3スタンド以上、5スタンド以下と
し、かつ800〜1000℃間の仕上全圧下率を80%以
下とする必要のあることがわかる。
[Table] Generally, the lower the coil winding temperature, the higher the tensile strength, so the tensile strength at 650℃ is 55Kg・f/
For steel with a composition of mm 2 or more, the coiling temperature is 550 to 650℃.
If it is within the range, TS≧55Kg・f/ mm2 . Therefore, the following equation (2) holds true. 2.6 + 97.6 (%C) + 11.0 (%Si) +14.5 (%Mn) ≧ 55 (Kg・f/mm 2 )...(2) Therefore, 97.6 (%C) + 11.0 (%Si) ) +14.5(%Mn)≧52.4...(3) That is, the condition of formula (3) is required to make the tensile strength 55Kg·f/mm 2 or more. The tensile strength level is set to 55 from the component range of formula (3) above.
To achieve Kg・f/mm 2 or more, the winding temperature is 650℃.
It is necessary to do the following. On the other hand, the winding temperature is 550℃
It has been found that when it is less than 100%, bainite transformation occurs, the strength increases rapidly, and the plate shape becomes disordered. Therefore, the coil winding temperature was limited to a range of 550 to 650°C. In addition, since it is not possible to stably obtain hot rolled steel with a yield ratio of 62% or less based only on the chemical composition and coil winding temperature, we investigated the finishing total rolling reduction ratio at 800 to 1000°C and the number of rolling stands of the finishing tandem rolling mill. did. In other words, steel with the two types of components shown in Table 2 is continuously cast in a converter, hot-rolled to various thicknesses under the conditions shown in Table 2, and then wound into coils at a temperature of around 600°C. Ivy. The materials of the manufactured hot rolled steel sheets were investigated and are also shown in Table 2. The results in Table 2 are summarized in Figure 1. 1st
In the figure, those with a yield ratio of 62% or less are shown with open symbols, those with a yield ratio of over 62% are shown with black symbols, and the number to the right of the symbol indicates the plate thickness (mm). From Figure 1, when material with a thickness of 8 mm or less is wound at a coil winding temperature in the range of 550 to 650°C, the yield ratio is 62%.
It can be seen that in order to obtain the following materials, the hot rolling conditions must be such that the number of finishing rolling stands is at least 3 stands and no more than 5 stands, and the total finishing rolling reduction rate between 800 and 1000°C is 80% or less. .

