JPH052976A - Electrostatic relay - Google Patents

Electrostatic relay

Info

Publication number
JPH052976A
JPH052976A JP15353691A JP15353691A JPH052976A JP H052976 A JPH052976 A JP H052976A JP 15353691 A JP15353691 A JP 15353691A JP 15353691 A JP15353691 A JP 15353691A JP H052976 A JPH052976 A JP H052976A
Authority
JP
Japan
Prior art keywords
movable
electrostatic relay
side base
electrostatic
base body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15353691A
Other languages
Japanese (ja)
Inventor
Koichi Aizawa
浩一 相澤
Atsushi Sakai
淳 阪井
Keiji Kakinote
啓治 柿手
Hiromi Nishimura
広海 西村
Fumihiro Kasano
文宏 笠野
Takayoshi Awai
崇善 粟井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP15353691A priority Critical patent/JPH052976A/en
Publication of JPH052976A publication Critical patent/JPH052976A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H59/00Electrostatic relays; Electro-adhesion relays
    • H01H59/0009Electrostatic relays; Electro-adhesion relays making use of micromechanics

Abstract

PURPOSE:To accomplish an electrostatic relay standing influence of external magnetic field and thermal shocks and enhance the accuracy of a gap between driving electrodes by forming at least either of electroconductive bases on the movable side and stationary side in the form of a semiconductive base board, and using its counter- electroconductive type impurity high-concentration region as driving electrode. CONSTITUTION:An electrostatic relay concerned 1 includes a movable side base A and a stationary side base B both made of electroconductive material, so that the difference in the coefficient of thermal expansion is small, and stress and strain generated when thermal shock is applied can be reduced. Further, the section between these bases A, B is shielded electrically, and influence of external electromagnetic field can be reduced. At least one of the bases B is embodied in the form of a semiconductive base board. and the obtained counter-electroconductive impurity high- concentration region serves as one driving electrode 22 and confronts a movable plate 12 which is the driving electrode for the other base A. Accordingly there is no need for installnig driving electrodes on an insulative film 21 over the surface of the bases, which enhances the accuracy of the gap between the driving electrodes to lead to obtain a stable driving force.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、静電力(クーロン
力)を利用して接点の接離を行う静電リレーに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrostatic relay that uses electrostatic force (Coulomb force) to contact and separate contacts.

【0002】[0002]

【従来の技術】静電リレーは、電磁リレーとは違って電
磁コイルを必要とせず、より小型化が図れることから、
開発が盛んに進められている。素子サイズ10mm□以
下のものが可能である。図12および図13は、従来の
静電リレーをあらわす。この静電リレー191では、可
動側基体Aの裏側に設けられた可動接点194と固定側
基体Bの表側に設けられた固定接点197が対面するよ
うにして前記可動側基体Aと固定側基体Bが配置されて
いる。これら両基体A,BはスペーサCを介して接合さ
れている。
2. Description of the Related Art An electrostatic relay, unlike an electromagnetic relay, does not require an electromagnetic coil and can be further miniaturized.
Development is actively progressing. A device size of 10 mm □ or less is possible. 12 and 13 show a conventional electrostatic relay. In this electrostatic relay 191, the movable contact 194 provided on the back side of the movable base A and the fixed contact 197 provided on the front side of the fixed base B face each other so that the movable base A and the fixed base B are opposed to each other. Are arranged. The two bases A and B are joined via a spacer C.

【0003】可動側基体Aは裏面に可動接点194を備
えた可動板(可動部)192とこの可動板192を可動
接点194と固定接点197が接離する変位可能に支持
する支持部(枠部)193からなる。そして、可動側基
体Aの駆動電極を兼ねる可動板192と固定側基体Bの
駆動電極198の間への駆動電圧印加により発生する静
電力で前記可動板192が固定側基体Bに近づいて前記
両接点194,197が接触し、静電力の消滅に伴い前
記可動板192が自身のバネ性で元の水平状態に復元す
ることにより固定側基体Bから遠ざかり前記両接点19
4,197が離れるようになっている。
The movable base A has a movable plate (movable portion) 192 having a movable contact 194 on its back surface, and a support portion (frame portion) for movably supporting the movable plate 192 such that the movable contact 194 and the fixed contact 197 come into contact with and separate from each other. ) 193. Then, the movable plate 192 approaches the fixed-side substrate B by an electrostatic force generated by applying a drive voltage between the movable plate 192 which also serves as the drive electrode of the movable-side substrate A and the drive electrode 198 of the fixed-side substrate B, and both of them are moved. The contacts 194 and 197 contact each other, and the movable plate 192 restores to its original horizontal state by its own spring property as the electrostatic force disappears, and thus the movable plate 192 moves away from the fixed side base B and the contacts 19
4,197 are separated.

【0004】可動基体Aはシリコン基板を選択エッチン
グ等の微細加工手段で加工することにより必要な構造部
分の作り込みがなされており、一方、固定側基体Bはガ
ラス基板である。可動接点194や固定接点197、あ
るいは、固定側駆動電極198は、金属薄膜形成・パタ
ーンニング等により形成されている。
The movable base A is formed with a necessary structural portion by processing a silicon substrate by a fine processing means such as selective etching, while the fixed side base B is a glass substrate. The movable contact 194, the fixed contact 197, or the fixed side drive electrode 198 is formed by forming a metal thin film, patterning, or the like.

【0005】[0005]

【発明が解決しようとする課題】上記のような構造およ
び動作から分かるように、静電リレーは、写真製版技術
や微細加工技術等の半導体素子の製造技術を利用して製
造することができるので、極めて小型のものが製造で
き、従来の電磁リレーに比べて体積を1/10以下にす
ることも可能になり、また、高速動作が可能で、使用時
の発熱が非常に小さく、低コストで大量生産することが
できる等の利点がある。
As can be seen from the above structure and operation, the electrostatic relay can be manufactured by utilizing the semiconductor element manufacturing technology such as the photolithography technology and the microfabrication technology. , Very small size can be manufactured, the volume can be reduced to 1/10 or less compared to the conventional electromagnetic relay, high speed operation is possible, heat generation during use is very small, and the cost is low. There are advantages such as mass production.

【0006】しかしながら、上記の静電リレーは、外部
の電磁界に影響されやすいという問題や熱衝撃に弱いと
いう問題がある。上記の静電リレーは、固定側基体Bの
ガラス基板が絶縁材であるため、外部からの電磁誘導が
強く影響する場や強電界の場に静電リレーが置かれた場
合、駆動電圧による静電力が変動して誤動作するのであ
る。
However, the above electrostatic relay has a problem that it is easily affected by an external electromagnetic field and that it is weak against thermal shock. In the electrostatic relay described above, since the glass substrate of the fixed side base B is an insulating material, when the electrostatic relay is placed in a field strongly influenced by electromagnetic induction from the outside or a field of a strong electric field, static electricity due to a driving voltage is applied. The power fluctuates and malfunctions.

【0007】また、可動側基体Aのシリコン基板と固定
側基体Bのガラス基板は熱膨係数が大きく異なってお
り、熱衝撃を受けた際の両基体A,Bの寸法変動量の差
が大きく大きな歪みや応力が発生するため、破損してし
まうのである。それに、従来の静電リレーでは、駆動電
極間のギャップの誤差が大きく、このギャップ量に比例
する駆動用の静電力のバラツキが大きいという問題もあ
る。静電力が一定していないと安定した駆動力が得られ
ず正常な動作が期待できない。従来、少なくとも一方の
駆動電極を基体表面の絶縁膜の上に形成しており、絶縁
膜の厚み精度や駆動電極用の金属膜厚み精度が中々出な
いなどのため、駆動電極間のギャップ精度が上がらない
のである。
Further, the silicon substrate of the movable base A and the glass substrate of the fixed base B have greatly different coefficients of thermal expansion, and the difference in dimensional variation between the bases A and B upon thermal shock is large. Large strains and stresses are generated, which causes damage. In addition, in the conventional electrostatic relay, there is a problem that the gap error between the drive electrodes is large and the variation of the electrostatic force for driving which is proportional to the gap amount is large. If the electrostatic force is not constant, stable driving force cannot be obtained and normal operation cannot be expected. Conventionally, at least one drive electrode is formed on the insulating film on the surface of the substrate, and the accuracy of the thickness of the insulating film and the accuracy of the thickness of the metal film for the drive electrode are not very high. It does not rise.

