JPH05288470A - Radiation shielding material - Google Patents

Radiation shielding material

Info

Publication number
JPH05288470A
JPH05288470A JP11405892A JP11405892A JPH05288470A JP H05288470 A JPH05288470 A JP H05288470A JP 11405892 A JP11405892 A JP 11405892A JP 11405892 A JP11405892 A JP 11405892A JP H05288470 A JPH05288470 A JP H05288470A
Authority
JP
Japan
Prior art keywords
heat
boron nitride
melting point
high temperature
radiation shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11405892A
Other languages
Japanese (ja)
Inventor
Noboru Kimura
昇 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP11405892A priority Critical patent/JPH05288470A/en
Publication of JPH05288470A publication Critical patent/JPH05288470A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/08Means for preventing radiation, e.g. with metal foil

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)
  • Muffle Furnaces And Rotary Kilns (AREA)
  • Thermal Insulation (AREA)

Abstract

PURPOSE:To reduce degassing at a high temperature and to obtain high insulation by decreasing heat loss at the time of melt reacting high melting point substance having a predetermined high temperature as its melting point, and forming a radiation shielding material for obtaining high temperature by thermally decomposed boron nitride. CONSTITUTION:When substance having a melting point of 2000 deg.C or higher such as Ce pnictide or Yb pnictide is single crystallized or reacted in a solution tank, a heat shielding material is used to reduce heat loss due to radiation heat of the substance and to obtain a desired temperature. As the material, thermally decomposed boron nitride is used, and heat insulating radiation absorption layer of thermally decomposed carbon, molybdenum, titanium is provided on a surface of the nitride as required. The nitride is generated by heating halogenated boron and ammonia in vacuum to thermally decompose the boron, reacting it with the ammonia and depositing the obtained boron nitride on a carrier.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はラジエーションシールド
材、特には融点が 2,000℃を超えるような高融点物質の
溶融反応を行なわせるときの熱損失をへらし、高温を得
るためのラジエーションシールド材に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation shield material, and more particularly to a radiation shield material for obtaining a high temperature by reducing heat loss when a melting reaction of a high melting point substance having a melting point exceeding 2,000 ° C. is performed. Is.

【0002】[0002]

【従来の技術】融点が 2,000℃を超える物質、例えばC
eプニクタイト、Ybプニクタイトの単結晶化、溶融反
応を行なう場合には、眞空中において誘導加熱または抵
抗加熱する方法がとられるのであるが、これを 1,000℃
以上、特に 2,000℃を超える温度に加熱すると、輻射熱
による熱損失が増大して電力効率が低下し、所望の温度
を得ることができなくなるという不利が生ずる。
2. Description of the Related Art A substance having a melting point of more than 2,000 ° C., such as C
When e-pnictites and Yb-pnictites are subjected to single crystallization and melting reaction, induction heating or resistance heating in air is used.
As described above, in particular, when heating to a temperature exceeding 2,000 ° C., the heat loss due to radiant heat increases, the power efficiency decreases, and the disadvantage that the desired temperature cannot be obtained occurs.

【0003】[0003]

【発明が解決しようとする課題】そのため、これについ
てはその熱損失をへらして高温を得るために、従来から
輻射熱をさえぎるためのヒートシールド材が必要とさ
れ、これにはアルミナ、マグネシア、ジルコニア、また
はこれらの混合物からなる混合セラミックスからなるも
のが使用されているのであるが、これらは 2,000℃以上
の高温では熱衝撃による割れ、脱ガスによる眞空度低下
が発生し、これをカーボンフェルトとするとこのものは
けば立ってしまうために扱いにくく、カーボンとすると
誘導電力のロスが発生するという欠点がある。
Therefore, in order to reduce the heat loss and obtain a high temperature, a heat shield material for blocking radiant heat has conventionally been required, which includes alumina, magnesia, zirconia, Alternatively, a mixture of ceramics consisting of these mixtures is used, but at high temperatures of 2,000 ° C or higher, cracks due to thermal shock and degassing cause a decrease in vacancy. Things are difficult to handle because they tend to stand up, and when carbon is used, there is a drawback in that induction power loss occurs.

