JPH05290749A - Ion source - Google Patents

Ion source

Info

Publication number
JPH05290749A
JPH05290749A JP11548192A JP11548192A JPH05290749A JP H05290749 A JPH05290749 A JP H05290749A JP 11548192 A JP11548192 A JP 11548192A JP 11548192 A JP11548192 A JP 11548192A JP H05290749 A JPH05290749 A JP H05290749A
Authority
JP
Japan
Prior art keywords
electrodes
electrode
dust
conductive
ion beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11548192A
Other languages
Japanese (ja)
Inventor
Daisuke Inoue
大輔 井上
Haruo Maekawa
晴夫 前川
Shuichi Nogawa
修一 野川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP11548192A priority Critical patent/JPH05290749A/en
Publication of JPH05290749A publication Critical patent/JPH05290749A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To suppress electrifying conductive dust so that the dust may be prevented from being transferred between every two ion beam drawer electrodes to lessen any opportunity of causing electric discharge by laying insulating films respectively on both or either of the mutually opposed faces of the ion beam drawer electrodes that draw out ion beams. CONSTITUTION:Insulating films 8 made of silicon nitride are laid respectively on both or either of the mutually opposed faces of every two of accelerating electrodes 2, decelerating electrodes 3 and earthing electrodes 4 respectively juxtaposed with one another. As a result of that, each of the insulating films 8 can suppress electrifying conductive dust so that any possibility of shuttling the conductive dust between every two electrodes may be lessened to lessen any opportunity of causing electric discharge even if a conductive target-material attached to each of the electrodes is peeled from the electrode to form the conductive dust by film stress. This can eliminate a problem of abnormal heating caused by applying ion beams to an object other than a target and the cause of contamination so that any possibility of striking ions against the decelerating electrodes and the earthing electrodes may be lessened to lengthen the life of each electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、イオンビームを引き出
すイオンビーム引出電極間の放電を少なくするイオン源
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ion source for reducing the discharge between ion beam extraction electrodes for extracting an ion beam.

【0002】[0002]

【従来の技術】従来のイオン源を図3ないし図5につい
て説明する。それらの図において、1はイオン放出源か
らイオンビームを引き出すイオンビーム引出電極群、
2,3,4は電極群1を構成する加速電極,減速電極,
接地電極であり、多孔電極又は単孔電極からなり、導電
性のモリブデン,カーボン等が使用される。5は電極群
1により引き出された不活性ガスのイオンビームであ
り、導電性金属ターゲットをスパッタする。
2. Description of the Related Art A conventional ion source will be described with reference to FIGS. In these figures, 1 is an ion beam extraction electrode group for extracting an ion beam from an ion emission source,
2, 3, 4 are acceleration electrodes, deceleration electrodes, which constitute the electrode group 1,
It is a ground electrode and is composed of a porous electrode or a single-hole electrode, and conductive molybdenum, carbon, or the like is used. An ion beam 5 of the inert gas extracted by the electrode group 1 sputters a conductive metal target.

【0003】[0003]

【発明が解決しようとする課題】前記のとおりイオンビ
ーム5が導電性金属ターゲットをスパッタすると、スパ
ッタリングされたターゲット材料が引出電極群1に跳ね
返って付着することが多く、図4及び図5に示すよう
に、この付着した導電性ターゲット材料6は、その膜応
力により電極2から剥がれ、導電性のごみ7となる。こ
の導電性のごみ7は直流高電圧下で電極2,3間を往復
運動し、放電のきっかけとなって放電を生ずる。
As described above, when the ion beam 5 sputters a conductive metal target, the sputtered target material often bounces and adheres to the extraction electrode group 1, as shown in FIGS. 4 and 5. As described above, the attached conductive target material 6 is peeled from the electrode 2 due to the film stress, and becomes the conductive dust 7. The conductive dust 7 reciprocates between the electrodes 2 and 3 under a high DC voltage, and triggers discharge to generate discharge.

【0004】この放電によりつぎの悪影響が生じる。 1、放電の瞬間イオンビーム5がイオン放出源から引き
出せなく、かつ、その放電後電極群1を通過したイオン
ビーム5が拡散し、所要の所以外に照射され、照射され
たところの異常加熱やコンタミネイションの原因とな
る。 2、放電がきっかけとなり、正常運転時にはあまりイオ
ンが当らず,電流の流れない減速電極3及び接地電極4
にイオンが当り、それらの電極3,4の寿命を縮める。
This discharge has the following adverse effects. 1. The instantaneous ion beam 5 of the discharge cannot be extracted from the ion emission source, and the ion beam 5 that has passed through the electrode group 1 after the discharge is diffused and is irradiated to a place other than the required place, and abnormal heating of the irradiated place occurs. It causes contamination. 2. The discharge triggered the deceleration electrode 3 and the ground electrode 4 where current does not flow because ions do not hit much during normal operation.
The ions hit the electrodes and shorten the life of the electrodes 3 and 4.

【0005】3、放電がきっかけとなり、減速電極3を
介して減速電源に流れ込んだ過大な電流により、電圧制
御から電流制御になる可能性があり、そのため減速電源
の電流定格を、加速電源の電流定格と同じ位にする必要
が生じ、減速電源が高価になる。 本発明は、前記の点に留意し、イオンビーム引出電極群
における放電を少なくするイオン源を提供することを目
的とする。
3. There is a possibility that current control may be changed from voltage control to current control due to an excessive current flowing into the deceleration power supply through the deceleration electrode 3 due to discharge, and therefore the current rating of the deceleration power supply is changed to the current of the acceleration power supply. It is necessary to make it the same as the rating, and the deceleration power supply becomes expensive. The present invention has been made in consideration of the above points, and an object of the present invention is to provide an ion source that reduces the discharge in the ion beam extraction electrode group.

【0006】[0006]

【課題を解決するための手段】前記課題を解決するため
に、本発明のイオン源は、イオンビームを引き出す並設
されたイオンビーム引出電極の対向面の両方又は一方に
絶縁膜を被覆したものである。
In order to solve the above-mentioned problems, the ion source of the present invention is one in which both or one of the facing surfaces of the ion beam extraction electrodes arranged in parallel to extract an ion beam is covered with an insulating film. Is.

【0007】[0007]

【作用】前記のように構成された本発明のイオン源は、
イオンビーム引出電極の対向面の両方又は一方に絶縁膜
が被覆されているため、放電のきっかけとなる導電性の
ごみが電極間を往復運動しにくくなり、放電のきっかけ
が少なくなる。
The ion source of the present invention constructed as described above is
Since both or one of the facing surfaces of the ion beam extraction electrode is covered with the insulating film, it becomes difficult for conductive dust, which is a trigger for discharge, to reciprocate between the electrodes, and the trigger for discharge is reduced.

【0008】[0008]

【実施例】実施例について図1及び図2を参照して説明
する。それらの図において図3ないし図5と同一符号は
同一もしくは相当するものを示し、従来例と異なる点
は、電極を窒化シリコンSi34 等の絶縁膜8で被覆
した点である。図1は並設された加速電極2,減速電源
3,接地電極4の対向面の両方に絶縁膜8を被覆したも
のであり、図2は減速電極3の加速電極2に対向した面
のみに絶縁膜8を被覆したものである。
EXAMPLES Examples will be described with reference to FIGS. 1 and 2. In these drawings, the same reference numerals as those in FIGS. 3 to 5 indicate the same or corresponding ones, and the difference from the conventional example is that the electrodes are covered with an insulating film 8 such as silicon nitride Si 3 N 4 . FIG. 1 shows an insulating film 8 covering both of the opposing surfaces of the acceleration electrode 2, the deceleration power supply 3 and the ground electrode 4 which are arranged in parallel, and FIG. 2 shows only the surface of the deceleration electrode 3 facing the acceleration electrode 2. The insulating film 8 is covered.

【0009】従って、電極に付着した導電性ターゲット
材料6が、その膜応力により電極から剥がれ、導電性の
ごみ7となっても、対向面の少なくとも一方が絶縁膜に
より被覆されているため、ごみ7にチャージの流入が抑
えられ、ごみ7の帯電が進まなく、ごみ7が電極間を往
復運動することが少なく、放電のきっかけがきわめて少
なくなる。
Therefore, even if the conductive target material 6 attached to the electrode is peeled off from the electrode due to the film stress and becomes the conductive dust 7, at least one of the opposing surfaces is covered with the insulating film, and thus the dust is removed. The inflow of charge to 7 is suppressed, the charging of the dust 7 does not proceed, the dust 7 rarely reciprocates between the electrodes, and the trigger of discharge is extremely reduced.

【0010】そして、放電のきっかけが少なくなるの
で、つぎの効果を生じる。 1、正常に動作し、イオンビームがターゲット以外のと
ころを照射して異常加熱やコンタミネイションの原因が
なくなる。 2、減速電極3,接地電極4にイオンが当ることが少な
く、それらの電極3,4の寿命を縮めることがない。
Since the trigger of discharge is reduced, the following effects are produced. 1. It operates normally, and the ion beam irradiates the part other than the target to eliminate the cause of abnormal heating and contamination. 2. The deceleration electrode 3 and the ground electrode 4 are less likely to be hit by ions, and the service life of the electrodes 3 and 4 is not shortened.

【0011】3、電極間に放電が起っても、減速電極3
の絶縁膜8により減速電源に流れ込む電流が少なく、減
速電源の電流定格を少なくでき、減速電源が安価にな
る。
3. Even if discharge occurs between the electrodes, the deceleration electrode 3
The insulating film 8 reduces the amount of current flowing into the deceleration power supply, reduces the current rating of the deceleration power supply, and makes the deceleration power supply inexpensive.

【0012】つぎに実験結果について説明する。イオン
ビームがアルゴン,ターゲットがアルミニュウム,加速
電流が300mAのとき、従来の無絶縁膜の場合、放電
時の減速電極の最大電流が340mAで電極の寿命が1
000時間であったが、対向面の一方が絶縁膜で被覆さ
れた場合、前記最大電流が120mAで電極の寿命が5
000時間に伸び、さらに対向面の両方が絶縁膜で被覆
された場合、前記最大電流が60mAで電極の寿命が7
000時間に伸びた。
Next, the experimental results will be described. When the ion beam is argon, the target is aluminum, and the acceleration current is 300 mA, in the case of the conventional non-insulating film, the maximum current of the deceleration electrode during discharge is 340 mA and the life of the electrode is 1
Although it was 000 hours, when one of the facing surfaces was covered with an insulating film, the maximum current was 120 mA and the life of the electrode was 5
When it is extended to 000 hours and both opposite surfaces are covered with an insulating film, the maximum current is 60 mA and the life of the electrode is 7
It grew to 000 hours.

【0013】[0013]

【発明の効果】本発明は、以上説明したように構成され
ているので、以下に記載する効果を奏する。本発明のイ
オン源は、イオンビームを引き出す並設されたイオンビ
ーム引出電極の対向面の両方又は一方に絶縁膜を被覆し
た電極に付着した導電性ターゲット材料が、その膜応力
により電極から剥がれ、導電性のごみ7となった場合、
対向面の少なくとも一方が絶縁膜により被覆されている
ため、ごみへのチャージの流入,即ち、ごみの帯電を抑
えることができ、ごみが電極間を往復運動することが少
なく、放電のきっかけをきわめて少なくすることができ
る。
Since the present invention is configured as described above, it has the following effects. Ion source of the present invention, the conductive target material attached to the electrode coated with an insulating film on both or one of the facing surfaces of the ion beam extraction electrodes arranged in parallel to extract the ion beam, is peeled from the electrode due to the film stress, When it becomes conductive garbage 7,
Since at least one of the facing surfaces is covered with an insulating film, the inflow of charge into the dust, that is, the charge of dust can be suppressed, the dust does not reciprocate between the electrodes, and the discharge trigger is extremely high. Can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例の切断正面図である。FIG. 1 is a cut front view of an embodiment of the present invention.

【図2】他の実施例の切断正面図である。FIG. 2 is a cutaway front view of another embodiment.

【図3】従来例の切断正面図である。FIG. 3 is a cut front view of a conventional example.

【図4】図3の一部の拡大図である。FIG. 4 is an enlarged view of a part of FIG.

【図5】図4のさらに一部の拡大図である。5 is an enlarged view of a part of FIG. 4. FIG.

【符号の説明】[Explanation of symbols]

2 加速電極 3 減速電極 4 接地電極 8 絶縁膜 2 acceleration electrode 3 deceleration electrode 4 ground electrode 8 insulating film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 イオンビームを引き出す並設されたイオ
ンビーム引出電極の対向面の両方又は一方に絶縁膜を被
覆したイオン源。
1. An ion source in which an insulating film is coated on either or both of opposing surfaces of ion beam extraction electrodes arranged in parallel to extract an ion beam.
JP11548192A 1992-04-07 1992-04-07 Ion source Pending JPH05290749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11548192A JPH05290749A (en) 1992-04-07 1992-04-07 Ion source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11548192A JPH05290749A (en) 1992-04-07 1992-04-07 Ion source

Publications (1)

Publication Number Publication Date
JPH05290749A true JPH05290749A (en) 1993-11-05

Family

ID=14663592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11548192A Pending JPH05290749A (en) 1992-04-07 1992-04-07 Ion source

Country Status (1)

Country Link
JP (1) JPH05290749A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010186756A (en) * 2010-05-20 2010-08-26 Hitachi High-Technologies Corp Charged particle accelerator
WO2014170935A1 (en) * 2013-04-19 2014-10-23 キヤノンアネルバ株式会社 Ion beam processing device, electrode assembly, and electrode assembly cleaning method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010186756A (en) * 2010-05-20 2010-08-26 Hitachi High-Technologies Corp Charged particle accelerator
JP4691610B2 (en) * 2010-05-20 2011-06-01 株式会社日立ハイテクノロジーズ electronic microscope
WO2014170935A1 (en) * 2013-04-19 2014-10-23 キヤノンアネルバ株式会社 Ion beam processing device, electrode assembly, and electrode assembly cleaning method
US10224179B2 (en) 2013-04-19 2019-03-05 Canon Anelva Corporation Ion beam processing apparatus, electrode assembly, and method of cleaning electrode assembly
US10879040B2 (en) 2013-04-19 2020-12-29 Canon Anelva Corporation Ion beam processing apparatus, electrode assembly, and method of cleaning electrode assembly
US11355314B2 (en) 2013-04-19 2022-06-07 Canon Anelva Corporation Ion beam processing apparatus, electrode assembly, and method of cleaning electrode assembly

Similar Documents

Publication Publication Date Title
US4710283A (en) Cold cathode ion beam source
JPS6020440A (en) Ion beam machining device
JPS6039159A (en) Magnetron cathode for cathode sputtering device
GB1060309A (en) A source of ions or electrons
JP3538430B2 (en) Sputtering apparatus with two magnetrons extending in the longitudinal direction
JPH05290749A (en) Ion source
JP3529775B2 (en) Electron beam gun with grounded shield to prevent arcdown
US4147915A (en) Electron-beam apparatus for thermal treatment by electron bombardment
US4939425A (en) Four-electrode ion source
US3801719A (en) Emitter block assembly
US1684263A (en) Hot-cathode device
GB2058142A (en) Sputtering electrodes
Savard et al. Trapping secondary electrons in ExB drift for an alpha generating penning ion source
JP3427450B2 (en) Ion source device
RU2817564C1 (en) Fast atom source for dielectric etching
JPH05198268A (en) Bucket type ion source device
US3308325A (en) Electron beam tube with ion shield
JPS62190635A (en) Ion implantation device
JPH0228227B2 (en)
JPH0594794A (en) Ion source grid
JP2889930B2 (en) Ion source
Hepburn et al. Design Criteria for High Voltage High Current Accelerating Columns
JPH0378740B2 (en)
JPH1064437A (en) Ion beam generating device
JPH05198269A (en) Bucket type ion source device