【0008】この発明は、上記事情に鑑み、外部の電磁
界に影響され難く、かつ、熱衝撃に強く、さらに、駆動
電極間のギャップ精度の向上が図れる静電リレーを提供
することを課題とする。
In view of the above circumstances, it is an object of the present invention to provide an electrostatic relay that is not easily affected by an external electromagnetic field, is resistant to thermal shock, and can improve the accuracy of the gap between drive electrodes. To do.

【0009】[0009]

【課題を解決するための手段】請求項1〜6記載の静電
リレーは、前記課題を解決するため、可動側基体の裏側
に設けられた可動接点と固定側基体の表側に設けられた
固定接点が対面するようにして前記可動側基体と固定側
基体とが配置され、前記可動側基体が裏面に前記可動接
点を有する可動部とこの可動部を可動接点と固定接点が
接離する変位可能に支持する支持部とを備えており、前
記両基体における駆動電極への駆動電圧印加により発生
する静電力で前記可動部が変位して接点の接離がなされ
るようになっている静電リレーにおいて、前記可動側基
体と固定側基体とがともに導電性材料からなっていて、
少なくとも一方の基体が半導体基板で出来ており、この
半導体基板に形成された逆導電型不純物高濃度領域を一
方の駆動電極とするようにする。
In order to solve the above-mentioned problems, the electrostatic relay according to the present invention has a movable contact provided on the back side of the movable base and a fixed contact provided on the front side of the fixed base. The movable side base body and the fixed side base body are arranged so that the contacts face each other, and the movable side base body has a movable part having the movable contact point on the back surface, and the movable part has a movable contact point and a fixed contact point that can be displaced. An electrostatic relay having a supporting portion for supporting the electric field, and the movable portion being displaced by the electrostatic force generated by applying a driving voltage to the driving electrodes of the both bases to bring the contacts into and out of contact with each other. In, both the movable side base body and the fixed side base body are made of a conductive material,
At least one of the bases is made of a semiconductor substrate, and the opposite conductivity type impurity high concentration region formed in the semiconductor substrate is used as one drive electrode.

【0010】導電性材料からなる基体としては、例え
ば、請求項2のように、シリコン基板が挙げられる。さ
らに、好ましい形態例としては、請求項3のように、半
導体基板の逆導電型不純物高濃度領域以外の部分と他の
基体とが電気的に接続され同電位となっている態様、請
求項4のように、半導体基板では、駆動電極用の逆導電
型不純物高濃度領域の側方の位置にガードリング領域用
の逆導電型不純物高濃度領域(半導体基板と逆導電型)
が形成されている態様が挙げられる。ガードリング領域
は一重でもよいが多重であることが好ましい。
As the substrate made of a conductive material, for example, a silicon substrate may be mentioned. Further, as a preferred embodiment, as in claim 3, a mode in which a portion of the semiconductor substrate other than the high-concentration region of the opposite conductivity type impurity and another substrate are electrically connected and have the same potential, As described above, in the semiconductor substrate, a high-concentration reverse-conductivity-type impurity region for the guard ring region (a conductivity type opposite to that of the semiconductor substrate) is provided on a side of the reverse-conductivity-type high-concentration region for the drive electrode.
Is formed. The guard ring area may be single, but is preferably multiple.

【0011】さらに、静電リレーの利用性を高めるため
の形態例として、請求項5のように、可動側基体および
/または固定側基体に駆動用回路部を設けた態様、ある
いは請求項6のように、可動側駆動電極と固定側駆動電
極の間に静電力を増すためのエレクトレットが設けられ
ている態様が挙げられる。また、静電リレーの場合、必
要な静電力を得るための駆動電圧が高め(普通、数十V
〜数百V)であるために使い難く、駆動電圧の低下が望
まれている。通常の電子回路では信号電圧は数V〜十数
V程度なので、昇圧回路が必要となる。駆動電圧の低下
は外付回路の不用化ないし軽減化をもたらす。
Further, as an example of a mode for enhancing the utilization of the electrostatic relay, a mode in which a driving circuit unit is provided on the movable side base body and / or the fixed side base body as in claim 5 or in claim 6 is adopted. As described above, there is a mode in which the electret for increasing the electrostatic force is provided between the movable side drive electrode and the fixed side drive electrode. In the case of an electrostatic relay, the drive voltage for obtaining the necessary electrostatic force is high (usually several tens of volts).
It is difficult to use because it is up to several hundreds of V), and it is desired to reduce the driving voltage. Since the signal voltage of an ordinary electronic circuit is about several V to several tens of V, a booster circuit is required. The lowering of the driving voltage causes the external circuit to be unnecessary or reduced.

【0012】それに、従来の静電リレーは、可動側・固
定側の二つの駆動電極の間に印加する駆動電圧によって
発生する静電力(クーロン力)で動作するものである
が、十分な接点圧を確保するために両駆動電極間の距離
を短くしている。静電力は両駆動電極間の距離の2乗に
逆比例する一方、接点圧が静電力に比例するからであ
る。しかし、両駆動電極間の距離を短くしているため、
接点間の耐圧がどうしても低くなる。
In addition, the conventional electrostatic relay operates by an electrostatic force (Coulomb force) generated by a drive voltage applied between the two drive electrodes on the movable side and the fixed side, but a sufficient contact pressure is required. In order to ensure the above, the distance between both drive electrodes is shortened. This is because the electrostatic force is inversely proportional to the square of the distance between both drive electrodes, while the contact pressure is proportional to the electrostatic force. However, because the distance between both drive electrodes is short,
The breakdown voltage between the contacts is inevitably low.

【0013】エレクトレットの採用は、駆動電圧の低下
や接点間の耐圧の向上をもたらすのである。このエレク
トレットは、正および/または負の電荷を有しかつその
和が0でない電荷を保持する絶縁体が挙げられるが、こ
れに限らない。エレクトレットには様々な材質・厚みも
のが挙げられる。例えば、厚み5μmのポリプロピレン
でコロナ放電で帯電させたものが例示される。
The adoption of the electret brings about a reduction in driving voltage and an improvement in breakdown voltage between contacts. The electret includes, but is not limited to, an insulator having positive and / or negative charges and holding a charge whose sum is not zero. Various materials and thicknesses can be used for the electret. For example, a polypropylene having a thickness of 5 μm and charged by corona discharge is exemplified.

【0014】前述のように、静電リレーの場合、普通、
数十V〜数百Vの駆動電圧が必要とされるので、駆動電
圧発生用の昇圧回路が必要となる。また、駆動電圧の解
除後、駆動電極の間に蓄積された電荷を放電させないと
接点が開かないため、通常、放電回路も要求される。静
電リレー自体は小型でも、他に昇圧回路や放電回路等の
外付回路を付加する必要があるため使い難いのである。
駆動用回路部の基体への搭載は、外付回路の付加の軽減
をもたらす。
As mentioned above, in the case of an electrostatic relay, normally,
Since a driving voltage of several tens V to several hundreds V is required, a booster circuit for generating the driving voltage is required. Further, after the drive voltage is released, the contacts do not open unless the electric charge accumulated between the drive electrodes is discharged, and therefore a discharge circuit is usually required. Even though the electrostatic relay itself is small, it is difficult to use because it is necessary to add external circuits such as a booster circuit and a discharge circuit.
Mounting the drive circuit unit on the base body reduces the addition of an external circuit.