【表】 一般に普通炭素鋼では800〜1000℃の温度域で
の圧下率により仕上圧延出側のオーステナイト粒
径(γ粒径)が大きく変わり圧下率が高い程細粒
化する。γ→αの変態に際しては、細粒γからは
細粒αが出やすく、このため降伏点は高くなる。
すなわち、仕上の全圧下率を増す程降伏点および
降伏比は高くなる傾向がある。 一方、同一圧下率の場合、パス回数が多い程、
各パス後のγ粒の再結晶回数が多くなるためγ粒
は微細化する傾向を示し、その結果、降伏比も高
くなる傾向がある。結局、全圧下率が低い程、そ
してまたパス回数が少ない程降伏比の低いものが
得られることになる。 第1図の結果から800〜1000℃での全圧下率が
80%以下で、かつ5スタンド以下で圧延すること
により降伏比62%以下の材質が得られた。このた
め800〜1000℃での全圧下率の上限を80%とし、
かつスタンド数の上限を5スタンドに定めた。一
方、3スタンド未満で圧延すると1スタンド当り
の荷重負荷が過大となり、形状不良および操業不
安定がおきるのでスタンド数の下限を3スタンド
に定めた。また、圧下率については上記の理由か
ら低い程降伏比には有利であるが、圧下率が低過
ぎると圧延機の通板に支障をきたすので下限値を
30%とした。 通常、熱間圧延での圧下率が材質に影響をおよ
ぼすのはγ領域の低温側1000〜800℃と考えられ
る。この温度を越えると再結晶およびその後の粒
成長が大きくなり材質はほとんど変化しない。ま
た、800℃未満では圧延荷重が大きくなり操業が
困難となる。このため、材質および実操業上効果
のある800〜1000℃の温度範囲での圧下率を規定
した。 また、各スタンドの圧下率配分は通常、均等で
よく、特に限定しないが、板の形状の観点から最
終スタンドの圧下率を前段よりも軽圧下にするこ
とが望ましい。 〔実施例〕
[Table] Generally, in ordinary carbon steel, the austenite grain size (γ grain size) on the finish rolling exit side changes greatly depending on the rolling reduction in the temperature range of 800 to 1000°C, and the higher the rolling reduction, the finer the grains become. During the transformation from γ to α, fine grains α tend to come out from fine grains γ, and therefore the yield point becomes high.
That is, the yield point and yield ratio tend to increase as the total rolling reduction ratio increases. On the other hand, when the rolling reduction rate is the same, the more passes, the more
Since the number of recrystallizations of the γ grains increases after each pass, the γ grains tend to become finer, and as a result, the yield ratio also tends to increase. After all, the lower the total rolling reduction and the fewer the number of passes, the lower the yield ratio can be obtained. From the results in Figure 1, the total reduction rate at 800 to 1000℃ is
A material with a yield ratio of 62% or less was obtained by rolling with a yield ratio of 80% or less and 5 stands or less. For this reason, the upper limit of the total reduction rate at 800 to 1000℃ is set to 80%,
Additionally, the upper limit of the number of stands was set at 5. On the other hand, rolling with less than 3 stands would result in excessive load per stand, resulting in poor shape and unstable operation, so the lower limit of the number of stands was set at 3 stands. Regarding the rolling reduction ratio, for the reasons mentioned above, the lower the rolling reduction ratio, the better the yield ratio, but if the rolling reduction ratio is too low, it will interfere with the rolling mill, so the lower limit should be set.
It was set at 30%. Normally, it is thought that the reduction rate in hot rolling has an effect on the material quality at the low temperature side of the γ region of 1000 to 800°C. If this temperature is exceeded, recrystallization and subsequent grain growth will increase and the material will hardly change. Furthermore, if the temperature is lower than 800°C, the rolling load will be large and operation will be difficult. For this reason, we specified the rolling reduction rate in the temperature range of 800 to 1000°C, which is effective for the material and actual operation. Further, the distribution of the rolling reduction rate of each stand may normally be uniform, and is not particularly limited, but from the viewpoint of the shape of the plate, it is desirable that the rolling reduction rate of the final stand be lighter than that of the preceding stage. 〔Example〕

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明は、上記実施例からも明らかな如く、成
分を限定し、仕上圧延における温度、全圧下率、
スタンド数およびコイル巻取温度を制御すること
により、引張強さが55Kg・f/mm2以上、降伏比が
62%以下の加工性に優れた電縫鋼管用熱延高張力
鋼を製造することができた。
As is clear from the above examples, the present invention limits the ingredients, and the temperature in finish rolling, the total rolling reduction,
By controlling the number of stands and the coil winding temperature, the tensile strength can be increased to 55Kg・f/mm2 or more and the yield ratio can be increased.
We were able to produce hot-rolled high-strength steel for ERW steel pipes with excellent workability of 62% or less.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は800〜1000℃間の仕上全圧下率および
仕上の圧下スタンド数が降伏比におよぼす影響を
示す関係図、第2図は鋼板の急峻度を説明する模
式図である。
FIG. 1 is a relationship diagram showing the influence of the final rolling reduction ratio between 800 and 1000° C. and the number of finishing rolling stands on the yield ratio, and FIG. 2 is a schematic diagram illustrating the steepness of the steel plate.