【0004】[0004]

【課題を解決するための手段】本発明はこのような不
利、欠点を解決したラジエーションシールド材に関する
ものであり、これは熱分解窒化ほう素、またはこの表面
に耐熱性の輻射熱吸収層を設けてなることを特徴とする
ものである。
SUMMARY OF THE INVENTION The present invention relates to a radiation shield material which solves the above disadvantages and drawbacks. It is a pyrolytic boron nitride, or a heat-resistant radiant heat absorbing layer provided on the surface thereof. It is characterized by becoming.

【0005】すなわち、本発明者らは融点が 2,000℃を
超えるような高融点物質の溶融反応を行なわせるときの
熱損失をへらして高温を得るためのラジエーションシー
ルド材を開発すべく種々検討した結果、このラジエーシ
ョンシールド材を熱分解窒化ほう素、またはその表面に
耐熱性の輻射熱吸収層を設けたものとしたところ、この
熱分解窒化ほう素が 3,000℃近い耐熱温度をもつもので
高温での脱ガスも極めて少なく、絶縁性もすぐれたもの
であるためにこれにさらに輻射熱吸収層を設けたもの
は、熱衝撃による割れがないし、脱ガスによる眞空度低
下もなく、誘導電力のロスも少ないので、すぐれたラジ
エーションシールド材になることを見出し、ここに使用
する輻射熱吸収材についての研究を進めて本発明を完成
させた。以下にこれを詳述する。
That is, the inventors of the present invention conducted various studies to develop a radiation shield material for obtaining a high temperature by reducing the heat loss when the melting reaction of a high melting point substance having a melting point of more than 2,000 ° C. is performed. When this radiation shield material was pyrolytic boron nitride, or a heat-resistant radiant heat absorption layer was provided on the surface, this pyrolytic boron nitride had a heat-resistant temperature close to 3,000 ° C, and was removed at high temperatures. Since the amount of gas is extremely small and the insulating property is excellent, the one with a radiant heat absorption layer further provided on it does not crack due to thermal shock, there is no decrease in the vacancy due to degassing, and there is little loss of inductive power. The present invention has been completed by finding out that it is an excellent radiation shield material, and proceeding with research on the radiant heat absorbing material used here. This will be described in detail below.

【0006】[0006]

【作用】本発明はラジエーションシールド材に関するも
のであり、これは熱分解窒化ほう素、またはその表面に
耐熱性の輻射熱吸収層を設けてなるものであるが、この
ものは熱衝撃により割れたり、脱ガスで眞空度が低下す
ることもなく、誘導電力のロスも少ないので、眞空また
は不活性ガス雰囲気での誘電加熱、抵抗加熱で 2,000℃
以上の高温を得る場合の断熱材として有用されるという
有利性が与えられる。
The present invention relates to a radiation shield material, which comprises pyrolytic boron nitride, or a heat-resistant radiant heat absorbing layer provided on the surface thereof, which is cracked by thermal shock, Degassing does not lower the degree of vacancy, and the loss of inductive power is small, so dielectric heating or resistance heating in a vacant atmosphere or an inert gas atmosphere is 2,000 ° C.
The advantage that it is useful as a heat insulating material when obtaining the above high temperature is given.