【0015】駆動用回路部の具体的形態例としては、放
電回路を有する態様や、駆動電圧発生用昇圧回路の少な
くとも一部を有する態様が挙げられる。駆動用回路部は
駆動に必要な全ての回路を備えている必要はなく一部の
回路だけを有していてもよい。例えば、昇圧回路の一部
と放電回路を有するという態様もある。もちろん、駆動
に必要な全ての回路を有している態様が望ましい。な
お、駆動用回路部は、可動側基体あるいは固定側基体の
どちらに設けられてもよいし、分割して両基体にまたが
って設けるようにしてもよい。
Specific examples of the driving circuit section include a mode having a discharge circuit and a mode having at least a part of the drive voltage generating booster circuit. The driving circuit unit does not have to include all circuits necessary for driving, and may have only some circuits. For example, there is a mode in which a part of the booster circuit and the discharge circuit are included. Of course, a mode in which all circuits necessary for driving are included is desirable. The driving circuit unit may be provided on either the movable side base body or the fixed side base body, or may be divided and provided on both base bodies.

【0016】次に、駆動用回路部の具体的構成例につい
て説明する。駆動用回路部は、通常、図9にみるよう
に、昇圧回路と放電回路とを備え、信号電圧が昇圧回路
で昇圧され駆動電圧として可動側駆動電極16と固定側
駆動電極22の間に印加される。なお、放電回路は、駆
動電圧印加時には放電動作を行わないことは言うまでも
ない。そして、駆動電圧印加が停止された時には放電回
路が駆動電極16,22の間に蓄積された電荷を速やか
に放電させる。
Next, a specific example of the structure of the driving circuit section will be described. As shown in FIG. 9, the driving circuit section usually includes a booster circuit and a discharge circuit, and a signal voltage is boosted by the booster circuit and applied as a drive voltage between the movable side drive electrode 16 and the fixed side drive electrode 22. To be done. It goes without saying that the discharge circuit does not perform the discharge operation when the drive voltage is applied. When the drive voltage application is stopped, the discharge circuit quickly discharges the electric charge accumulated between the drive electrodes 16 and 22.

【0017】駆動用回路部のより具体的な回路例を図1
0に示す。図10の場合、発光ダイオード(発光素子)
100と、この発光ダイオード100の光を受けて起電
力を発生する複数の光電池102・・・が直列接続され
たフォトセルアレイ101とで昇圧回路が構成され、ノ
ーマリイオフ型NPNトランジスタ103、抵抗104
およびダイオード105で放電回路が構成されている。
A more specific circuit example of the driving circuit section is shown in FIG.
It shows in 0. In the case of FIG. 10, a light emitting diode (light emitting element)
100 and a photocell array 101 in which a plurality of photovoltaic cells 102 ... Which generate electromotive force in response to light from the light emitting diode 100 are connected in series constitutes a booster circuit, which includes a normally-off NPN transistor 103 and a resistor 104.
The diode 105 constitutes a discharge circuit.

【0018】図10の駆動用回路部の動作は、以下の通
りである。低い信号電圧で発光ダイオード100を発光
させるとフォトセルアレイ101で信号電圧より高い駆
動電圧が発生する。必要な高さの電圧が得られるように
光電池102の数が調整されているのである。駆動電圧
の発生中は、トランジスタ103はオフ状態であり、駆
動電圧が両駆動電極16,22の間に正常にかかり充電
される。信号電圧が消滅すると駆動電圧はなくなるが、
駆動電極16,22の間の蓄積電荷による電圧でトラン
ジスタ103がオン状態になると共に蓄積電荷の放電が
始まる。
The operation of the driving circuit section shown in FIG. 10 is as follows. When the light emitting diode 100 emits light with a low signal voltage, a driving voltage higher than the signal voltage is generated in the photo cell array 101. The number of photovoltaic cells 102 is adjusted so that the required voltage level can be obtained. During the generation of the drive voltage, the transistor 103 is in the off state, and the drive voltage is normally applied between the drive electrodes 16 and 22 to be charged. When the signal voltage disappears, the drive voltage disappears,
The transistor 103 is turned on by the voltage due to the charge accumulated between the drive electrodes 16 and 22, and the discharge of the charge starts.

【0019】駆動回路部は、上記のものに限らない。例
えば、昇圧回路として、n個のダイオードとn個のコン
デンサを直並列接続したチャージポンプ式の回路や薄膜
トランスとダイオードとコンデンサの整流部を組み合わ
せた薄膜トランス型整流昇圧回路などが使える。ただ、
これらの昇圧回路は交流信号電圧を入力とする。
The drive circuit section is not limited to the above. For example, as the booster circuit, a charge pump type circuit in which n diodes and n capacitors are connected in series and parallel, or a thin film transformer type rectifier booster circuit in which a thin film transformer and a rectifying unit of a diode and a capacitor are combined can be used. However,
These booster circuits receive an AC signal voltage as an input.

【0020】[0020]

【作用】この発明の静電リレーでは、可動側基体と固定
側基体の両方ともが導電性材料である。そのため、熱膨
張率の差が小さく熱衝撃を受けた際に生ずる歪みや応力
が小さくなるために熱衝撃に対し強く、両導電性基体に
挟まれた区間は電気的シールド区間となるために外部の
電磁界の影響が軽減され外的要因による誤動作が起り難
い。
In the electrostatic relay of the present invention, both the movable side base body and the fixed side base body are conductive materials. Therefore, the difference in the coefficient of thermal expansion is small and the strain and stress that occurs when a thermal shock is applied is small, so it is strong against thermal shock, and the section sandwiched between both conductive substrates becomes an electrical shield section. The influence of the electromagnetic field is reduced, and malfunction due to external factors hardly occurs.

【0021】それに、少なくとも一方の基体が半導体基
板で出来ており、この半導体基板に形成された逆導電型
不純物高濃度領域が一方の駆動電極となっている。した
がって、例えば、他方の基体そのものを他方の駆動電極
とすれば、基体表面の絶縁膜の上に駆動電極を設ける構
成をとらずに済む。その結果、駆動電極間のギャップ精
度の向上を図れ、安定した駆動力を得ることができるよ
うになる。一方の駆動電極の逆導電型不純物高濃度領域
は他方の駆動電極と半導体基板の電極以外の導電性部分
で囲まれ電気的にシールドされた恰好でとなっており、
外部の電磁界の影響軽減効果は損なわれない。
At least one of the bases is made of a semiconductor substrate, and the opposite conductivity type high-concentration impurity region formed in the semiconductor substrate serves as one drive electrode. Therefore, for example, if the other base itself is used as the other drive electrode, it is not necessary to provide the drive electrode on the insulating film on the surface of the base. As a result, the accuracy of the gap between the drive electrodes can be improved, and a stable driving force can be obtained. The opposite conductivity type impurity high concentration region of one drive electrode is surrounded by a conductive portion other than the other drive electrode and the electrode of the semiconductor substrate and electrically shielded,
The effect reduction effect of the external electromagnetic field is not impaired.

【0022】可動側基体と固定側基体が共にシリコン基
板であれば、両基体の熱膨張率が同一であるため、熱衝
撃を受けた際の歪みや応力が極めて僅かであるため、熱
衝撃に対し著しく強くなる。また、シリコン基板の場合
は、駆動用回路部のためのトランジスタや抵抗等の素子
を作り込むのに利用することもできる。駆動回路も含め
全体を極めて小型のものにすることが可能となる。
If both the movable side base body and the fixed side base body are silicon substrates, both base bodies have the same coefficient of thermal expansion, so that the strain and the stress upon receiving the thermal shock are extremely small, so that the thermal shock is prevented. Becomes significantly stronger. Further, in the case of a silicon substrate, it can also be used to fabricate elements such as transistors and resistors for the driving circuit section. It is possible to make the whole size including the drive circuit extremely small.

【0023】可動側基体と固定側基体が同電位にある場
合、両基体の間は常に電界がかからない状態が確実に維
持されることになるため、非常に安定性が高い。駆動電
極用の逆導電型不純物高濃度領域の側方の位置にガード
リング領域用の逆導電型不純物高濃度領域があれば、不
純物高濃度領域を使う駆動電極の耐圧が高くなるという
利点がある。両不純物高濃度領域は同時形成も可能であ
る。
When the movable side base and the fixed side base are at the same potential, a state in which no electric field is applied between the bases is surely maintained, so that the stability is very high. If the reverse conductivity type impurity high-concentration region for the guard ring region is located at the side of the reverse conductivity type impurity high-concentration region for the drive electrode, there is an advantage that the withstand voltage of the drive electrode using the high impurity concentration region becomes high. . Both impurity high-concentration regions can be formed simultaneously.