Claims (1)

【特許請求の範囲】 1 重量比にて C:0.60%以下 Si:0.50%以下 Mn:2.0%以下 全Al:0.05%以下 を含有し、かつC、Si、Mnの組成比が 97.6(%C)+11.0(%Si)+14.5(%Mn)≧52.4 なる関係式を満足し、残部がFeおよび不可避的
不純物より成る鋼片を加熱後粗圧延する工程と、
前記粗圧延後タンデム圧延機において温度範囲が
800〜1000℃で、かつ全圧下率が30〜80%で3〜
5のスタンドを使用して仕上圧延を行う工程と、
前記仕上圧延後水冷して550〜650℃の温度範囲で
巻取る工程と、を有して成り引張強さが55Kg・
f/mm2以上、降伏比が62%以下であることを特徴
とする板厚8mm以下の加工性に優れた電縫鋼管用
熱延高張力鋼の製造方法。 2 重量比にて C:0.60%以下 Si:0.50%以下 Mn:2.0%以下 全Al:0.05%以下 を含有し、更に Ca:0.0050%以下 を含有し、かつC、Si、Mnの組成比が 97.6(%C)+11.0(%Si) +14.5(%Mn)≧52.4 なる関係式を満足し、残部がFeおよび不可避的
不純物より成る鋼片を加熱後粗圧延する工程と、
前記粗圧延後タンデム圧延機において温度範囲が
800〜1000℃で、かつ全圧下率が30〜80%で3〜
5のスタンドを使用して仕上圧延を行う工程と、
前記仕上圧延後水冷して550〜650℃の温度範囲で
巻取る工程と、を有して成り引張強さが55Kg・
f/mm2以上、降伏比が62%以下であることを特徴
とする板厚8mm以下の加工性に優れた電縫鋼管用
熱延高張力鋼の製造方法。
[Claims] 1 Contains C: 0.60% or less, Si: 0.50% or less, Mn: 2.0% or less, total Al: 0.05% or less, and the composition ratio of C, Si, and Mn is 97.6 (% C ) + 11.0 (% Si) + 14.5 (% Mn) ≧ 52.4 A step of heating and rough rolling a steel billet that satisfies the following relational expression, the remainder being Fe and unavoidable impurities;
The temperature range in the tandem rolling mill after rough rolling is
3 to 800 to 1000℃ and total reduction rate of 30 to 80%
A step of finishing rolling using the stand of No. 5;
After the final rolling, the process is water-cooled and coiled at a temperature range of 550 to 650℃, and the tensile strength is 55Kg.
A method for producing hot-rolled high-strength steel for ERW steel pipes having excellent workability and having a thickness of 8 mm or less and having a yield ratio of f/mm 2 or more and a yield ratio of 62% or less. 2 Contains C: 0.60% or less, Si: 0.50% or less, Mn: 2.0% or less, total Al: 0.05% or less, and further contains Ca: 0.0050% or less, and the composition ratio of C, Si, and Mn is A step of heating and then rough rolling a steel billet that satisfies the relational expression: 97.6 (%C) + 11.0 (%Si) + 14.5 (%Mn) ≧ 52.4, the balance being Fe and unavoidable impurities;
The temperature range in the tandem rolling mill after rough rolling is
3 to 800 to 1000℃ and total reduction rate of 30 to 80%
A step of finishing rolling using the stand of No. 5;
After the final rolling, the process is water-cooled and coiled at a temperature range of 550 to 650℃, and the tensile strength is 55Kg.
A method for producing hot-rolled high-strength steel for ERW steel pipes having excellent workability and having a thickness of 8 mm or less and having a yield ratio of f/mm 2 or more and a yield ratio of 62% or less.
JP24396386A 1986-10-14 1986-10-14 Manufacture of hot rolled high tension steel for resistance welded steel pipe having superior workability Granted JPS63100126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24396386A JPS63100126A (en) 1986-10-14 1986-10-14 Manufacture of hot rolled high tension steel for resistance welded steel pipe having superior workability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24396386A JPS63100126A (en) 1986-10-14 1986-10-14 Manufacture of hot rolled high tension steel for resistance welded steel pipe having superior workability

Publications (2)

