JPH0528859A - Manufacture of superconductive wire of nb3sn type - Google Patents

Manufacture of superconductive wire of nb3sn type

Info

Publication number
JPH0528859A
JPH0528859A JP3203873A JP20387391A JPH0528859A JP H0528859 A JPH0528859 A JP H0528859A JP 3203873 A JP3203873 A JP 3203873A JP 20387391 A JP20387391 A JP 20387391A JP H0528859 A JPH0528859 A JP H0528859A
Authority
JP
Japan
Prior art keywords
pipe
powder
wire
processing
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3203873A
Other languages
Japanese (ja)
Inventor
Tatsu Maeda
龍 前田
Kadomasa Sato
矩正 佐藤
Wataru Ishikawa
渡 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP3203873A priority Critical patent/JPH0528859A/en
Publication of JPH0528859A publication Critical patent/JPH0528859A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Metal Extraction Processes (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To provide a long stretching and uniform wire without dropping the cold processing property of Nb3Sn type superconductive wire to be used in high magnetic field and also enhance the superconductive characteristics to a great extent. CONSTITUTION:An Nb type pipe is filled with pressure powder consisting of Cu and Sn, and thus is subjected to a cold processing for reduction of the dia., which is followed by a heat treatment for production of Nb3Sn. Thus an Nb3Sn type superconductive wire is manufactured, wherein the processes are characterized by filling a Cu pipe with Cu and Sn powder, subjecting it to a pressure powder processing by means of swaging, inserting the resultant into an Nb pipe, and subjecting it to a dia. reducing process.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高磁場中で利用する化
合物超電導線の製造方法に係り、特に粉末法によるNb
3 Sn系超電導線材の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a compound superconducting wire used in a high magnetic field, and particularly to Nb by a powder method.
The present invention relates to a method for manufacturing a Sn-based superconducting wire.

【0002】[0002]

【従来の技術とその課題】従来Nb3 Sn系超電導線材
の製造方法として、ブロンズ法・内部拡散法・外部拡散
法・インサイチュー法等があった。しかし近年これらの
方法では加工中に硬いCu−Sn合金ができてしまい、
加工上の問題が多いことから、Nbパイプを用いるNb
チューブ法が検討されている。すなわちNbパイプ内に
銅や錫の芯材、または粉末を高密度に配置し、これを冷
間にて各種の加工行程を経て線材とし、最後に熱処理す
ることにより、中間焼鈍を行うことなく線材とするもの
で、銅や錫の純金属を用いているため、高錫組成のもの
を用いても加工上の問題はなく、高電流密度の線材がで
きる利点がある。粉末法ではNbパイプ内に銅と錫の混
合粉、複合粉、あるいは触媒を含む混合粉を圧粉したも
のを充填し、パイプ両端を真空封入した冷間加工により
フィラメントとし、これらを数十本あるいは数百本を一
体化した複合線とし静水圧押し出しや冷間加工する方法
が提案されている。しかしこのような粉末を加工する方
法では、加工途中で断線することが多かった。断線の原
因にはいくつかあるがそのひとつに線材長手方向に均一
な圧粉体ができず、不連続となった粉体部から亀裂が入
り断線することがあった。すなわち従来の圧粉体の製造
は、油圧プレスや静水圧プレスした粉体をNbパイプに
入れて加工していたためNbパイプが長い場合は圧粉体
を多数個入れることになるので、加工中粉体のつなぎ目
の部分が不連続になり、加工を続けていくとこの部分か
ら断線することが多かった。
2. Description of the Related Art Conventionally, there have been bronze method, internal diffusion method, external diffusion method, in-situ method, etc. as a method of manufacturing Nb 3 Sn based superconducting wire. However, in recent years, these methods have produced a hard Cu-Sn alloy during processing,
Nb using Nb pipe because there are many processing problems
The tube method is being considered. That is, a copper or tin core material or powder is densely arranged in an Nb pipe, and the wire material is subjected to various processing steps in a cold state to be a wire material and finally heat-treated, so that the wire material can be processed without intermediate annealing. Since a pure metal such as copper or tin is used, there is no processing problem even if a high tin composition is used, and there is an advantage that a wire having a high current density can be obtained. In the powder method, Nb pipe is filled with a powder mixture of copper and tin powder, a composite powder, or a powder powder containing a catalyst, and the both ends of the pipe are vacuum-processed into cold filaments to form filaments. Alternatively, there has been proposed a method in which several hundreds are integrated into a composite wire and subjected to hydrostatic extrusion or cold working. However, in the method of processing such powder, the wire is often broken during the processing. There are several causes of wire breakage, but one of them was that a powder compact that was not uniform in the longitudinal direction of the wire could not be formed, and a crack was generated from the discontinuous powder part, resulting in wire breakage. In other words, in the conventional production of green compacts, powder that has been hydraulically or hydrostatically pressed is put into an Nb pipe for processing, so if the Nb pipe is long, a large number of green compacts will be put in. The joints of the body became discontinuous, and as the processing continued, there were often breaks from this part.

【0003】[0003]

【発明が解決しようとする課題】本発明は、圧粉体の加
工方法を変えることにより、長尺で均一な圧粉体が簡単
にでき、しかもこれを用いた線材加工において、冷間加
工が良好に行えると共に最終線材の臨界電流密度を大幅
に向上できるNb3 Sn系超電導線材の製造方法を開発
したものである。
SUMMARY OF THE INVENTION According to the present invention, a long and uniform green compact can be easily formed by changing the green compact processing method, and in the wire rod processing using this, cold working is possible. This is a method for producing a Nb 3 Sn-based superconducting wire which can be satisfactorily performed and can significantly improve the critical current density of the final wire.

【0004】[0004]

【課題を解決するための手段】本発明は、Nbパイプ内
に銅粉と錫粉の圧粉体を充填し、しかる後冷間加工で縮
径加工を施し、その後Nb3 Snの生成のための熱処理
を行うNb3 Sn系超電導線材の製造において、銅粉及
び錫粉末を銅パイプに充填した後スウェージングにより
圧粉加工したものをNbパイプに挿入し、しかる後縮径
加工することを特徴とするNb3 Sn系超電導線材の製
造方法である。
According to the present invention, a Nb pipe is filled with a green compact of copper powder and tin powder, and then a diameter reduction process is performed by cold working, and then Nb 3 Sn is produced. In the production of Nb 3 Sn-based superconducting wire that undergoes the heat treatment described in (1), copper powder and tin powder are filled in a copper pipe, which is then pressed by swaging and then inserted into the Nb pipe, which is then reduced in diameter. Is a method of manufacturing a Nb 3 Sn-based superconducting wire.

【0005】[0005]

【作用】上記の銅及び錫粉末は粒径・形状はいずれのも
のでもよい。またこれらにNb3 Snの結晶粒微細化に
よる電流密度向上のためのTiやTa等の添加元素を加
えてもよい。粉末は混合状態、あるいはプレスによりペ
レット状態としたものを薄肉の銅パイプ内に充填し、好
ましくは真空封入した後スウェージング加工を行う。ス
ウェージングは通常の加工装置でよく、本方法により油
圧プレスや静水圧プレスでは達成できない高密度で長手
方向に均一な圧粉体製造が可能となる。さらに本方法で
は数mmから数十mmの任意の直径で、長さも数mで整直さ
れたものができ、その後のNbパイプに挿入するには好
適な材料構造となっている。Nbパイプと複合化した後
はスウェージングや引き抜き加工により2〜3mmの六角
状フィラメントとし、その後これを数百本に束ね銅パイ
プに挿入し、静水圧押し出しや、引き抜き加工を施し最
終的には1mm程度の線材とする。本方法のように加工さ
れた圧粉体を用いた場合線材の冷間の加工性が極めて良
いことがわかった。このような加工性の良さは、圧粉体
が長手方向に均一であるためで、ダイスでの引き抜き等
の加工において不連続点をつくらないことに起因してい
るものと考えられる。このようにして所望の線径とした
後は、最終熱処理を施す。この最終熱処理は銅・錫合金
の形成と、銅・錫合金基地中の錫をNbの内部に拡散さ
せNb3 Snを生成するためのものであり、通常は、真
空もしくは不活性雰囲気中で500〜800℃の温度で
10〜300時間程度加熱すれば良い。
The above-mentioned copper and tin powders may have any particle size and shape. Further, an additive element such as Ti or Ta for improving the current density by refining Nb 3 Sn crystal grains may be added thereto. The powder is mixed or pelletized by pressing, and the powder is filled in a thin copper pipe, preferably vacuum sealed, and then swaged. The swaging may be carried out by a usual processing apparatus, and the present method enables the production of a green compact having a high density and uniform in the longitudinal direction, which cannot be achieved by a hydraulic press or a hydrostatic press. Furthermore, the present method can produce an arbitrary diameter of several millimeters to several tens of millimeters and a length of several meters, and has a material structure suitable for subsequent insertion into an Nb pipe. After compounding with Nb pipe, swaging or drawing process to make a hexagonal filament of 2-3 mm, then bundling hundreds of them into a copper pipe, hydrostatically extruding or drawing process, and finally Use a wire rod of about 1 mm. It was found that the cold workability of the wire rod was extremely good when the green compact processed by this method was used. It is considered that such good workability is due to the fact that the green compact is uniform in the longitudinal direction, and therefore discontinuity points are not created in the processing such as drawing with a die. After the desired wire diameter is obtained in this way, a final heat treatment is performed. This final heat treatment is for forming a copper-tin alloy and diffusing tin in the copper-tin alloy matrix into Nb to generate Nb 3 Sn. The heating may be performed at a temperature of ~ 800 ° C for about 10 to 300 hours.

【0006】[0006]

【実施例】以下本発明の一実施例について説明する。 実施例1 平均粒径20ミクロンの銅粉と錫粉をボールミルで十分
混合後、これを外径30mmφ内径27mmφの純銅パイプ
に入れ、真空ポンプで0.001Torrまで真空引きしな
がらパイプ両端をビーム溶接した。これをスウェージン
グにより外径10mmφまで加工した後、内径10mmφ外
径16mmφ長さ100cmのNbパイプに挿入し、さらに
これを内径16mmφ外径18mmφの銅パイプに挿入し
て、スウェージングにより8mmφまで減面加工した。こ
れをドローベンチによる引き抜き加工を行い対辺長さ2
mmの6角線フィラメントとした。この6角線フィラメン
ト350本を内径50mmφ外径55mmφの純銅パイプに
入れ、真空中で両端をビーム溶接しながら押し出し用の
ビレットを作製した。押し出しは室温で静水圧押し出し
で行い外径20mmφとした。さらにこれを引き抜きと伸
線加工により外径1mmとした。この線材を高純度アルゴ
ンガス中750℃で200時間熱処理し、フィラメント
のNb部にNb3 Snを生成させ、最終製品である超電
導線材を作製した。この線材を4.2Kの液体ヘリウム
中に浸漬し、8〜12テスラの印可磁界中で臨界電流密
度を測定した。その結果8テスラで680A/mm2 、1
0テスラで620A/mm2 、12テスラで380A/mm
2 の電流値が得られた。 比較例1 実施例1の製法において内径10mmφ外径16mmφ長さ
100cmのNbパイプ内に、外径10mmφ長さ20mmの
銅と錫の圧粉体を隙間がないように多数個充填し、スウ
ェージング加工により外径8mmφまで加工し、引き抜き
加工で対辺長さ2mmの6角線フィラメントを作製した。
フィラメント加工時の2〜4mmφですでに断線すること
があった。また実施例と同様の押し出しの後伸線中にお
いても断線が多発し、4mmφ以下の線材はできなかっ
た。このように金属粉末をNbパイプ内に充填して加工
する方法において、あらかじめ粉末をパイプにいれスウ
ェージング加工によって圧粉体棒を作りこれとNbパイ
プを複合化し加工することにより、線材の加工行程中に
生じる断線等の加工トラブルをなくすことができ、しか
も粉末を用いているため組成制限がなく、これにより高
性能の超電導線材の製造が可能となった。なお本発明の
製造方法は、Nb3 Sn超電導だけでなくV3 Ga.V
3 Si.Nb3 Al等の超電導線材の製造にも適し、同
様の効果を得ることができる。
EXAMPLE An example of the present invention will be described below. Example 1 Copper powder and tin powder having an average particle size of 20 microns were thoroughly mixed by a ball mill, put into a pure copper pipe having an outer diameter of 30 mmφ and an inner diameter of 27 mmφ, and both ends of the pipe were beam-welded while vacuuming to 0.001 Torr with a vacuum pump. did. After processing this by swaging to an outer diameter of 10 mmφ, insert it into an Nb pipe with an inner diameter of 10 mmφ, an outer diameter of 16 mmφ, and a length of 100 cm, then insert it into a copper pipe of an inner diameter of 16 mmφ and an outer diameter of 18 mmφ, and reduce it to 8 mmφ by swaging. Surface processed. This is drawn by a draw bench and the opposite side length is 2
mm hexagonal filament. 350 hexagonal filaments were put in a pure copper pipe having an inner diameter of 50 mm and an outer diameter of 55 mm, and a billet for extrusion was manufactured while beam welding both ends in a vacuum. The extrusion was carried out by hydrostatic extrusion at room temperature to give an outer diameter of 20 mmφ. Further, this was drawn and drawn to have an outer diameter of 1 mm. This wire was heat-treated in high-purity argon gas at 750 ° C. for 200 hours to generate Nb 3 Sn in the Nb part of the filament, and a superconducting wire as a final product was produced. This wire was immersed in liquid helium at 4.2K, and the critical current density was measured in an applied magnetic field of 8 to 12 Tesla. As a result, at 8 Tesla, 680 A / mm 2 , 1
620A / mm 2 at 0 Tesla, 380A / mm 2 at 12 Tesla
A current value of 2 was obtained. Comparative Example 1 In the manufacturing method of Example 1, a large number of powder compacts of copper and tin having an outer diameter of 10 mm and a length of 20 mm were filled in a Nb pipe having an inner diameter of 10 mm, an outer diameter of 16 mm, and a length of 100 cm without gaps, and swaging was performed. By processing, the outer diameter was processed to 8 mmφ, and a hexagonal filament having an opposite side length of 2 mm was manufactured by drawing.
There was already a break in 2-4mmφ during filament processing. Moreover, even during the wire drawing after extrusion similar to the example, wire breakage frequently occurred and a wire having a diameter of 4 mm or less could not be formed. In the method of filling the Nb pipe with the metal powder as described above, the powder is put into the pipe in advance and a powder compact bar is produced by swaging, and the Nb pipe and the Nb pipe are combined and processed. It is possible to eliminate processing troubles such as disconnection that occurs inside, and since powder is used, there is no compositional limitation, which makes it possible to manufacture high-performance superconducting wire. The manufacturing method of the present invention is applicable not only to Nb 3 Sn superconductivity but also to V 3 Ga. V
3 Si. It is also suitable for manufacturing a superconducting wire such as Nb 3 Al, and the same effect can be obtained.

【0007】[0007]

【発明の効果】このように本発明により、線材の加工行
程中の各種トラブルを解消し、高電流密度の超電導線材
の製造が可能となり、これをマグネット等に利用し、高
性能の機器を得ることができる等、工業上顕著な効果を
得るものである。
As described above, according to the present invention, it is possible to solve various troubles during the process of processing a wire rod and to manufacture a superconducting wire rod having a high current density. By using this for a magnet or the like, a high-performance device can be obtained. It is possible to obtain a remarkable industrial effect.

Claims (1)

【特許請求の範囲】 【請求項1】 Nb系パイプ内に、銅粉及び錫粉からな
る圧粉体を充填し、しかる後冷間加工で縮径加工を施
し、その後Nb3 Sn生成のための熱処理を行うNb3
Sn系超電導線材の製造方法において、銅粉及び錫粉末
を銅パイプに充填した後スウェージングにより圧粉加工
したものをNbパイプに挿入し、しかる後縮径加工する
ことを特徴とするNb3 Sn系超電導線材の製造方法。
Claims: 1. A Nb-based pipe is filled with a green compact made of copper powder and tin powder, and then cold-worked to reduce the diameter, and then Nb 3 Sn is produced. Heat treatment of Nb 3
The method of manufacturing a Sn-based superconducting wire, the copper powder and tin powder and insert the those powder processed by swaging after filling into the copper pipe Nb pipe, characterized in that thereafter reduced diameter processing Nb 3 Sn -Based superconducting wire manufacturing method.
JP3203873A 1991-07-18 1991-07-18 Manufacture of superconductive wire of nb3sn type Pending JPH0528859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3203873A JPH0528859A (en) 1991-07-18 1991-07-18 Manufacture of superconductive wire of nb3sn type

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3203873A JPH0528859A (en) 1991-07-18 1991-07-18 Manufacture of superconductive wire of nb3sn type

Publications (1)

Publication Number Publication Date
JPH0528859A true JPH0528859A (en) 1993-02-05

Family

ID=16481130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3203873A Pending JPH0528859A (en) 1991-07-18 1991-07-18 Manufacture of superconductive wire of nb3sn type

Country Status (1)

Country Link
JP (1) JPH0528859A (en)

Similar Documents

Publication Publication Date Title
US4411959A (en) Submicron-particle ductile superconductor
JP4034802B2 (en) Nb or Nb-based alloy rod for production of superconducting wire and method for producing Nb3Sn superconducting wire
EP1701390A2 (en) Precursor for fabricating Nb3Sn superconducting wire, and Nb3Sn superconducting wire, and method for fabricating same
CN115295243A (en) Preparation method of element-doped high-critical-current-density niobium-tin superconducting strand
US4363675A (en) Process for producing compound based superconductor wire
US6699821B2 (en) Nb3Al superconductor and method of manufacture
EP0498413B1 (en) Method of manufacturing Nb3Sn superconducting wire
JPH0528859A (en) Manufacture of superconductive wire of nb3sn type
JPH0528860A (en) Manufacture of superconductive wire of nb3sn type
JPH08500466A (en) Method for manufacturing armored wire of high critical temperature superconducting material
JPH0855527A (en) Fabrication of nb3sn superconducting wire
JP4652938B2 (en) Powder method Nb3Sn superconducting wire manufacturing method
JPH04277416A (en) Manufacture of nb3sn superconducting wire
JPH01140521A (en) Manufacture of nb3al compound superconductive wire rod
JP4434576B2 (en) Method for producing Nb3 (Al, Ge) or Nb3 (Al, Si) compound-based superconducting multi-core wire
JPH05266735A (en) Manufacture of compound superconducting wire
JPH04141916A (en) Manufacture of nb3sn compound superconducting wire
JPH04155714A (en) Manufacture of nb3 sn type superconducting wire material
JP3033606B2 (en) Manufacturing method of oxide superconducting wire
JPH0343915A (en) Manufacture of multiple-cored superconductor
JPH07105765A (en) Manufacture of oxide superconducting wire raw material and oxide superconducting wire
JP2006185861A (en) Nb3Sn SUPERCONDUCTING WIRE ROD AND ITS MANUFACTURING METHOD
JPS625990B2 (en)
JPH06187857A (en) Manufacture of superconducting wire
JPH0528857A (en) Manufacture of ceramic superconductor