【0024】さらに、駆動用回路部が基体に設けられて
いれば、その分、外付回路の付加が不要ないし軽減され
ることとなり、使い易くなる。また、固定側駆動電極と
可動側駆動電極の間にはエレクトレットがあって静電力
が増すため、その分、駆動電圧を下げたり、接点ギャッ
プを大きくし接点間耐圧の向上を図ることができる。駆
動電圧や接点ギャップがそのままでよければ接点圧を大
きくすることができる。
Further, if the drive circuit portion is provided on the base, the addition of an external circuit is not necessary or reduced by that much, which facilitates the use. Further, since there is an electret between the fixed-side drive electrode and the movable-side drive electrode, and the electrostatic force increases, the drive voltage can be lowered or the contact gap can be increased by that amount to improve the breakdown voltage between contacts. The contact pressure can be increased if the drive voltage and the contact gap remain unchanged.

【0025】[0025]

【実施例】以下、この発明の実施例を、図面を参照しな
がら詳しく説明する。この発明は、下記の実施例に限ら
ないことは言うまでもない。 −実施例1− 図1は、実施例1にかかる静電リレーの要部構成をあら
わす。図2は、実施例1の静電リレー全体を上方からみ
た状態をあらわす。図3は、図2のX−X断面をあらわ
す。
Embodiments of the present invention will be described in detail below with reference to the drawings. It goes without saying that the present invention is not limited to the following embodiments. -Example 1- FIG. 1 illustrates a main configuration of an electrostatic relay according to Example 1. FIG. 2 shows a state where the entire electrostatic relay of the first embodiment is viewed from above. FIG. 3 shows an X-X cross section of FIG.

【0026】実施例1の静電リレー1では、可動側基体
Aの裏側に設けられた可動接点2と固定側基体Bの表側
に設けられた固定接点3が対面するようにして、両基体
A,Bが配置されている。これら両基体A,Bは接合面
Dで電気的導通がとれるようにして結合されている。こ
の場合、接合面に金とシリコンの合金層を形成した後、
二つの基体を加熱圧着して結合する金共晶法を用いた。
この他の結合方法もあるが、電気的導通がとれない結合
方法を用いた場合は、結合の後で電気的導通をとる処理
を基体A,Bに対して行うようにする。
In the electrostatic relay 1 of the first embodiment, the movable contact 2 provided on the back side of the movable base A and the fixed contact 3 provided on the front side of the fixed base B face each other so that the two bases A are connected to each other. , B are arranged. The two bases A and B are joined to each other so that electrical continuity can be established at the joint surface D. In this case, after forming an alloy layer of gold and silicon on the joint surface,
A gold eutectic method was used in which the two substrates were bonded by thermocompression bonding.
Although other bonding methods are available, when a bonding method that does not allow electrical conduction is used, the substrates A and B are subjected to a treatment for electrical conduction after the bonding.

【0027】可動側基体Aは裏面に可動接点2を備えた
可動板(可動部)12とこの可動板12を可動接点2と
固定接点3が接離する変位可能に支持する支持部(枠
部)13からなる。可動板12はT字型連結部14で支
持部13とつながって変位可能な支持状態が実現されて
いるのである。可動板12は、例えば、厚み30μmで
あって、支持部13の底から僅かに窪んだ位置、例えば
20μm引っ込んだ位置にある。
The movable base A has a movable plate (movable portion) 12 having a movable contact 2 on its back surface, and a support portion (frame portion) for movably supporting the movable plate 12 such that the movable contact 2 and the fixed contact 3 come into contact with and separate from each other. ) 13. The movable plate 12 is connected to the supporting portion 13 by the T-shaped connecting portion 14 to realize a displaceable supporting state. The movable plate 12 has, for example, a thickness of 30 μm, and is at a position slightly recessed from the bottom of the support portion 13, for example, at a position retracted by 20 μm.

【0028】可動側基体Aは(100)面を表面にもつ
シリコン単結晶基板からなり、上記のような構造は、水
酸化カリウムの水溶液エッチャントとマスク材料として
窒化シリコン膜を用いることで比較的容易に作ることが
できる。可動板12の裏面(固定側基体B側の面)は絶
縁膜15が形成されている。絶縁膜15上の先端域には
金属薄膜からなる可動接点2がパターン形成されてい
る。
The movable side substrate A is composed of a silicon single crystal substrate having a (100) surface on its surface. The above structure is relatively easy by using an aqueous potassium hydroxide etchant and a silicon nitride film as a mask material. Can be made into An insulating film 15 is formed on the back surface of the movable plate 12 (the surface on the side of the fixed base B). A movable contact 2 made of a metal thin film is patterned on the tip end region of the insulating film 15.

【0029】固定側基体Bはp型シリコン単結晶基板か
らなり、可動板12と対面する箇所に絶縁膜21が形成
されていて、この絶縁膜21の先端域に金属薄膜からな
る固定接点3がパターン形成されている。勿論、固定接
点3は可動接点2と対面するパターンで形成されてい
る。固定接点3の先端には接続端子30、30がそれぞ
れ設けられている。また、図3にみるように、支持部1
3の底の一部が、例えば20μmほど窪んでいて固定接
点3の接続ラインと支持部13が接触しないようになっ
ている。
The fixed side substrate B is made of a p-type silicon single crystal substrate, an insulating film 21 is formed at a position facing the movable plate 12, and a fixed contact 3 made of a metal thin film is provided at a tip end region of the insulating film 21. It is patterned. Of course, the fixed contact 3 is formed in a pattern facing the movable contact 2. At the tip of the fixed contact 3, connection terminals 30, 30 are provided, respectively. Further, as shown in FIG.
A part of the bottom of 3 is recessed by, for example, about 20 μm so that the connection line of the fixed contact 3 and the support portion 13 do not come into contact with each other.

【0030】可動側基体Aでは可動板12が可動側駆動
電極となっている。基体自体が駆動電極を兼ねているの
である。駆動電圧は導入端子19から導入される。この
場合、可動側の駆動電極用の金属パターン形成や絶被覆
形成が省略できる利点がある。固定側基体Bでは表面部
分の逆導電型不純物高濃度領域(不純物ドープ域)が固
定側駆動電極22である。駆動電極22の表面は絶縁膜
21で覆われていて、接続ライン22aの先端の位置に
絶縁膜21の窓が開いており、ここで導入端子25とコ
ンタクトしている。駆動電圧は端子19、25間に加え
られることは言うまでもない。なお、固定側駆動電極2
2の側方にはガードリング用の逆導電型不純物高濃度領
域24も形成されている。
In the movable base A, the movable plate 12 serves as a movable drive electrode. The substrate itself also serves as the drive electrode. The drive voltage is introduced from the introduction terminal 19. In this case, there is an advantage that the formation of the metal pattern for the movable-side drive electrode and the formation of the absolute coating can be omitted. In the fixed-side substrate B, the reverse-conductivity-type impurity high-concentration region (impurity-doped region) on the surface portion is the fixed-side drive electrode 22. The surface of the drive electrode 22 is covered with the insulating film 21, and a window of the insulating film 21 is opened at the position of the tip of the connection line 22 a, and the window is in contact with the introduction terminal 25. It goes without saying that the driving voltage is applied between the terminals 19 and 25. The fixed side drive electrode 2
An opposite conductivity type high impurity concentration region 24 for a guard ring is also formed on the side of 2.