【0007】本発明のラジエーションシールド材は熱分
解窒化ほう素、またはその表面に輻射熱吸収層を設けた
ものとされる。この熱分解窒化ほう素はハロゲン化ほう
素とアンモニアとを眞空下に約1,800℃に加熱してハロ
ゲン化ほう素を熱分解させてアンモニアと反応させ、こ
こに生成した窒化ほう素を担体上に析出させるという方
法で得られたものとすればよいが、この熱分解窒化ほう
素は 3,000℃近い耐熱温度をもっており、高温での脱ガ
スも極めて少なく、絶縁性も非常に高いものであること
から、誘導加熱するときのラジエーションシールド材と
してすぐれた特性を示す。
The radiation shield material of the present invention is a pyrolytic boron nitride, or a radiation heat absorbing layer provided on the surface thereof. This pyrolytic boron nitride heats boron halide and ammonia to about 1,800 ° C under vacuum to thermally decompose the boron halide and react it with ammonia, and the boron nitride produced here is deposited on a carrier. It may be obtained by the method of precipitation, but since this pyrolytic boron nitride has a heat resistance temperature of close to 3,000 ° C, degassing at high temperature is extremely low, and its insulating property is also very high. , Shows excellent properties as a radiation shield material for induction heating.

【0008】また、このラジエーションシールド材は輻
射熱による熱損失をさらにへらすために、この熱分解窒
化ほう素の表面に輻射熱吸収層を設けたものとされる。
この輻射熱吸収層を形成する物質としては本発明では高
融点であり、光無通過性であるということから熱分解炭
素、モリブデン、チタンなどとされる。
Further, the radiation shield material is provided with a radiation heat absorption layer on the surface of the pyrolytic boron nitride in order to further reduce heat loss due to radiation heat.
In the present invention, the substance forming the radiant heat absorbing layer has a high melting point and does not pass through light, and is therefore pyrolytic carbon, molybdenum, titanium or the like.

【0009】また、この輻射熱吸収層は前記した熱分解
窒化ほう素表面に形成されるのであるが、これは熱分解
窒化ほう素の内側でも外側でもよいし、あるいはその両
面に設けてもよいが、この輻射熱吸収層の形成は熱分解
窒化ほう素の表面に上記した物質をCVD法、スパッタ
法、眞空蒸着法、EBガン蒸着法などで1〜50μmの厚
さにコーティングすればよい。なお、この輻射熱吸収層
は誘電性であるけれども、これが1〜50μmと薄いもの
であることから、その誘導損失は極めて少ないものであ
る。
The radiant heat absorbing layer is formed on the surface of the pyrolytic boron nitride, which may be inside or outside the pyrolytic boron nitride, or may be provided on both sides thereof. The radiant heat absorbing layer may be formed by coating the surface of the pyrolytic boron nitride with the above-mentioned substances by a CVD method, a sputtering method, a vacuum evaporation method, an EB gun evaporation method or the like to a thickness of 1 to 50 μm. Although this radiant heat absorption layer is dielectric, it has a very small induced loss because it is as thin as 1 to 50 μm.

【0010】[0010]

【実施例】つぎに本発明の実施例をあげる。反応室に三
塩化ほう素 500ml/分とアンモニア 1,500ml/分を入
れ、10torrの眞空下に1,800 ℃に加熱して熱分解窒化ほ
う素を生成させ、これを炭素製の担体上に析出させて直
径30mmφ×高さ60mm、厚さ1mmの熱分解窒化ほう素を2
ヶ作り、ついでそのうちの1つをこの表面にCH4 を用
いてCVD法で熱分解炭素を厚さ10μm に蒸着して本発
明のラジエーションシールド材を作った。
EXAMPLES Next, examples of the present invention will be given. Put 500 ml / min of boron trichloride and 1,500 ml / min of ammonia in the reaction chamber and heat to 1,800 ° C under a vacuum of 10 torr to generate pyrolytic boron nitride, which is then deposited on a carbon carrier. 2 pieces of pyrolytic boron nitride with a diameter of 30 mm and a height of 60 mm and a thickness of 1 mm
Then, one of them was vapor-deposited on the surface of this by pyrolysis carbon to a thickness of 10 μm by a CVD method using CH 4 to prepare a radiation shield material of the present invention.

