JPH0529108A - Nonlinear resistor - Google Patents

Nonlinear resistor

Info

Publication number
JPH0529108A
JPH0529108A JP3182154A JP18215491A JPH0529108A JP H0529108 A JPH0529108 A JP H0529108A JP 3182154 A JP3182154 A JP 3182154A JP 18215491 A JP18215491 A JP 18215491A JP H0529108 A JPH0529108 A JP H0529108A
Authority
JP
Japan
Prior art keywords
resistance layer
high resistance
inorganic adhesive
hours
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3182154A
Other languages
Japanese (ja)
Inventor
Takahiko Shindou
尊彦 新藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3182154A priority Critical patent/JPH0529108A/en
Publication of JPH0529108A publication Critical patent/JPH0529108A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To get a nonlinear resistor where the discharge withstand current rating is hard to drop even if the size is enlarged by using an inorganic adhesive which contains fibers as a high resistance layer. CONSTITUTION:An inorganic adhesive, which contains 20-32% fibers which have, for example Al2O3 for their main ingredients, are applied on the side of a sintered substance, using a roll applicator. The average length of this fibers is, for example, 100mum, and the thickness is 2-3mum, and the main ingredient of the inorganic adhesive is, for example, Al2O3 or SiO2. After application of this inorganic adhesive which contains the fibers, a high-resistance layer 2 is stored to the side of the backed substance 1. That is, the temperature is raised 150 deg.C in two hours, and this temperature is maintained for two hours, and further the temperature is raised 350 deg.C, and this condition is maintained for two hours, and then it is cooled in three hours. Hereby, a nonlinear resistor excellent in discharge withstand current rating can be gotten.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は過電圧保護装置に利用さ
れる非直線抵抗体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-linear resistor used in an overvoltage protection device.

【0002】[0002]

【従来の技術】一般に電力系統には系統電圧を抑制し、
電力系統を保護するために避雷器が設置されている。こ
の避雷器には正常な電圧ではほぼ絶縁特性を示し、異常
電圧が印加されると低抵抗値に変化する非直線抵抗体が
使用されている。
2. Description of the Related Art Generally, a system voltage is suppressed in an electric power system,
Lightning arresters are installed to protect the power system. This lightning arrester uses a non-linear resistor that exhibits almost insulating characteristics at normal voltage and changes to a low resistance value when an abnormal voltage is applied.

【0003】非直線抵抗体には、酸化亜鉛ZnOを主成
分とし、非直線性特性が現われるように少なくとも一種
以上の金属酸化物等の添加物を加えて焼結した焼結体を
使用する。この焼結体の側面に沿面閃絡防止のため高抵
抗層を形成する物質を塗布して焼付け、さらに両端面に
は電極を形成して非直線抵抗体とする。
For the non-linear resistor, a sintered body is used which is mainly composed of zinc oxide ZnO and is sintered by adding at least one additive such as a metal oxide so as to exhibit non-linear characteristics. A material for forming a high resistance layer is applied to the side surfaces of this sintered body to prevent flashover, and baked, and electrodes are formed on both end surfaces to form a non-linear resistance body.

【0004】従来の高抵抗層としては例えばSiO2
Bi2 3 ,Sb2 3 等を水および有機バインダとと
もに混合して焼結体側面に塗布し、1000〜1200
℃で焼付けるという無機高抵抗層が知られている。
As a conventional high resistance layer, for example, SiO 2 ,
The Bi 2 O 3, Sb 2 O 3 or the like is mixed with water and an organic binder is applied to the sintered body side, 1000-1200
An inorganic high resistance layer that is baked at ℃ is known.

【0005】ところで近年電力系統は、実用化が計画さ
れている100KV(UHV)に代表されるように、大
容量化、高電圧化が進んでいる。このような大容量化お
よび高電圧化に対応するためには非直線抵抗体の厚さや
径を大きくして大型化を図らなければならない。
By the way, in recent years, the electric power system has been increasing in capacity and voltage, as represented by 100 KV (UHV), which is planned for practical use. In order to cope with such large capacity and high voltage, it is necessary to increase the thickness and diameter of the non-linear resistor to increase the size.

【0006】しかしながらこのような大型の非直線抵抗
体は焼成時に変形しやすく、電気特性にばらつきを生じ
やすい。しかも高抵抗層を形成するために焼結体を10
00〜1200℃という高温で再焼成しなければならな
いので焼結体自身に残留応力が発生する。焼結体に働く
このような残留応力を小さくするためには高抵抗層と接
する焼結体側面部の曲げ強度の低下を防止する必要があ
る。すなわち適切な熱膨張係数を有する物質で高抵抗層
を形成しなければならない。しかしながら従来は塗布す
る物質そのものを変えることによって熱膨張係数を変え
ていたため熱膨張係数の制御が困難であり、非直線抵抗
体の大型化に伴って放電耐量が低下するという問題があ
った。
[0006] However, such a large non-linear resistor is easily deformed during firing, and electrical characteristics are likely to vary. Moreover, in order to form a high resistance layer
Since it has to be re-fired at a high temperature of 00 to 1200 ° C., residual stress occurs in the sintered body itself. In order to reduce such residual stress acting on the sintered body, it is necessary to prevent the bending strength of the side surface of the sintered body, which is in contact with the high resistance layer, from decreasing. That is, the high resistance layer must be formed of a material having an appropriate coefficient of thermal expansion. However, conventionally, the coefficient of thermal expansion has been changed by changing the substance to be applied, so that it is difficult to control the coefficient of thermal expansion, and there is a problem that the discharge withstand capacity decreases as the size of the non-linear resistor increases.

【0007】[0007]

【発明が解決しようとする課題】上記のように従来の非
直線抵抗体は大容量化、高電圧化に対応するために大型
化すると電気特性にばらつきを生じやすく、特に高抵抗
層と接する焼結体側面部の強度の低下により放電耐量特
性が悪くなるという問題があった。そこで本発明の目的
は、大型化しても放電耐量特性が低下しにくい非直線抵
抗体を提供することにある。
As described above, when the conventional non-linear resistor is made large in size in order to cope with the increase in capacity and the increase in voltage, the electric characteristics are likely to vary, and in particular, the baking in contact with the high resistance layer is made. There is a problem that the discharge withstand characteristic deteriorates due to the decrease in strength of the side surface of the united body. Therefore, it is an object of the present invention to provide a non-linear resistor in which the discharge withstand voltage characteristic does not easily deteriorate even when the size is increased.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明は酸化亜鉛を主成分とする焼結体の側面に高
抵抗層を形成した非直線抵抗体において、前記高抵抗層
がファイバを含有する無機系接着剤であることを特徴と
する非直線抵抗体を提供する。
In order to achieve the above object, the present invention provides a non-linear resistor having a high resistance layer formed on a side surface of a sintered body containing zinc oxide as a main component, wherein the high resistance layer is Provided is a non-linear resistor characterized by being an inorganic adhesive containing a fiber.

【0009】[0009]

【作用】焼結体の側面に形成される高抵抗層の熱膨張係
数は無機系接着剤に含有されるファイバの量によって変
化させることができる。したがって含有ファイバ量を増
減させることによって適切な熱膨張係数を有する高抵抗
層を形成することができ、高抵抗層に接する焼結体側面
部の曲げ強度の低下を防止することができる。
The thermal expansion coefficient of the high resistance layer formed on the side surface of the sintered body can be changed by the amount of the fiber contained in the inorganic adhesive. Therefore, it is possible to form a high resistance layer having an appropriate coefficient of thermal expansion by increasing or decreasing the amount of contained fiber, and it is possible to prevent the bending strength of the side surface of the sintered body in contact with the high resistance layer from decreasing.

【0010】[0010]

【実施例】以下に本発明の一実施例を図1乃至図5を参
照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0011】ZnOを95mol %とし、Bi2 3 ,M
nO2 ,SiO2 ,Cr2 2 を夫々0.5mol %およ
び(Co2 3 ,Sb2 3 ,NiOを夫々1mol %添
加して混合し、水および分散剤等の有機バインダ類を加
えてスプレードライヤで例えば粒径100μmに噴霧造
粒する。この造粒粉を金型に入れて加圧し、直径65m
m、厚さ22mmの円板型に成形し、この成形体を焼成し
て図1に示す焼結体1を得る。
ZnO is 95 mol% and Bi 2 O 3 , M
0.5 mol% of nO 2 , SiO 2 and Cr 2 O 2 and 1 mol% of (Co 2 O 3 , Sb 2 O 3 and NiO, respectively) were added and mixed, and water and an organic binder such as a dispersant were added. And spray granulate to a particle size of 100 μm with a spray dryer.
It is molded into a disk-shaped m having a thickness of 22 mm and the molded body is fired to obtain a sintered body 1 shown in FIG.

【0012】この焼結体1の側面に例えばAl2 3
主成分とするファイバを20〜32%含む無機系接着剤
をロール塗布機を用いて塗布する。このファイバの平均
長さは例えば100μm、太さは2〜3μmで、無機系
接着剤の主成分は例えばAl2 3 ,SiO2 である。
このファイバを含む無機系接着剤を塗布した後図2に示
す焼成パターンで焼結体1の側面に高抵抗層2を焼付け
る。すなわち2時間かけて150℃温度を上昇させ2時
間この温度を保ち、さらに350℃温度を上げて2時間
この状態を保った後3時間かけて冷却する。焼成速度が
速すぎると、無機系接着剤中に気泡が生じ高抵抗層2に
凹凸ができるので、焼成時の温度変化は10℃/min 以
下であることが望ましい。こうして高抵抗層2を形成し
た焼結体1の両端面を研磨し、アルミニウムを溶射して
電極3を形成して非直線抵抗体を得る。なお、電極3を
形成した後高抵抗層2を形成するという順にしてもよ
い。次に作用について説明する。
An inorganic adhesive containing 20 to 32% of fibers containing Al 2 O 3 as a main component is applied to the side surface of the sintered body 1 by using a roll coater. The average length of this fiber is, for example, 100 μm, the thickness is 2 to 3 μm, and the main components of the inorganic adhesive are, for example, Al 2 O 3 and SiO 2 .
After applying the inorganic adhesive containing this fiber, the high resistance layer 2 is baked on the side surface of the sintered body 1 in the baking pattern shown in FIG. That is, the temperature of 150 ° C. is raised over 2 hours and kept at this temperature for 2 hours, the temperature of 350 ° C. is further raised and kept in this state for 2 hours, and then cooled over 3 hours. If the firing rate is too fast, bubbles will be generated in the inorganic adhesive to form irregularities in the high resistance layer 2, so the temperature change during firing is preferably 10 ° C./min or less. In this way, both end surfaces of the sintered body 1 on which the high resistance layer 2 is formed are polished and aluminum is sprayed to form the electrodes 3 to obtain a nonlinear resistor. The high resistance layer 2 may be formed after the electrode 3 is formed. Next, the operation will be described.

【0013】高抵抗層2の熱膨張係数はファイバと無機
系接着剤の割合によって決まり、本実施例ではファイバ
を20〜32%、無機系接着剤を80〜68%にするこ
とにより熱膨張係数を2.5〜6.2×10-61/℃に
することができる。高抵抗層2の熱膨張係数と非直線抵
抗体の放電耐量との関係は図3に示すように、熱膨張係
数が2.5×10-61/℃未満あるいは6.2×10-6
1/℃以上では耐量が下がるという関係がある。熱膨張
係数が大きすぎると通電による非直線抵抗体の温度上昇
によって高抵抗層2が膨張して、焼結体1の側面部に引
っ張り応力が働く。逆に熱膨張係数が小さすぎると焼結
体1の熱膨張に比べて高抵抗層2が膨張せず、焼結体1
に圧縮応力が働く。したがって焼結体1に働く応力を小
さくするためには高抵抗層2の熱膨張係数は2.5〜
6.2×10-61/℃であることが望ましい。
The coefficient of thermal expansion of the high resistance layer 2 is determined by the ratio of the fiber and the inorganic adhesive. In this embodiment, the coefficient of thermal expansion is set to 20 to 32% for the fiber and 80 to 68% for the inorganic adhesive. Can be 2.5 to 6.2 × 10 −6 1 / ° C. As shown in FIG. 3, the relationship between the coefficient of thermal expansion of the high resistance layer 2 and the discharge withstand capability of the non-linear resistor has a coefficient of thermal expansion of less than 2.5 × 10 −6 1 / ° C. or 6.2 × 10 −6.
At 1 / ° C. or higher, there is a relationship that the withstand capability decreases. If the coefficient of thermal expansion is too large, the high resistance layer 2 expands due to the temperature rise of the non-linear resistor due to energization, and tensile stress acts on the side surface of the sintered body 1. On the contrary, if the coefficient of thermal expansion is too small, the high resistance layer 2 does not expand as compared with the thermal expansion of the sintered body 1, and the sintered body 1
A compressive stress acts on. Therefore, in order to reduce the stress acting on the sintered body 1, the coefficient of thermal expansion of the high resistance layer 2 is 2.5 to
It is preferably 6.2 × 10 -6 1 / ° C.

【0014】また高抵抗層2の表面は微視的には凹部が
あるため、凹部のために厚みが薄くなった箇所では沿面
閃絡が起こる可能性がある。したがって高抵抗層2には
ある程度の厚みが必要であり、高抵抗層2と放電耐量の
関係を表す図4が示すように高抵抗層2の厚さは100
〜300μmであることが望ましい。
Further, since the surface of the high resistance layer 2 has a microscopically concave portion, a creeping flashover may occur at a portion where the thickness is thin due to the concave portion. Therefore, the high resistance layer 2 needs to have a certain thickness, and the thickness of the high resistance layer 2 is 100 as shown in FIG. 4 showing the relationship between the high resistance layer 2 and the discharge withstand voltage.
It is desirable that the thickness is 300 μm.

【0015】本実施例によれば高抵抗層2の焼付け温度
は350℃程度であり、再焼成時の加熱温度を従来に比
べてかなり低くすることができるので焼結体1への再焼
成時の応力が低減される。
According to the present embodiment, the baking temperature of the high resistance layer 2 is about 350 ° C., and the heating temperature at the time of re-baking can be made considerably lower than that of the conventional one. Stress is reduced.

【0016】さらに高抵抗層2を形成する無機系接着剤
中のAl2 3 ファイバの量を20〜32%にすること
によって高抵抗層2の熱膨張係数を2.5〜6.2×1
-61/℃にすることができ、サージエネルギーが印加
されて非直線抵抗体が発熱した際の焼結体1に働く応力
を小さくすることができる。したがって図5の放電耐量
の分布図が示すように、SiO2 ,Bi2 3 ,Sb2
3 等の混合物を1200℃で焼付け高抵抗層2を形成
した従来品に比べて約40J/cc放電耐量が向上する。
しかも高抵抗層2の熱膨張係数は含有ファイバ量を増減
させることによって容易に変えられるので焼結体の大き
さや種類によって最適の熱膨張係数を有する高抵抗層を
形成することができる。
Further, the thermal expansion coefficient of the high resistance layer 2 is 2.5 to 6.2 × by setting the amount of Al 2 O 3 fiber in the inorganic adhesive forming the high resistance layer 2 to 20 to 32%. 1
The stress can be set to 0 −6 1 / ° C., and the stress acting on the sintered body 1 when the nonlinear energy is heated by the application of surge energy can be reduced. Therefore, as shown in the distribution diagram of discharge withstand capability in FIG. 5, SiO 2 , Bi 2 O 3 , Sb 2
The discharge withstand capacity of about 40 J / cc is improved as compared with the conventional product in which a mixture of O 3 and the like is baked at 1200 ° C. to form the high resistance layer 2.
Moreover, the coefficient of thermal expansion of the high resistance layer 2 can be easily changed by increasing or decreasing the amount of fiber contained, so that a high resistance layer having an optimum coefficient of thermal expansion can be formed depending on the size and type of the sintered body.

【0017】[0017]

【発明の効果】以上のように本発明によれば酸化亜鉛を
主成分とする焼結体の側面にファイバを含有する無機系
接着剤を焼付けて高抵抗層を形成することにより放電耐
量にすぐれた非直線抵抗体を提供することができる。
As described above, according to the present invention, a high resistance layer is formed by baking an inorganic adhesive containing fibers on the side surface of a sintered body containing zinc oxide as a main component, which results in excellent discharge resistance. It is possible to provide a non-linear resistor.

【図面の簡単な説明】[Brief description of drawings]

【図1】非直線抵抗体の断面図FIG. 1 is a sectional view of a non-linear resistor.

【図2】ファイバを含有する無機系接着剤の焼成パター
FIG. 2 Firing pattern of inorganic adhesive containing fibers

【図3】熱膨張係数と放電耐量の関係[Fig. 3] Relationship between thermal expansion coefficient and discharge withstand capability

【図4】高抵抗層の厚さと放電耐量の関係[Fig. 4] Relationship between thickness of high resistance layer and discharge withstand capability

【図5】放電耐量値の分布図[Fig. 5] Distribution map of discharge withstand value

【符号の説明】[Explanation of symbols]

1…焼結体 2…高抵抗層 3…電極 1 ... Sintered body 2 ... High resistance layer 3 ... Electrode

Claims (1)

【特許請求の範囲】 【請求項1】 酸化亜鉛を主成分とする焼結体の側面に
高抵抗層を形成した非直線抵抗体において、前記高抵抗
層がファイバを含有する無機系接着剤であることを特徴
とする非直線抵抗体。
Claim: What is claimed is: 1. A non-linear resistor having a high resistance layer formed on a side surface of a sintered body containing zinc oxide as a main component, wherein the high resistance layer is an inorganic adhesive containing a fiber. A non-linear resistor characterized by being present.
JP3182154A 1991-07-23 1991-07-23 Nonlinear resistor Pending JPH0529108A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3182154A JPH0529108A (en) 1991-07-23 1991-07-23 Nonlinear resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3182154A JPH0529108A (en) 1991-07-23 1991-07-23 Nonlinear resistor

Publications (1)

Publication Number Publication Date
JPH0529108A true JPH0529108A (en) 1993-02-05

Family

ID=16113306

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3182154A Pending JPH0529108A (en) 1991-07-23 1991-07-23 Nonlinear resistor

Country Status (1)

Country Link
JP (1) JPH0529108A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4011423A1 (en) * 1989-04-13 1990-10-18 Atsugi Unisia Corp HYDRAULIC DAMPING DEVICE WITH SPRING SEAT AND MANUFACTURING METHOD
JP2008513982A (en) * 2004-09-15 2008-05-01 エプコス アクチエンゲゼルシャフト Barista

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4011423A1 (en) * 1989-04-13 1990-10-18 Atsugi Unisia Corp HYDRAULIC DAMPING DEVICE WITH SPRING SEAT AND MANUFACTURING METHOD
JP2008513982A (en) * 2004-09-15 2008-05-01 エプコス アクチエンゲゼルシャフト Barista
JP4755648B2 (en) * 2004-09-15 2011-08-24 エプコス アクチエンゲゼルシャフト Barista
US8130071B2 (en) 2004-09-15 2012-03-06 Epcos Ag Varistor comprising an insulating layer produced from a loading base glass

Similar Documents

Publication Publication Date Title
JPS63136603A (en) Manufacture of voltage nonlinear resistor
JPH0529108A (en) Nonlinear resistor
JPH0429204B2 (en)
US5000876A (en) Voltage non-linear type resistors
JPS5941284B2 (en) Manufacturing method of voltage nonlinear resistor
JP2815990B2 (en) Manufacturing method of nonlinear resistor
JP3254950B2 (en) Voltage non-linear resistor, its manufacturing method and application
JPS5849004B2 (en) voltage limiting composition
JPH01228105A (en) Manufacture of non-linear voltage resistance
JP4157237B2 (en) Voltage nonlinear resistor and manufacturing method thereof
JPH036801A (en) Voltage-dependent nonlinear resistor
JPS625613A (en) Manufacture of voltage non-linear resistor
JP2735320B2 (en) Non-linear resistor
JPH0379850B2 (en)
JPH0425682B2 (en)
JPH08124717A (en) Nonlinear resistor
JP3210041B2 (en) Non-linear resistor
JPH0258306A (en) Voltage-dependent nonlinear resistor and manufacture thereof
JP2978009B2 (en) Method of manufacturing voltage non-linear resistor
JPH01227401A (en) Non-linear voltage-dependent resistor
JPS5951724B2 (en) Ceramic voltage nonlinear resistor
JPH08107003A (en) Insulation member and nonlinear resistor including the insulation member
JPH0722207A (en) Production of voltage nonlinear resistor
JPH09320813A (en) Manufacture of non-linear resistor
JPH05101906A (en) Non-linear resistor