【0031】接点2,3、絶縁膜15,21、導入端子
19,25、駆動電極22は、よく知られている薄膜形
成プロセス、半導体プロセス、フォトリソグラフィー技
術等を用いて形成できる。また、それらの材料も、目的
に応じて種々選択できる。接点2,3、真空蒸着法によ
る厚み0.5μmの金薄膜をフォトリソグラフィー技術
でパターン化したものである。絶縁膜15は、常圧CV
D法で厚み1μmの酸化シリコン薄膜を堆積しフォトリ
ソグラフィー技術でパターン化したものである。絶縁膜
21は、熱酸化法で厚み1μmの酸化シリコン薄膜を堆
積しフォトリソグラフィー技術でパターン化したもので
ある。端子19,25は、真空蒸着法による厚み1μm
の金属(例えば、アルミニウム)薄膜をフォトリソグラ
フィー技術でパターン化したものである。駆動電極22
用の不純物高濃度領域は、p型シリコン単結晶基板に対
し、リンを5×1014/cm 3の濃度で拡散深さ約10
μmにてドープすることにより形成したn型不純物領域
である。
The contacts 2 and 3, the insulating films 15 and 21, the introduction terminals 19 and 25, and the drive electrode 22 can be formed by a well-known thin film forming process, semiconductor process, photolithography technique, or the like. Moreover, various materials can be selected according to the purpose. The contacts 2 and 3 and a gold thin film having a thickness of 0.5 μm formed by a vacuum evaporation method are patterned by a photolithography technique. The insulating film 15 has a normal pressure CV.
A silicon oxide thin film having a thickness of 1 μm was deposited by the D method and patterned by the photolithography technique. The insulating film 21 is formed by depositing a silicon oxide thin film having a thickness of 1 μm by a thermal oxidation method and patterning it by a photolithography technique. The terminals 19 and 25 have a thickness of 1 μm formed by the vacuum deposition method.
The metal (for example, aluminum) thin film is patterned by photolithography technique. Drive electrode 22
The impurity high-concentration region for use is a phosphorus-doped single-crystal substrate with a phosphorus concentration of 5 × 10 14 / cm 3 and a diffusion depth of about 10 μm.
This is an n-type impurity region formed by doping with μm.

【0032】可動側基体Aと固定側基体Bの非駆動電極
領域は電気的接続され同電位であり、電気的シールドは
十分なものとなっている。なお、この実施例の静電リレ
ー1では、固定側駆動電極が正となる向きの駆動電圧を
印加する必要がある。p型シリコン単結晶基板における
pn接合が逆バイアスとなるようにするのである。 −実施例2− 図4は、実施例2にかかる静電リレーの要部構成をあら
わす。図5は、実施例2の静電リレー全体を上方からみ
た状態をあらわす。
The non-driving electrode regions of the movable side base A and the fixed side base B are electrically connected and have the same potential, and the electric shield is sufficient. In the electrostatic relay 1 of this embodiment, it is necessary to apply the drive voltage in the direction in which the fixed-side drive electrode is positive. The pn junction in the p-type silicon single crystal substrate has a reverse bias. -Example 2- FIG. 4 illustrates a main part configuration of an electrostatic relay according to Example 2. FIG. 5 shows a state where the entire electrostatic relay of the second embodiment is viewed from above.

【0033】実施例2の静電リレー1は、実施例1の静
電リレーにおいて、駆動電極用可動部12と駆動電極2
2の間にエレクトレット8を追加したものである。図5
にみるように、略駆動電極と同程度の大きさのエレクト
レット8が絶縁膜21の上に駆動電極に相対するように
して積まれているのである。実施例1と同一の番号を付
したものは実施例1の場合と同じものであるので説明は
省略する。
The electrostatic relay 1 of the second embodiment is similar to the electrostatic relay 1 of the first embodiment except that the drive electrode movable portion 12 and the drive electrode 2 are different from each other.
The electret 8 is added between the two. Figure 5
As can be seen from the above, the electret 8 having a size substantially equal to that of the drive electrode is stacked on the insulating film 21 so as to face the drive electrode. The components with the same numbers as those in the first embodiment are the same as those in the first embodiment, and the description thereof will be omitted.

【0034】但し、可動板12は、厚み30μmであっ
て支持部13の底から50μm引っ込んだ位置にあると
ともに、支持部13の底の一部が50μmほど窪んでい
て固定接点3の接続ラインが支持部13に接触しないよ
うになっている。実施例2のエレクトレット8は比誘電
率が約2であってポリプロピレンで厚み5μmである。
エレクトレット8に保持する電荷は、そのリレーに持た
せる動作状態に合わせて選ばれるが、この実施例2の場
合、エレクトレット8の可動側駆動電極16側を負に逆
の側を正に帯電させ、かつ、それらの電荷量の合計が0
となるようにしている。帯電方法も色々あるが、この場
合はコロナ放電を用いる方法である。
However, the movable plate 12 has a thickness of 30 μm and is retracted from the bottom of the support 13 by 50 μm, and a part of the bottom of the support 13 is recessed by 50 μm so that the connection line of the fixed contact 3 is formed. It does not come into contact with the support portion 13. The electret 8 of Example 2 has a relative dielectric constant of about 2 and is polypropylene and has a thickness of 5 μm.
The electric charge held in the electret 8 is selected according to the operation state given to the relay. In the case of the second embodiment, the movable side drive electrode 16 side of the electret 8 is negatively charged and the opposite side is positively charged. And the total amount of these charges is 0
I am trying to become. There are various charging methods, but in this case, corona discharge is used.

【0035】このようにして形成したエレクトレット8
を用いた静電リレー1は、駆動電圧を印加しない(印加
電圧0)時は接点2、3が開いた状態に安定するような
シングルモード動作を行い、可動側駆動電極が正の電圧
となるように駆動電圧を印加すると接点が閉じる。エレ
クトレット8のある分、静電力が強まることは言うまで
もない。
Electret 8 thus formed
The electrostatic relay 1 using is operated in a single mode so that the contacts 2 and 3 are stable when the drive voltage is not applied (applied voltage 0), and the movable side drive electrode has a positive voltage. When the drive voltage is applied, the contacts are closed. It goes without saying that the electrostatic force is increased by the presence of the electret 8.

【0036】静電力の強化に関して簡単なモデルに基づ
いて具体的に説明する。静電リレーの駆動電極とエレク
トレットまわりの構成は、図11にみるように、2枚の
電極a,bが間隔(d1 +d2 )隔てて配置され電極b
の上に厚みd2 のエレクトレットcが載った状態で近似
される。但しε1 は空気の誘電率であり、ε2 はエレク
トレットcの誘電率である。σ1 , σ2 はエレクトレッ
トの表面電荷である。
The strengthening of the electrostatic force will be specifically described based on a simple model. As shown in FIG. 11, the configuration around the drive electrode and the electret of the electrostatic relay is such that two electrodes a and b are arranged with a space (d 1 + d 2 ) therebetween.
Is approximated with the electret c having the thickness d 2 placed on However, ε 1 is the permittivity of air, and ε 2 is the permittivity of the electret c. σ 1 and σ 2 are the surface charges of the electret.

【0037】もし、エレクトレットcがない場合はd2
=0として、電極aに働く力Fxが Fx=−ε1 A(V/d1 2 /2 〔但し:Aは電極およびエレクトレットの面積である〕
となる。一方、エレクトレットcのある場合は、電極a
に働く力Fyが、 Fy=−ε1 A〔(Va−V)/L〕2 /2 となる。ここで、エレクトレットcが表面電荷だけをも
つものとすると、Va=σ2 2 /ε2 ,L=(ε1
2 /ε2 )+d1 であるから、Fy=−ε1 A{〔(σ
2 2 /ε2 )−V〕/〔(ε1 2 /ε2 )+
1 〕}2/2になる。
If there is no electret c, d 2
As = 0, the force Fx acting on the electrode a is Fx = -ε 1 A (V / d 1) 2/2 [where: A-is the area of the electrode and the electret]
Becomes On the other hand, when there is an electret c, the electrode a
Force acting on Fy is, Fy = -ε 1 A [(Va-V) / L] a 2/2. Here, if the electret c has only surface charges, Va = σ 2 d 2 / ε 2 , L = (ε 1 d
2 / ε 2 ) + d 1 , so Fy = −ε 1 A {[(σ
2 d 2 / ε 2) -V] / [(ε 1 d 2 / ε 2 ) +
d 1]} becomes 2/2.

【0038】さらに、σ1 +σ2 =0、σ1 >0、σ2
<0とすると、エレクトレットcの有る場合と無い場合
の比Fy/Fxは、 {〔(σ2 2 /ε2 )−V〕d1 /〔(ε1 2 /ε2 )+d1 〕V}2 ={〔(σ2 2 /ε2 V)−1〕/〔(ε1 2 /ε2 1 )+1〕〕}2 であるから、σ2 <0、V>0とすると、 1− (σ2 2 /ε2 V)>(ε1 2 /ε2 1 )+1 であるから、故に、V<−σ2 1 /ε1 の時、エレク
トレットcを設けた方が電極aに働く静電力は強くな
る。
Further, σ 1 + σ 2 = 0, σ 1 > 0, σ 2
When <0, the ratio Fy / Fx with and without the electret c is: {[(σ 2 d 2 / ε 2 ) -V] d 1 / [(ε 1 d 2 / ε 2 ) + d 1 ] Since V} 2 = {[(σ 2 d 2 / ε 2 V) -1] / [(ε 1 d 2 / ε 2 d 1 ) +1]]} 2 , σ 2 <0, V> 0. Then, since 1- (σ 2 d 2 / ε 2 V)> (ε 1 d 2 / ε 2 d 1 ) +1, therefore, when V <−σ 2 d 1 / ε 1 , the electret c is provided. The stronger the electrostatic force acting on the electrode a is when it is used.

【0039】例えば、電極間ギャップが30μmでエレ
クトレットcの無い場合のFxと電極間ギャップが50
μmで表面電荷−5×10-4C/m 2、厚み5μm、比
誘電率2のエレクトレットcが有る場合のFyは、駆動
電圧が100Vとして、 Fx=−ε1 ×A×1.1×1013÷2 Fy=−ε1 ×A×2.6×1013÷2 となり、エレクトレットcの有る場合の方が電極間ギャ
ップが大きいにもかかわらず倍以上も力が強いのであ
る。そのため、エレクトレットcの有る場合は前述のよ
うな様々な利点をもつようになる。
For example, when the interelectrode gap is 30 μm and there is no electret c, Fx and the interelectrode gap are 50.
When there is an electret c having a surface charge of −5 × 10 −4 C / m 2 at μm, a thickness of 5 μm, and a relative dielectric constant of 2, Fy = −ε 1 × A × 1.1 × when the driving voltage is 100V. 10 13 ÷ 2 Fy = −ε 1 × A × 2.6 × 10 13 ÷ 2, which means that with the electret c, the force is more than twice as strong although the gap between the electrodes is larger. Therefore, when the electret c is provided, it has various advantages as described above.

【0040】−実施例3− 図6は、実施例3にかかる静電リレーの要部構成をあら
わす。図7は、実施例3の静電リレーを上方からみた状
態をあらわす。図8は、実施例3の静電リレーの駆動用
回路部まわりをあらわす。この静電リレー1は、図10
に示す駆動用回路部を基体に設けている点で先の実施例
1と異なる。リレー機構部分は、実施例1の場合と同じ
構成であるため説明は省略する。ただ、両基体A,Bの
結合を導電ペーストにより行っているとともに、駆動電
極22が接続端子25を介してフォトダイオードアレイ
101のアノードに接続され、可動板12は絶縁膜21
の窓にコンタクトする接続端子18および固定側基体B
の非駆動電極部分を介してトランジスタ103のエミッ
タに接続されている。
Third Embodiment FIG. 6 shows the main configuration of an electrostatic relay according to the third embodiment. FIG. 7 shows a state where the electrostatic relay of the third embodiment is viewed from above. FIG. 8 shows the periphery of the drive circuit portion of the electrostatic relay of the third embodiment. This electrostatic relay 1 is shown in FIG.
This embodiment differs from the first embodiment in that the drive circuit section shown in FIG. Since the relay mechanism portion has the same configuration as that of the first embodiment, the description thereof will be omitted. However, the two substrates A and B are connected by the conductive paste, the drive electrode 22 is connected to the anode of the photodiode array 101 through the connection terminal 25, and the movable plate 12 is connected to the insulating film 21.
Terminal 18 and fixed side base B that contact the window of the
Is connected to the emitter of the transistor 103 via the non-driving electrode part of the.

【0041】続いて、駆動用回路部の説明を行う。駆動
用回路部は、固定側基体Bの一側を中心に設けられてい
る。この駆動用回路部は、昇圧回路と放電回路を備え
る。昇圧回路は、赤色系の発光ダイオード100とこの
発光ダイオード100の光を受けて起電力を発生する多
数の光電池102・・・が多数個直列接続されたフォト
セルアレイ101とで構成されている。各光電池102
はpin型アモルファスシリコン光電池素子を3つ積層
したタンデム構成であって、このフォトセルアレイでは
30セル接続されている。また、放電回路は、ノーマリ
イオフ型NPNトランジスタ103、抵抗104および
ダイオード(ないしダイオードアレイ)105で構成さ
れている。回路の動作は前述した通りであるため省略す
る。なお、発光ダイオード100は、フォトセルアレイ
101の上に、例えば、透光性絶縁膜を介して積層した
り、空間を隔てて配置したりすることができる。さらに
は、発光ダイオード100だけを外付にするようにして
もよい。この場合は、昇圧回路は一部だけが内蔵という
形になる。
Next, the drive circuit section will be described. The drive circuit section is provided centering on one side of the fixed-side base body B. The drive circuit unit includes a booster circuit and a discharge circuit. The booster circuit is composed of a red light emitting diode 100 and a photo cell array 101 in which a large number of photovoltaic cells 102 ... Which generate electromotive force by receiving light from the light emitting diode 100 are connected in series. Each photovoltaic cell 102
Has a tandem structure in which three pin type amorphous silicon photovoltaic cells are stacked, and 30 cells are connected in this photo cell array. The discharge circuit is composed of a normally-off NPN transistor 103, a resistor 104, and a diode (or diode array) 105. Since the operation of the circuit is as described above, the description thereof will be omitted. The light emitting diode 100 can be stacked on the photo cell array 101, for example, with a translucent insulating film interposed therebetween, or can be arranged with a space. Further, only the light emitting diode 100 may be externally attached. In this case, only a part of the booster circuit is built-in.

【0042】なお、実施例3の静電リレー1の場合、駆
動用回路部の形成工程で同時に駆動電極用の逆導電型不
純物高濃度領域を作り込める。最後に静電リレーの動作
を説明する。実施例1、2の静電リレーの場合は、導入
端子19、25の間に駆動電圧が印加されると、駆動電
圧印加による静電力で可動板12が固定側基体Bに近づ
いて接点2、3が接触する。勿論、静電力が消滅する
と、可動板12が自身のバネ性で元の水平状態に復元す
ることにより固定側基体Bから遠ざかり接点2、3が離
れる。
In the case of the electrostatic relay 1 of the third embodiment, it is possible to form the opposite conductivity type impurity high concentration region for the drive electrode at the same time in the step of forming the drive circuit section. Finally, the operation of the electrostatic relay will be described. In the case of the electrostatic relays of Examples 1 and 2, when the driving voltage is applied between the introduction terminals 19 and 25, the movable plate 12 approaches the fixed-side base body B by the electrostatic force due to the driving voltage application, and the contact 2, 3 contacts. Of course, when the electrostatic force disappears, the movable plate 12 returns to the original horizontal state by its own spring property, and the contacts 2 and 3 move away from the fixed-side base body B.

【0043】実施例3の静電リレーの場合は、発光ダイ
オード100に信号電圧が印加されると、フォトセルア
レイ101に駆動電圧が発生し、これが可動側基体Aの
可動板12と固定側基体Bの駆動電極22の間に印加さ
れると同時にトランジスタ103がオフになり、駆動電
圧印加による静電力で可動板12が固定側基体Bに近づ
いて接点2、3が接触する。発光ダイオード100に信
号電圧が印加されなくなると、フォトセルアレイ101
での電圧発生が停止するとともにトランジスタ103が
オンになり、蓄積電荷が放電され静電力が消滅し、可動
板12が自身のバネ性で元の水平状態に復元することに
より固定側基体Bから遠ざかり接点2、3が離れる。
In the case of the electrostatic relay of the third embodiment, when a signal voltage is applied to the light emitting diode 100, a drive voltage is generated in the photo cell array 101, which generates a movable plate 12 of the movable side base A and a fixed side base B. The transistor 103 is turned off at the same time when the voltage is applied between the drive electrodes 22, and the movable plate 12 approaches the fixed side base B by the electrostatic force due to the application of the drive voltage, and the contacts 2 and 3 come into contact with each other. When the signal voltage is not applied to the light emitting diode 100, the photo cell array 101
At the same time, the generation of the voltage is stopped, the transistor 103 is turned on, the accumulated charge is discharged, the electrostatic force disappears, and the movable plate 12 is restored to the original horizontal state by its own spring property, so that the movable plate 12 moves away from the fixed side substrate B. The contacts 2 and 3 separate.

【0044】[0044]

【発明の効果】以上に述べたように、請求項1〜6記載
の発明にかかる静電リレーでは、熱衝撃を受けた際の歪
みや応力が小さくなるために熱衝撃に対し強くなり、外
部の電磁界の影響が軽減されるために外的要因による誤
動作が起り難くなっており、さらに、駆動電極間のギャ
ップ精度の向上が図れるため、駆動力を安定させられる
ようになり、大変に実用性が高い。
As described above, in the electrostatic relay according to the invention described in claims 1 to 6, since the strain and the stress upon receiving the thermal shock become small, the electrostatic relay becomes strong against the thermal shock and the external Since the influence of the electromagnetic field of is reduced, malfunction due to external factors is less likely to occur, and since the accuracy of the gap between the drive electrodes can be improved, it becomes possible to stabilize the driving force, which is very practical. It is highly likely.

【0045】請求項2記載の静電リレーの場合は、熱衝
撃を受けた際の歪みや応力が極めて小さくなるため、熱
衝撃に対し著しく強く、また、駆動用回路部の素子の形
成に基板がそのまま利用でき、駆動回路も含め全体を極
めて小型のものにすることが可能となるという利点があ
る。請求項3記載の静電リレーの場合は、両基体の間は
常に電界がかからない状態が維持されることになるた
め、非常に安定性が高い。
In the case of the electrostatic relay according to the second aspect, since the strain and the stress upon receiving the thermal shock are extremely small, the electrostatic relay is extremely strong against the thermal shock, and the substrate is used for forming the element of the driving circuit section. Can be used as it is, and there is an advantage that the entire size including the drive circuit can be made extremely small. In the case of the electrostatic relay according to the third aspect, a state in which no electric field is applied between the two substrates is always maintained, and therefore the stability is very high.

【0046】請求項4記載の静電リレーの場合は、不純
物高濃度領域を使う駆動電極の耐圧が高く、より実用性
が高い。請求項5記載の静電リレーの場合は、駆動用回
路部が基体に設けられている分、外付回路の付加が省略
ないし軽減できることから、使いやすいという利点があ
る。
In the case of the electrostatic relay according to the fourth aspect, the withstand voltage of the drive electrode using the high impurity concentration region is high and the practicality is high. In the case of the electrostatic relay according to the fifth aspect, since the drive circuit portion is provided on the base body, the addition of an external circuit can be omitted or reduced, which is advantageous in that it is easy to use.

【0047】請求項6記載の静電リレーの場合は、エレ
クトレットがあって静電力が増すため、その分、駆動電
圧を下げたり、接点ギャップを大きくし接点間耐圧の向
上を図ったりすることができるから、非常に実用性が高
い。
In the case of the electrostatic relay according to the sixth aspect, since the electrostatic force increases due to the presence of the electret, the drive voltage can be reduced or the contact gap can be increased to improve the breakdown voltage between the contacts. It is very practical because it can be done.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1にかかる静電リレーの要部構成をあら
わす断面図である。
FIG. 1 is a cross-sectional view showing a configuration of a main part of an electrostatic relay according to a first embodiment.

【図2】実施例1の静電リレーを上方からみた状態をあ
らわす平面図である。
FIG. 2 is a plan view showing a state of the electrostatic relay according to the first embodiment as viewed from above.

【図3】図2のX−X断面図である。FIG. 3 is a sectional view taken along line XX of FIG.

【図4】実施例2にかかる静電リレーの要部構成をあら
わす断面図である。
FIG. 4 is a cross-sectional view showing a main configuration of an electrostatic relay according to a second embodiment.

【図5】実施例2の静電リレーを上方からみた状態をあ
らわす平面図である。
FIG. 5 is a plan view showing a state of the electrostatic relay according to the second embodiment as viewed from above.

【図6】実施例3にかかる静電リレーの要部構成をあら
わす断面図である。
FIG. 6 is a cross-sectional view showing a configuration of a main part of an electrostatic relay according to a third embodiment.

【図7】実施例3の静電リレーを上方からみた状態をあ
らわす平面図である。
FIG. 7 is a plan view showing a state of an electrostatic relay according to a third embodiment as viewed from above.

【図8】実施例3の静電リレーの駆動用回路部の詳細を
あらわす平面図である。
FIG. 8 is a plan view showing details of a drive circuit portion of an electrostatic relay according to a third embodiment.

【図9】この発明の静電リレーの駆動用回路部の構成例
をあらわすブロック図である。
FIG. 9 is a block diagram showing a configuration example of a driving circuit portion of the electrostatic relay of the present invention.

【図10】この発明の静電リレーの駆動用回路部の具体的
構成例をあらわす回路図である。
FIG. 10 is a circuit diagram showing a specific configuration example of a driving circuit unit of the electrostatic relay of the present invention.

【図11】静電リレーの駆動電極とエレクトレットまわり
のモデル構成をあらわす概略断面図である。
FIG. 11 is a schematic cross-sectional view showing a model configuration around a drive electrode and an electret of an electrostatic relay.

【図12】従来の静電リレーをあらわす平面図である。FIG. 12 is a plan view showing a conventional electrostatic relay.

【図13】従来の静電リレーをあらわす断面図である。FIG. 13 is a cross-sectional view showing a conventional electrostatic relay.

【符号の説明】[Explanation of symbols]

1 静電リレー 2 可動接点 3 固定接点 8 エレクトレット 12 可動部 13 支持部 22 固定側駆動電極(逆導電型不純物高濃度領域) A 可動側基体 B 固定側基体 1 electrostatic relay 2 movable contacts 3 fixed contacts 8 electrets 12 Moving part 13 Support 22 Fixed side drive electrode (reverse conductivity type impurity high concentration region) A movable base B Fixed side substrate

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成3年9月11日[Submission date] September 11, 1991

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0019[Correction target item name] 0019

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0019】駆動回路部は、上記のものに限らない。例
えば、昇圧回路として、n個のダイオードとn個のコン
デンサを直並列接続したチャージポンプ式の回路や薄膜
トランスとダイオードとコンデンサの整流部を組み合わ
せた薄膜トランス型整流昇圧回路などが使える。
The drive circuit section is not limited to the above. For example, as the booster circuit, a charge pump type circuit in which n diodes and n capacitors are connected in series and parallel, or a thin film transformer type rectifier booster circuit in which a thin film transformer and a rectifying unit of a diode and a capacitor are combined can be used.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西村 広海 大阪府門真市大字門真1048番地松下電工株 式会社内 (72)発明者 笠野 文宏 大阪府門真市大字門真1048番地松下電工株 式会社内 (72)発明者 粟井 崇善 大阪府門真市大字門真1048番地松下電工株 式会社内   ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hiromi Nishimura             1048, Kadoma, Kadoma-shi, Osaka Matsushita Electric Works Co., Ltd.             Inside the company (72) Inventor Fumihiro Kasano             1048, Kadoma, Kadoma-shi, Osaka Matsushita Electric Works Co., Ltd.             Inside the company (72) Inventor Takayoshi Awai             1048, Kadoma, Kadoma-shi, Osaka Matsushita Electric Works Co., Ltd.             Inside the company

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 可動側基体の裏側に設けられた可動接点
と固定側基体の表側に設けられた固定接点が対面するよ
うにして前記可動側基体と固定側基体とが配置され、前
記可動側基体が裏面に前記可動接点を有する可動部とこ
の可動部を可動接点と固定接点が接離する変位可能に支
持する支持部とを備えており、前記両基体における駆動
電極への駆動電圧印加により発生する静電力で前記可動
部が変位して接点の接離がなされるようになっている静
電リレーにおいて、前記可動側基体と固定側基体とがと
もに導電性材料からなっていて、少なくとも一方の基体
が半導体基板で出来ており、この半導体基板に形成され
た逆導電型不純物高濃度領域が一方の駆動電極となって
いることを特徴とする静電リレー。
1. The movable side base and the fixed side base are arranged so that the movable contact provided on the back side of the movable side base and the fixed contact provided on the front side of the fixed side base face each other, and the movable side. The base body includes a movable portion having the movable contact on the back surface and a support portion that movably supports the movable portion such that the movable contact and the fixed contact come in contact with each other. By applying a drive voltage to the drive electrodes of both the base bodies, In an electrostatic relay in which the movable portion is displaced by the generated electrostatic force to bring the contacts into and out of contact, at least one of the movable side base body and the fixed side base body is made of a conductive material. The base body is made of a semiconductor substrate, and the opposite conductivity type high-concentration impurity region formed on the semiconductor substrate serves as one of the drive electrodes.
【請求項2】 可動側基体と固定側基体がシリコン基板
である請求項1記載の静電リレー。
2. The electrostatic relay according to claim 1, wherein the movable side base body and the fixed side base body are silicon substrates.
【請求項3】 半導体基板の逆導電型不純物高濃度領域
以外の部分と他の基体とが電気的に接続され同電位とな
っている請求項1または2記載の静電リレー。
3. The electrostatic relay according to claim 1 or 2, wherein a portion of the semiconductor substrate other than the high-concentration region of the opposite conductivity type impurity is electrically connected to another substrate to have the same potential.
【請求項4】 半導体基板では、駆動電極用の逆導電型
不純物高濃度領域の側方の位置にガードリング領域用の
逆導電型不純物高濃度領域が形成されている請求項1か
ら3までのいずれかに記載の静電リレー。
4. The semiconductor substrate is provided with an opposite conductivity type impurity high concentration region for the guard ring region formed at a position lateral to the opposite conductivity type impurity high concentration region for the drive electrode. The electrostatic relay according to any one.
【請求項5】 可動側基体および/または固定側基体に
駆動用回路部が設けられている請求項1から4までのい
ずれかに記載の静電リレー。
5. The electrostatic relay according to claim 1, wherein a drive circuit section is provided on the movable side base body and / or the fixed side base body.
【請求項6】 可動側駆動電極と固定側駆動電極の間に
静電力を増すためのエレクトレットが設けられている請
求項1から5までのいずれかに記載の静電リレー。
6. The electrostatic relay according to claim 1, wherein an electret for increasing electrostatic force is provided between the movable side drive electrode and the fixed side drive electrode.
JP15353691A 1991-06-25 1991-06-25 Electrostatic relay Pending JPH052976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15353691A JPH052976A (en) 1991-06-25 1991-06-25 Electrostatic relay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15353691A JPH052976A (en) 1991-06-25 1991-06-25 Electrostatic relay

Publications (1)

Publication Number Publication Date
JPH052976A true JPH052976A (en) 1993-01-08

Family

ID=15564664

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15353691A Pending JPH052976A (en) 1991-06-25 1991-06-25 Electrostatic relay

Country Status (1)

Country Link
JP (1) JPH052976A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1174717A (en) * 1997-06-23 1999-03-16 Nec Corp Phased array antenna system
US6232919B1 (en) 1997-06-23 2001-05-15 Nec Corporation Phased-array antenna apparatus
US6433657B1 (en) 1998-11-04 2002-08-13 Nec Corporation Micromachine MEMS switch
US6486425B2 (en) * 1998-11-26 2002-11-26 Omron Corporation Electrostatic microrelay
WO2008010436A1 (en) * 2006-07-19 2008-01-24 Murata Manufacturing Co., Ltd. Electrostatic actuator and method for manufacturing same
JP2008221464A (en) * 2007-03-08 2008-09-25 Brother Ind Ltd Driving device and liquid droplet delivering device
US7439547B2 (en) 2002-07-15 2008-10-21 Kabushiki Kaisha Toshiba Micro electro mechanical system apparatus
JP2010220442A (en) * 2009-03-18 2010-09-30 Toshiba Corp Boosting circuit
US8441773B2 (en) 2006-09-27 2013-05-14 Nikon Corporation Electronic element, variable capacitor, micro switch, method for driving micro switch, and MEMS type electronic element
WO2013069333A1 (en) * 2011-11-08 2013-05-16 株式会社村田製作所 Variable capacitance apparatus

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6232919B1 (en) 1997-06-23 2001-05-15 Nec Corporation Phased-array antenna apparatus
US6492943B1 (en) * 1997-06-23 2002-12-10 Nec Corporation Phased-array antenna apparatus
JPH1174717A (en) * 1997-06-23 1999-03-16 Nec Corp Phased array antenna system
US6433657B1 (en) 1998-11-04 2002-08-13 Nec Corporation Micromachine MEMS switch
US6486425B2 (en) * 1998-11-26 2002-11-26 Omron Corporation Electrostatic microrelay
US7439547B2 (en) 2002-07-15 2008-10-21 Kabushiki Kaisha Toshiba Micro electro mechanical system apparatus
WO2008010436A1 (en) * 2006-07-19 2008-01-24 Murata Manufacturing Co., Ltd. Electrostatic actuator and method for manufacturing same
US8441773B2 (en) 2006-09-27 2013-05-14 Nikon Corporation Electronic element, variable capacitor, micro switch, method for driving micro switch, and MEMS type electronic element
US9036327B2 (en) 2006-09-27 2015-05-19 Nikon Corporation Electronic element, variable capacitor, micro switch, method for driving micro switch, and MEMS type electronic element
JP2008221464A (en) * 2007-03-08 2008-09-25 Brother Ind Ltd Driving device and liquid droplet delivering device
JP2010220442A (en) * 2009-03-18 2010-09-30 Toshiba Corp Boosting circuit
WO2013069333A1 (en) * 2011-11-08 2013-05-16 株式会社村田製作所 Variable capacitance apparatus
US9087929B2 (en) 2011-11-08 2015-07-21 Murata Manufacturing Co., Ltd. Variable capacitance device

Similar Documents

Publication Publication Date Title
JPS5574168A (en) Pnpn switch
US6259099B1 (en) Ultra-thin ionizing radiation detector and methods for making same
JPH052976A (en) Electrostatic relay
EP0671629A3 (en) Semiconductor acceleration sensor and manufacturing method thereof
US5673476A (en) Anode bonding method for selected regions
JPH0449651A (en) Mos(mis) type capacitor
JPH07321292A (en) Structure inside integrated circuit including at least two electric conductivity elements and its manufacture
US8217475B2 (en) Backside controlled MEMS capacitive sensor and interface and method
JPH052973A (en) Electrostatic relay
US5424565A (en) Semiconductor detector
US4882296A (en) Highly blocking thin film diode having a-Si:H for image sensor rows
JP3449963B2 (en) Antenna photovoltaic element integrated device
JPH052972A (en) Electrostatic relay
JPH05322646A (en) Photodetecting device having variable detecting threshold
EP0173074A2 (en) Configuration of a metal insulator semiconductor with a processor based gate
US20030053282A1 (en) Unipolar electro-static chuck
JPH04306525A (en) Static relay circuit and static relay device
JPS5994454A (en) Semiconductor device and manufacture thereof
WO1995016193A2 (en) A silicon capacitive pressure sensor having a glass dielectric deposited using ion milling
JPS62154661A (en) Semiconductor device
JPS60137053A (en) Semiconductor capacity element
JP2892527B2 (en) Electrostatic relay
JP2617265B2 (en) Semiconductor device
JP3407917B2 (en) Light sensor
JPH04269416A (en) Electrostatic relay and manufacture thereof