【0011】ついで、この2つのシールド材を用いてブ
リッジマン法によりそれぞれ以下の方法でCeBiの単
結晶を製造した。直径20mmφ×高さ40mmのタングステン
製坩堝にCeBi10gを入れてこの坩堝を直径50mmφの
石英管内に縦にセットした装置において、この坩堝の周
囲を上記で得たラジエーションシールド材で囲い、坩堝
内を10-5torrの眞空としたのち、この装置外側のワーク
コイルに誘導電力を供給して30KWで坩堝を加熱したと
ころ、坩堝内は 2,400℃の高温に加熱することができた
ので、CeBiを溶融し、冷却して単結晶を得ることが
できた。なお、この2つのラジエーションシールド材に
ついてはこの実験を50回くり返しても何の異常も発生し
なかった。
Then, using these two shield materials, CeBi single crystals were manufactured by the following method by the Bridgman method. In a device in which 10 g of CeBi was put into a tungsten crucible having a diameter of 20 mmφ and a height of 40 mm and the crucible was vertically set in a quartz tube having a diameter of 50 mmφ, the periphery of the crucible was surrounded by the radiation shield material obtained above, and the inside of the crucible was set to 10 mm. After making it empty at -5 torr, when induction power was supplied to the work coil outside this equipment to heat the crucible at 30 KW, the inside of the crucible could be heated to a high temperature of 2,400 ° C, so the CeBi was melted. After cooling, a single crystal could be obtained. It should be noted that no abnormality occurred for these two radiation shield materials even if this experiment was repeated 50 times.

【0012】比較例 上記した実施例で使用したラジエーションシールド材で
直径30mmφ×高さ60mmのAl23 、MgO、ZrO2
らなるものとしたほかは実施例と同じ方法で坩堝を加熱
したところ、Al23 製ラジエーションシールド材を用
いたものでは温度の上昇と共にガスが出始めてグロー放
電が発生したために 1,800℃で昇温を打ち切りにせざる
を得なくなり、MgO製ラジエーションシールド材を用
いたものは2,000 ℃付近で割れたためにこれで打ち切り
とせざるを得ず、またZrO2 製ラジエーションシール
ド材を用いたものでは 2,400℃の加熱を行なうことがで
きたけれどもこのものは降温中に割れたために2回以降
は使用することができなかった。
COMPARATIVE EXAMPLE A crucible was heated in the same manner as in the example except that the radiation shield material used in the above examples was made of Al 2 O 3 , MgO and ZrO 2 having a diameter of 30 mm and a height of 60 mm. In the case of using the Al 2 O 3 radiation shield material, the gas started to be emitted along with the temperature rise and glow discharge occurred, so that the temperature rise had to be stopped at 1,800 ° C, and the MgO radiation shield material was used. Had to be cut off because it cracked at around 2,000 ℃, and the one using the ZrO 2 radiation shield material could be heated at 2,400 ℃, but it was cracked during cooling, so 2 It could not be used after the first time.

【0013】また、これについては比較のためにラジエ
ーションシールド材を全く用いないで実施例として同じ
試験を行なったところ、この場合には50KWかけても
1,600℃までしか温度を上昇させることができず、 2,00
0℃以上の高温を得ることはできなかった。
For comparison, the same test was carried out as an example without using a radiation shield material for comparison. In this case, even if 50 kW was applied.
The temperature can be raised only up to 1,600 ℃,
It was not possible to obtain a high temperature above 0 ° C.

【0014】[0014]

【発明の効果】本発明はラジエーションシールド材に関
するものであり、これは前記したように熱分解窒化ほう
素、またはその表面に耐熱性の輻射熱吸収層を設けてな
ることを特徴とするものであるが、これによれば熱分解
窒化ほう素が 3,000℃に近い耐熱温度をもつもので、高
温での脱ガスも極めて少なく、絶縁性もすぐれたもので
あることから、熱分解窒化ほう素またはこの表面に輻射
熱吸収層を設けたものは眞空または不活性ガス雰囲気で
の誘導加熱または抵抗加熱で 2,000℃以上の高温を得る
場合の断熱材として有用とされるという有利性をもつも
のとなる。
The present invention relates to a radiation shield material, which is characterized by comprising pyrolytic boron nitride, or a heat-resistant radiant heat absorbing layer provided on the surface thereof, as described above. However, according to this, pyrolytic boron nitride has a heat-resistant temperature close to 3,000 ° C, degassing at high temperatures is extremely low, and it has excellent insulating properties. The radiant heat absorbing layer provided on the surface has an advantage that it is useful as a heat insulating material when a high temperature of 2,000 ° C. or higher is obtained by induction heating or resistance heating in a blank or inert gas atmosphere.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】熱分解窒化ほう素よりなることを特徴とす
るラジエーションシールド材。
1. A radiation shield material comprising pyrolytic boron nitride.
【請求項2】熱分解窒化ほう素表面に耐熱性の輻射熱吸
収層を設けてなることを特徴とするラジエーションシー
ルド材。
2. A radiation shield material comprising a pyrolytic boron nitride surface provided with a heat resistant radiant heat absorbing layer.
【請求項3】輻射熱吸収層が熱分解炭素、モリブデン、
チタンからなるものである請求項2に記載したラジエー
ションシールド材。
3. The radiant heat absorbing layer comprises pyrolytic carbon, molybdenum,
The radiation shield material according to claim 2, which is made of titanium.
JP11405892A 1992-04-07 1992-04-07 Radiation shielding material Pending JPH05288470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11405892A JPH05288470A (en) 1992-04-07 1992-04-07 Radiation shielding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11405892A JPH05288470A (en) 1992-04-07 1992-04-07 Radiation shielding material

Publications (1)

Publication Number Publication Date
JPH05288470A true JPH05288470A (en) 1993-11-02

Family

ID=14627981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11405892A Pending JPH05288470A (en) 1992-04-07 1992-04-07 Radiation shielding material

Country Status (1)

Country Link
JP (1) JPH05288470A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105568366A (en) * 2015-12-02 2016-05-11 上海超硅半导体有限公司 Method for quickly cooling silicon single-crystal rods

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105568366A (en) * 2015-12-02 2016-05-11 上海超硅半导体有限公司 Method for quickly cooling silicon single-crystal rods
CN105568366B (en) * 2015-12-02 2019-04-02 上海超硅半导体有限公司 The method for rapid cooling of silicon single crystal bar

Similar Documents

Publication Publication Date Title
US3227431A (en) Crucible externally lined with filamentary carbon
CN101998937A (en) Method for thin layer deposition
RU2059025C1 (en) Boron nitride crucible manufacture method
KR20090100372A (en) Quartz glass component with reflector layer and method for producing the same
US3385723A (en) Carbon article coated with beta silicon carbide
US6605352B1 (en) Corrosion and erosion resistant thin film diamond coating and applications therefor
JPH0456765B2 (en)
EP0095729A2 (en) Hermetic coating by heterogeneous nucleation thermochemical deposition
KR100922543B1 (en) Method to prevent the abnormal large grain inclusion in the nanocrystalline diamond film
JPH07300666A (en) Production of molecular beam source for silicon evaporation and crucible used for the same
JPH062637B2 (en) Single crystal pulling device
JPH05288470A (en) Radiation shielding material
JP2007096280A (en) Vapor-phase growth apparatus
US4801442A (en) Method for purifying starting materials for fabricating chalchogenide glass
JPS60189927A (en) Vapor phase reactor
JP2002310561A (en) Heating furnace
US3282654A (en) Crystal growing furnace with an alumina liner
JPH0548176B2 (en)
US3607367A (en) High-strength, high-modulus, low density, boron silicide monofilaments, and method of making same
JPS63274685A (en) Device for producing single crystal by infrared heating
JPS62437B2 (en)
JPS60127745A (en) Semiconductor substrate
JPH10237636A (en) Target essentially consisting of mgo and its production
JP3247838B2 (en) Pyrolytic boron nitride crucible and method for producing the same
WO2001081660A1 (en) Diamond synthesizing method and device