Publication Number Publication Date
JPS63100126A JPS63100126A (en) 1988-05-02
JPH0530888B2 true JPH0530888B2 (en) 1993-05-11

Family

ID=17111647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24396386A Granted JPS63100126A (en) 1986-10-14 1986-10-14 Manufacture of hot rolled high tension steel for resistance welded steel pipe having superior workability

Country Status (1)

Country Link
JP (1) JPS63100126A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0726153B2 (en) * 1989-12-01 1995-03-22 川崎製鉄株式会社 Method for producing high-strength steel pipe having excellent deformability
JP2563547Y2 (en) * 1991-09-25 1998-02-25 凸版印刷株式会社 Protective jacket for compact disc and book binding it
US7252721B2 (en) 2001-05-28 2007-08-07 Ntn Corporation Power transmission shaft
KR100482201B1 (en) * 2002-10-18 2005-04-14 주식회사 포스코 Method for hot rolled steel sheet having excellent coiling quality for line pipe
JP5540646B2 (en) * 2009-10-20 2014-07-02 Jfeスチール株式会社 Low yield ratio high strength ERW steel pipe and method for producing the same
RU2605396C2 (en) * 2012-04-09 2016-12-20 ДжФЕ СТИЛ КОРПОРЕЙШН High-strength steel pipes with low ratio of yield strength to ultimate strength, welded with electric contact welding, steel strip for pipes, welded with electric contact welding, and manufacturing methods thereof
JP6123734B2 (en) * 2014-05-29 2017-05-10 Jfeスチール株式会社 Low yield ratio high strength electric resistance welded steel pipe for steel pipe pile and method for manufacturing the same

Also Published As

Publication number Publication date
JPS63100126A (en) 1988-05-02

Similar Documents

Publication Publication Date Title
CN109136738B (en) High-strength low-temperature-resistant hull structure steel plate and preparation method thereof
JP6811854B2 (en) Cold-rolled steel sheet for flux-cored wire and its manufacturing method
TWI506146B (en) High strength cold rolled steel sheet excellent in weldability and method for manufacturing the same
JPH0530888B2 (en)
CN113631733A (en) Bar-shaped steel
RU2341565C2 (en) Method of candy manufacturing from low-alloy steel
JPH01228603A (en) Manufacture of two-phase stainless steel seamless tube
JPH04293721A (en) Production of soft steel wire rod excellent in mechanical descaling property
JP3274013B2 (en) Method for producing sour resistant high strength steel sheet having excellent low temperature toughness
JPH06264183A (en) Hot rolled high tensile strength steel plate with high workability and its production
US11674194B2 (en) Cold rolled steel sheet for flux-cored wire, and manufacturing method therefor
KR102112172B1 (en) Cold-rolled steel sheet for flux cored wire and manufacturing the same
JPH0987743A (en) Production of low yield ratio high toughness electric resistance-welded rectangular steel pipe
WO2019132362A1 (en) Cold-rolled steel sheet for flux-cored wire and method for producing same
CN115053007B (en) Cold-rolled steel sheet for flux-cored wire and method for producing same
JP3009750B2 (en) Method for producing structural steel sheet with excellent low-temperature toughness
JP2653616B2 (en) Manufacturing method of high strength steel for large heat input welding with excellent low temperature toughness
CN113930677B (en) Steel belt for packaging and production method thereof
JPH05230529A (en) Production of high strength hot rolled steel plate excellent in workability and weldability
RU2286395C2 (en) Method of production of the rolled section steel in the form of bars made out of the medium-carbon chromium-containing steel
JPH06264181A (en) Hot rolled high tensile strength steel plate with high workability and its production
CN118382714A (en) Cold-rolled steel sheet having excellent weldability and method for producing same
CN116100190A (en) Mo-containing austenitic stainless steel welding strip and preparation method and application thereof
JPS586936A (en) Production of hot-rolled high-tensile steel plate for working
WO2022091709A1 (en) Hot-rolled steel sheet and method for producing same

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees