JPH0528594B2 - - Google Patents

Info

Publication number
JPH0528594B2
JPH0528594B2 JP63233141A JP23314188A JPH0528594B2 JP H0528594 B2 JPH0528594 B2 JP H0528594B2 JP 63233141 A JP63233141 A JP 63233141A JP 23314188 A JP23314188 A JP 23314188A JP H0528594 B2 JPH0528594 B2 JP H0528594B2
Authority
JP
Japan
Prior art keywords
bag
tube
cell
medium
bacterial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63233141A
Other languages
Japanese (ja)
Other versions
JPH0279974A (en
Inventor
Hitoshi Masuda
Yutaka Ishigami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP23314188A priority Critical patent/JPH0279974A/en
Publication of JPH0279974A publication Critical patent/JPH0279974A/en
Publication of JPH0528594B2 publication Critical patent/JPH0528594B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はバイオリアクタに関する。[Detailed description of the invention] [Industrial application field] The present invention relates to bioreactors.

〔従来の技術〕[Conventional technology]

酵素活性を安定化し、また水溶性であるにもか
かわらず繰り返し使用を可能にするために、酵素
を物理的または化学的手法で水に不溶化して固体
触媒の形で使用する技術が開発され、L−アミノ
酸、異性化糖、6−アミノペニシラン酸およびリ
ンゴ酸等の工業生産に利用されている。
In order to stabilize enzyme activity and enable repeated use despite being water-soluble, technology has been developed to make enzymes insoluble in water using physical or chemical methods and use them in the form of solid catalysts. It is used in the industrial production of L-amino acids, isomerized sugar, 6-aminopenicillanic acid, malic acid, etc.

更に固定化酵素の手法を進めて、酵素を包含し
た生の微生物菌体を固定化した固定化微生物を利
用すれば、酵素の抽出精製操作を省くことができ
る。
If the immobilized enzyme method is further advanced and an immobilized microorganism in which live microbial cells containing an enzyme are immobilized is used, the enzyme extraction and purification operation can be omitted.

更に、固定化微生物には、固定化または操作時
の安定性が良い、多階段酵素系の利用に有利、補
酵素やATPなどの供給が可能、などの利点があ
る。
Furthermore, immobilized microorganisms have advantages such as good stability during immobilization or manipulation, advantageous use in multi-step enzyme systems, and ability to supply coenzymes, ATP, and the like.

また二次代謝産物の生産のために生菌体の固定
化法を用いることができ、さらに固定化増殖微生
物を用いて収量を向上させることも可能である。
Furthermore, a method of immobilizing living microorganisms can be used to produce secondary metabolites, and it is also possible to improve the yield by using immobilized growing microorganisms.

かかる微生物菌体の固定化のためには、固定化
技術の確立が基本的に重要であり、担体結合法、
橋かけ法及び包括法などが知られており、撹拌層
型、流動層型及び膜型バイオリアクタとしてプロ
セス化されている。
In order to immobilize such microbial cells, the establishment of immobilization technology is fundamentally important, and carrier binding methods,
The crosslinking method and the entrapment method are known, and the processes have been implemented as stirred bed type, fluidized bed type, and membrane type bioreactors.

たとえば、千畑一郎・土佐哲也、油化学、3414
(1982)、角野立夫・中村裕紀・大竹安友・森 直
道、PPM,No.6,28(1987)、福井三郎編著、「生
体触媒としての微生物」共立出版(1979)参照。
For example, Ichiro Chibata, Tetsuya Tosa, Oil Chemistry, 3414
(1982), Tatsuo Sumino, Yuki Nakamura, Yasutomo Otake, Naomichi Mori, PPM, No. 6, 28 (1987), Saburo Fukui (ed.), "Microorganisms as biocatalysts", Kyoritsu Shuppan (1979).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

好気性菌の発酵生産技術においては、栄養源及
び酵素の拡散速度が目的とする生産物の生産速度
に影響を及ぼす。
In aerobic fermentation production technology, the rate of diffusion of nutrients and enzymes influences the rate of production of the desired product.

しかしながら、一般に栄養源の利用効率は低
く、また菌体の増殖や生産物の生成により培養液
の粘性が増大して生合成反応が阻害され、目的と
する生産物の生産速度が低下する。
However, the utilization efficiency of nutrient sources is generally low, and the viscosity of the culture solution increases due to bacterial cell proliferation and product production, inhibiting biosynthetic reactions and reducing the production rate of the desired product.

糸状菌の場合には、特に三次元網目構造を有す
る菌塊の生成や培養液の増粘による栄養分や酸素
の不足が起こりやすい。
In the case of filamentous fungi, shortages of nutrients and oxygen are particularly likely to occur due to the formation of bacterial masses with a three-dimensional network structure and thickening of the culture solution.

また、培養液から生産物を分離するのに手間が
かかるなど改良の余地が大きい。
In addition, there is a lot of room for improvement, as it takes time and effort to separate the product from the culture solution.

一方、ゲル内に固定化した菌体、増殖菌体のバ
イオリアクタへの応用技術が開発されアルコール
発酵の生産性の向上等が報告されている。
On the other hand, technology has been developed to apply microbial cells immobilized in gel and proliferating microbial cells to bioreactors, and improvements in the productivity of alcohol fermentation have been reported.

しかしながら、菌体を包括したゲルの調製、ゲ
ルの大きさや強度の調節及び滅菌など煩雑な操作
を必要としている。また、生菌体の増殖によるゲ
ルの破壊、さらにそのための培養液との混濁によ
る生産物回収の困難さが生じる。
However, it requires complicated operations such as preparing a gel containing the bacterial cells, adjusting the size and strength of the gel, and sterilizing it. In addition, the gel is destroyed due to the proliferation of viable bacterial cells, and furthermore, the resulting turbidity with the culture solution makes it difficult to recover the product.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は上記従来の微生物菌体の固定化技術が
有する欠点を解消すべく、安価、耐久性、プロセ
スや操作の簡略化、生産性の向上及び安定性の高
い固定化方法について鋭意研究を重ねた結果、完
成したものである。
In order to eliminate the drawbacks of the conventional immobilization techniques for microorganisms, the present invention has been made through intensive research into an immobilization method that is inexpensive, durable, simplifies processes and operations, improves productivity, and is highly stable. As a result, it was completed.

すなわち本発明のバイオリアクタは、菌体を担
持した布帛を径が2μm以下の細孔を有する高分
子平膜よりなる袋状物に収容し、該袋状物を容器
中にスペーサーを介して積層し、先端を封じた菌
体流入管および菌体流出管を前記袋状物およびス
ペーサーを貫通して前記容器に挿入し、該菌体流
入管および菌体流出管が前記袋状物を貫通する部
分に菌体流入用細孔および菌体流出用細孔を設け
て該菌体流入管と前記袋状物、および該菌体流出
管と前記袋状物を連通せしめると共に前記容器に
培地流入管、培地流出管、空気供給管および空気
排出管を設けて前記積層した袋状物と平行方向の
培地および空気流路を形成せしめたことを特徴と
するものである。
That is, in the bioreactor of the present invention, a fabric carrying bacterial cells is housed in a bag-like material made of a flat polymer membrane having pores with a diameter of 2 μm or less, and the bag-like material is stacked in a container via a spacer. Then, a bacterial inflow tube and a bacterial cell outflow tube with their tips sealed are inserted into the container through the bag-like object and the spacer, and the bacterial cell inflow tube and the bacterial cell outflow tube penetrate the bag-like object. Microbial cell inflow pores and microbial cell outflow pores are provided in the portion to communicate the microbial cell inflow pipe and the bag-like object, and the microbial cell outflow pipe and the bag-like object, and a medium inflow pipe is provided in the container. , a culture medium outflow pipe, an air supply pipe, and an air discharge pipe are provided to form a culture medium and air flow path in a direction parallel to the laminated bag-like material.

本発明のバイオリアクタにおける高分子平膜と
しては、一般に精密濾過膜や限外濾過膜として用
いられている膜が用いられ、その素材はアセチル
セルローズ、ポリアミド、ポリビニルアルコー
ル、ポリサルホン、ポリエーテルサルホン、ポリ
エチレン、ポリプロピレン等である。特に、菌の
透過を防止するために、細孔径が2μm以下であ
ることが好ましい。また袋状物の内部に、菌体の
増殖、固定化および空間の確保と好気性菌の場合
の十分な通気のために、繊維織物、編物、不織布
等の布帛を菌体の支持体として挿入することが好
ましい。
As the polymer flat membrane in the bioreactor of the present invention, membranes that are generally used as microfiltration membranes or ultrafiltration membranes are used, and the materials thereof include acetylcellulose, polyamide, polyvinyl alcohol, polysulfone, polyethersulfone, These include polyethylene and polypropylene. In particular, in order to prevent permeation of bacteria, it is preferable that the pore diameter is 2 μm or less. In addition, fabrics such as textile fabrics, knitted fabrics, non-woven fabrics, etc. are inserted inside the bag as a support for the bacteria in order to propagate and immobilize the bacteria, secure space, and provide sufficient ventilation in the case of aerobic bacteria. It is preferable to do so.

なおここで菌体とは、酵素および細菌等の微生
物を意味する。
Note that the term "microbial cells" as used herein means microorganisms such as enzymes and bacteria.

本発明のバイオリアクタにおいて、菌体を担持
した布帛を収容した袋状物は、たとえば有用微生
物を通常の発酵法によつて菌体を調製培養し、こ
の調製した菌体から有用酵素を抽出して袋状物内
に封入したり、または袋状物内に種菌を接種して
菌体を調製することにより製造することができ
る。
In the bioreactor of the present invention, the bag containing the fabric supporting bacterial cells is prepared by preparing and culturing useful microorganisms by a normal fermentation method, and extracting useful enzymes from the prepared bacterial cells. It can be produced by enclosing it in a bag-like material, or by inoculating seed bacteria into a bag-like material to prepare bacterial cells.

次に本発明のバイオリアクタを図面に示した実
施例にもとづき説明する。
Next, the bioreactor of the present invention will be explained based on the embodiment shown in the drawings.

第1図に示すように、バイオリアクタ1におい
ては、容器2内に袋状物3とスペーサー4が交互
に積層されている。袋状物3は高分子平膜で形成
され、この中に菌体が担持された支持体6が収容
されている。
As shown in FIG. 1, in a bioreactor 1, bags 3 and spacers 4 are alternately stacked in a container 2. The bag 3 is formed of a flat polymer membrane, and contains a support 6 carrying bacterial cells therein.

スペーサー4としては、菌体に包括した袋状高
分子平膜間に培地を有効に循環させるために、た
とえば帯状のプラスチツクシートが用いられる。
あるいは、膜界面の濃度分極を解消するために網
でも良く、網と帯状プラスチツクと組合せて使用
することもできる。
As the spacer 4, a belt-shaped plastic sheet, for example, is used in order to effectively circulate the culture medium between the bag-shaped flat polymer membranes surrounding the bacterial cells.
Alternatively, a mesh may be used to eliminate concentration polarization at the membrane interface, and a combination of a mesh and a plastic strip may be used.

容器2には培地の流入管7と流出管8および空
気または酸素の供給管9と排出管10が設けられ
ており、積層した袋状物3と平行方向の培地およ
び空気流路が形成される。
The container 2 is provided with an inflow pipe 7 and an outflow pipe 8 for the medium, and a supply pipe 9 and a discharge pipe 10 for air or oxygen, forming a medium and air flow path parallel to the laminated bag-like material 3. .

空気(酸素)の供給は単にバブリングを行なつ
ても良いが、空気供給管9を疎水性多孔質膜で構
成すれば、通気量の調整も可能である。
Air (oxygen) may be supplied by simply bubbling, but if the air supply pipe 9 is made of a hydrophobic porous membrane, the amount of ventilation can be adjusted.

支持体6に担持される菌が嫌気性である場合に
は空気の供給は不要である。
If the bacteria supported on the support 6 are anaerobic, there is no need to supply air.

培地の供給はスペーサーの形状や培地供給ポン
プによつて調節される。
The supply of the medium is regulated by the shape of the spacer and the medium supply pump.

かかるバイオリアクタでは、菌体は袋状物内に
封じ込められるので培地は常に清澄な状態を保つ
ことができる。
In such a bioreactor, the bacterial cells are confined within the bag, so the culture medium can always be kept in a clear state.

代謝生産物が培地の溶媒に可溶で、膜の孔を通
過可能なサイズのものであれば、除菌工程を経ず
に分離工程にかけることができるし、菌と培地と
の混合による増粘も防ぐことができる。
If the metabolic product is soluble in the medium solvent and has a size that allows it to pass through the pores of the membrane, it can be subjected to the separation process without going through the sterilization process, and it can be increased by mixing the bacteria and the medium. It can also prevent stickiness.

また培地を流し続けて菌体の活動が弱くなつた
場合には培地の代わりにグルコース等の栄養剤を
流し、再び菌を活性化することが可能であるし、
菌体を封入した膜シートを新しいものに交換する
こともできる。
In addition, if the activity of the bacterial cells weakens due to continuous flow of the medium, it is possible to reactivate the bacteria by flowing nutrients such as glucose instead of the medium.
The membrane sheet containing bacterial cells can also be replaced with a new one.

更に本発明においては、先端を封じた菌体流入
管11および菌体流出管12が袋状物3およびス
ペーサー4を貫通して容器2に挿入されており、
これら菌体流入管11および菌体流出管12が袋
状物3を貫通する部分には菌体流入および菌体流
出のための細孔12A,12Bが形成されて菌体
流入管11と袋状物3、および菌体流出管12と
袋状物3が夫々連通している。なお、袋状物3お
よびスペーサー4の菌体流入管11と流出管12
による貫通部分にはパツキン13が設けられてい
て菌体の漏出を防止している。
Furthermore, in the present invention, a bacterial inflow tube 11 and a bacterial cell outflow tube 12 with sealed tips are inserted into the container 2 through the bag-like material 3 and the spacer 4,
Pores 12A and 12B for the inflow and outflow of bacterial cells are formed in the portion where the bacterial body inflow pipe 11 and the bacterial cell outflow pipe 12 penetrate the bag-like material 3. The material 3 and the bacterial cell outflow tube 12 are in communication with the bag-like material 3, respectively. In addition, the bacterial inflow pipe 11 and the outflow pipe 12 of the bag-like material 3 and the spacer 4
A gasket 13 is provided at the penetrating portion to prevent bacterial cells from leaking out.

次に本発明のバイオリアクタの作用、すなわち
菌体代謝生産物の分離方法を説明する。
Next, the action of the bioreactor of the present invention, ie, the method for separating bacterial cell metabolic products, will be explained.

第2図は第1図のバイオリアクタを用いた場合
を示す。
FIG. 2 shows the case where the bioreactor of FIG. 1 is used.

培地は培地槽14内において温度制御され、ポ
ンプ15により培地流入管7を経てバイオリアク
タ1に供給される。同時に培地には空気供給管9
から必要に応じた量の空気が流れ、十分に空気
(酸素)を含んだ培地は、スペーサー4(第1図)
の間隙を流れ、その間に袋状物3内との濃度勾配
により菌の活動に必要な量だけ袋状物3を構成す
る高分子平膜5を通過して袋状物3内に取り込ま
れる。しかも本発明では、培地および空気流路が
袋状物に平行方向なので膜に対して垂直方向に流
路を設定した濾過方式のリアクタ、複雑な構成や
細密な中空繊維束のものに比較して基質および空
気の供給を無理なく行なうことができ、目的生成
物を含む還流液の圧損失がなく、円滑に還流を行
なうことができる。なお、好気性の生成触媒にお
いては、目的物質の生産は通気速度が律速になる
ことに十分注意する必要がある。代謝生産物が高
分子状平膜5を透過できる、十分に小さなもので
あれば、この膜5を透過して培地内に溶解する。
The temperature of the culture medium is controlled in the culture medium tank 14, and the medium is supplied to the bioreactor 1 via the medium inflow pipe 7 by a pump 15. At the same time, the air supply pipe 9
The required amount of air flows from the spacer 4 (Figure 1) to the medium containing sufficient air (oxygen).
It flows through the gap, and during that time, due to the concentration gradient with the inside of the bag-like material 3, the amount necessary for bacterial activity passes through the polymer flat membrane 5 constituting the bag-like material 3 and is taken into the bag-like material 3. Moreover, in the present invention, the culture medium and air flow paths are parallel to the bag-like material, so compared to filtration type reactors with flow paths set perpendicular to the membrane, or reactors with complicated configurations or fine hollow fiber bundles. Substrate and air can be supplied without difficulty, and there is no pressure loss of the reflux liquid containing the target product, allowing smooth reflux. It should be noted that with an aerobic production catalyst, it is necessary to be careful that the aeration rate is rate-limiting for the production of the target substance. If the metabolic product is small enough to pass through the polymer flat membrane 5, it will pass through the membrane 5 and be dissolved in the medium.

一般に従来技術では、代謝生産物濃度が高くな
ると反応が阻害されたり、また濾過方式による膜
に垂直方向に培地流路を設計した方式のリアクタ
では、基質の触媒層の通過がワンシヨツトパスと
なり、高速反応を除いて、代謝生産物のように化
学構造が基質と大きく変わる生成物の生産は著し
く阻害される。
In general, with conventional technology, the reaction is inhibited when the concentration of metabolic products becomes high, and in reactors that use a filtration method and the culture medium flow path is designed perpendicular to the membrane, the passage of the substrate through the catalyst layer is a one-shot pass, resulting in a high-speed reaction. With the exception of , the production of products whose chemical structure differs significantly from that of the substrate, such as metabolic products, is significantly inhibited.

本発明のバイオリアクタでは、袋状物に対して
培地と空気の流路が平行に設定されるので基質と
生体触媒との接触時間のコントロールが容易であ
り、また培地が菌体と混合されないため、培地中
の代謝生産物の分離が必要ならば、そのまま分離
工程に送ることができる。分離工程を経た培
地は濃度調整をして再び培地槽14に循環するこ
とができる。
In the bioreactor of the present invention, the flow path of the medium and air is set parallel to the bag-like object, so it is easy to control the contact time between the substrate and the biocatalyst, and the medium is not mixed with the bacterial cells. If separation of metabolic products in the medium is required, it can be directly sent to the separation step. The culture medium that has undergone the separation process can be circulated to the culture medium tank 14 again after its concentration is adjusted.

そのためバイオリアクタに送られる培地中の代
謝生産物濃度は、常に0またはそれに近い一定値
とする事ができ、反応は阻害されない代謝生産物
の収率が増大する。菌の活動が弱まり生産効率が
低下した場合には、他の培養槽から栄養剤を流し
てやることにより菌の活動を再び活性化し、連続
的な使用が可能である。
Therefore, the concentration of metabolic products in the medium sent to the bioreactor can always be kept at a constant value of 0 or close to 0, and the reaction is not inhibited and the yield of metabolic products is increased. If the activity of the bacteria weakens and production efficiency decreases, the activity of the bacteria can be reactivated by flowing nutrients from other culture tanks, allowing continuous use.

更に本発明のバイオリアクタにおいては、菌体
を入れ換えながら反応を連続的に進めることがで
きる。
Furthermore, in the bioreactor of the present invention, the reaction can proceed continuously while replacing the bacterial cells.

すなわち培地の循環、分離については前記と同
様であるが、菌の活動が弱くなつた場合には、菌
体槽16から活性状態にある菌をポンプ17によ
つてバイオリアクタ1内に収容された高分子状平
膜からなる袋状物内に送り込んでやれば、再び反
応は速やかに進行する。
That is, the circulation and separation of the culture medium are the same as described above, but when the activity of the bacteria becomes weak, the bacteria in the active state are stored in the bioreactor 1 from the bacteria tank 16 by the pump 17. If it is fed into a bag made of a polymeric flat membrane, the reaction will proceed quickly again.

また培地側に代謝生産物が取り出せない場合
も、菌を循環させ、培地組成を多量に含まない菌
と代謝生産物の濃縮液として取り出すことが可能
で、これを分離工程にかければ効率良く代謝生
産物を回収することができ、代謝生産物による反
応阻害を防ぐこともできる。
In addition, even if metabolic products cannot be extracted from the culture medium, it is possible to circulate the bacteria and extract the bacteria and metabolic products as a concentrated solution that does not contain a large amount of the culture medium composition.If this is subjected to a separation process, efficient metabolism can be achieved. Products can be recovered, and reaction inhibition by metabolic products can also be prevented.

第3図は第1図に示したバイオリアクタ1を二
つ組合せた場合を示し、バイオリアクタ1側では
菌の活性化をはかり、1′側では代謝生産物を作
ることができる。
FIG. 3 shows a case in which two bioreactors 1 shown in FIG. 1 are combined, and bacteria can be activated on the bioreactor 1 side, and metabolic products can be produced on the 1' side.

また1,1′両側を代謝生産物を作る事に用い
る場合には菌体槽16内で菌の活性化をはかれば
よい。このとき培地は同じもの、もしくは混合し
ても互いに影響しないものでなくてはならない。
In addition, when both 1 and 1' are used for producing metabolic products, the bacteria may be activated in the cell tank 16. At this time, the media must be the same or must not affect each other even if mixed.

しかし、分離工程,′を通過して培地組成
を含まない菌が循環される場合、または菌が,
′からそのまま廃棄される場合には問題はない。
However, if bacteria that do not contain the medium composition are circulated through the separation step, or if the bacteria
There is no problem if it is discarded as is from ''.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明の生体触媒およびバイ
オリアクタによれば下記の効果を奏することがで
きる。
As described above, the biocatalyst and bioreactor of the present invention can provide the following effects.

(イ) 培地と菌体が混合されないので、分離工程の
簡素化が可能となる。
(b) Since the culture medium and bacterial cells are not mixed, the separation process can be simplified.

(ロ) 常に代謝生産物を取り出せるので、反応阻害
が起こりにくい。
(b) Since metabolic products can always be taken out, reaction inhibition is less likely to occur.

(ハ) 菌の再活性化が行なえるので、長期的な使用
が可能である。
(c) Since bacteria can be reactivated, long-term use is possible.

(ニ) 反応槽がコンパクトで装置、システムの小型
化が可能である。
(d) The reaction tank is compact, making it possible to downsize the equipment and system.

(ホ) 万一、雑菌が培地側に混入しても、菌どうし
が混合されない。
(E) Even if bacteria should get mixed into the culture medium, the bacteria will not mix with each other.

(ヘ) 使用する菌体、培地の種類によつて膜を使い
分ければ、膜の透過速度、拡散速度と表面積に
よる反応速度のコントロールが可能である。
(f) By using different membranes depending on the type of bacterial cells and culture medium used, it is possible to control the reaction rate based on the permeation rate, diffusion rate, and surface area of the membrane.

(ト) 培地の循環速度、空気供給速度等、諸条件の
コントロールが独立して行なえるため、管理が
容易になる。
(g) Management is easy because conditions such as medium circulation speed and air supply speed can be controlled independently.

(チ) 袋状膜シートに生体触媒が固定化されている
ため、培地を固定化生体触媒に均質に供給でき
るし、膜を透過できる代謝生産物が容易に取り
出せる。
(h) Since the biocatalyst is immobilized on the bag-like membrane sheet, the culture medium can be uniformly supplied to the immobilized biocatalyst, and metabolic products that can permeate the membrane can be easily taken out.

(リ) すなわち本発明の生体触媒およびバイオリア
クタは、表面積が大きく、菌体の過密な育成や
それに伴う菌塊の生成がないので、栄養物や酸
素の供給が充足し代謝物の取り出しが容易で、
耐久性があり、繰り返し長期使用することがで
き、また増殖菌体だけでなく休止菌体、酵素の
使用も可能であるため生産性が高く、さらに膜
内に菌体があるために培養液の滅菌が不要で且
つ煩雑なゲル調製操作を必要としない。
(li) In other words, the biocatalyst and bioreactor of the present invention have a large surface area, and there is no overcrowded growth of bacterial cells or the formation of bacterial clumps, so nutrients and oxygen can be supplied sufficiently, and metabolites can be easily extracted. in,
It is durable and can be used repeatedly over a long period of time, and it is highly productive because it can use not only proliferating cells but also dormant cells and enzymes. Sterilization is not required and complicated gel preparation operations are not required.

(ヌ) 菌体を入れ換えながら反応を連続的に進める
ことができる。
(j) The reaction can proceed continuously while replacing the bacterial cells.

(ル) 培地側に代謝生産物が取り出せない場合に
は、菌体流入管および菌体流出管を介して菌体
を循環させれば、菌体と代謝生産物の濃縮液を
取り出し、効率良く代謝生産物を回収すること
ができる。
(l) If the metabolic products cannot be taken out to the medium side, circulating the bacterial cells through the bacterial inflow tube and the bacterial cell outflow tube will allow the concentrated liquid of the bacterial cells and metabolic products to be extracted efficiently. Metabolic products can be recovered.

(オ) 積層した袋状物と平行方向の培地および空気
流路が形成されているので、目的生成物を含む
還流液の圧力損失がなく、かつ培地と生体触媒
との接触時間のコントロールが容易である。
(E) Since the culture medium and air flow path are formed in parallel to the stacked bag-like objects, there is no pressure loss in the reflux liquid containing the target product, and the contact time between the culture medium and the biocatalyst can be easily controlled. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のバイオリアクタの実施例示す
概要図、第2図は第1図に示したバイオリアクタ
の作用を示す工程図、第3図は第1図に示したバ
イオリアクタを組合せ使用時の作用を示す工程図
である。 1…バイオリアクタ、2…容器、3…生体触
媒、4…スペーサー、5…袋状物、7…培地流入
管、8…培地流出管。
Figure 1 is a schematic diagram showing an example of the bioreactor of the present invention, Figure 2 is a process diagram showing the action of the bioreactor shown in Figure 1, and Figure 3 is a combination of the bioreactors shown in Figure 1. It is a process diagram showing the effect of time. DESCRIPTION OF SYMBOLS 1... Bioreactor, 2... Container, 3... Biocatalyst, 4... Spacer, 5... Bag-like material, 7... Medium inflow pipe, 8... Medium outflow pipe.

Claims (1)

【特許請求の範囲】[Claims] 1 菌体を担持した布帛を径が2μm以下の細孔
を有する高分子平膜よりなる袋状物に収容し、該
袋状物を容器中にスペーサーを介して積層し、先
端を封じた菌体流入管および菌体流出管を前記袋
状物およびスペーサーを貫通して前記容器に挿入
し、該菌体流入管および菌体流出管が前記袋状物
を貫通する部分に菌体流入用細孔および菌体流出
用細孔を設けて該菌体流入管と前記袋状物、およ
び該菌体流出管と前記袋状物を連通せしめると共
に前記容器に培地流入管、培地流出管、空気供給
管および空気排出管を設けて前記積層した袋状物
と平行方向の培地および空気流路を形成せしめた
ことを特徴とするバイオリアクタ。
1 A fabric carrying bacterial cells is housed in a bag made of a flat polymer membrane having pores with a diameter of 2 μm or less, and the bag is stacked in a container via a spacer, and the tip is sealed. A cell inflow tube and a cell outflow tube are inserted into the container through the bag-like material and the spacer, and a cell inflow tube is inserted into the portion where the cell body inflow tube and cell cell outflow tube penetrate the bag-like material. Holes and microbial cell outflow pores are provided to communicate the bacterial cell inflow tube and the bag-like object, and the bacterial cell outflow tube and the bag-like object, and a medium inflow tube, a medium outflow tube, and air supply to the container. A bioreactor characterized in that a tube and an air discharge tube are provided to form a medium and air flow path in a direction parallel to the laminated bag-like material.
JP23314188A 1988-09-16 1988-09-16 Biocatalyst and bioreactor using the same Granted JPH0279974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23314188A JPH0279974A (en) 1988-09-16 1988-09-16 Biocatalyst and bioreactor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23314188A JPH0279974A (en) 1988-09-16 1988-09-16 Biocatalyst and bioreactor using the same

Publications (2)

Publication Number Publication Date
JPH0279974A JPH0279974A (en) 1990-03-20
JPH0528594B2 true JPH0528594B2 (en) 1993-04-26

Family

ID=16950368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23314188A Granted JPH0279974A (en) 1988-09-16 1988-09-16 Biocatalyst and bioreactor using the same

Country Status (1)

Country Link
JP (1) JPH0279974A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5335238B2 (en) * 2005-06-15 2013-11-06 一般財団法人電力中央研究所 Microbial activity control substance supply method and apparatus, environmental purification method and bioreactor using the same
JP5586173B2 (en) * 2009-06-08 2014-09-10 フタムラ化学株式会社 Biologically encapsulated bioreactor structure, biologically encapsulated bioreactor, and method for producing biologically encapsulated bioreactor structure
JP5667352B2 (en) * 2009-09-02 2015-02-12 フタムラ化学株式会社 Microorganism storage method and microorganism storage member

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS564258A (en) * 1979-06-25 1981-01-17 Mitsubishi Electric Corp Boiling cooler
JPS6038331A (en) * 1983-08-11 1985-02-27 Teijin Yuka Kk Isomerization of dimethylnaphthalene
JPS6170977A (en) * 1984-09-14 1986-04-11 Nitto Electric Ind Co Ltd Biochemical reactor
JPS62171672A (en) * 1985-10-24 1987-07-28 Oosakashi Bioreactor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS564258A (en) * 1979-06-25 1981-01-17 Mitsubishi Electric Corp Boiling cooler
JPS6038331A (en) * 1983-08-11 1985-02-27 Teijin Yuka Kk Isomerization of dimethylnaphthalene
JPS6170977A (en) * 1984-09-14 1986-04-11 Nitto Electric Ind Co Ltd Biochemical reactor
JPS62171672A (en) * 1985-10-24 1987-07-28 Oosakashi Bioreactor

Also Published As

Publication number Publication date
JPH0279974A (en) 1990-03-20

Similar Documents

Publication Publication Date Title
US4442206A (en) Method of using isotropic, porous-wall polymeric membrane, hollow-fibers for culture of microbes
Griffiths Perfusion systems for cell cultivation
Giorno et al. Biocatalytic membrane reactors: applications and perspectives
JPH0728722B2 (en) Bioreactor equipment
JPH03164169A (en) Cell culture
Vassilev et al. Production of organic acids by immobilized filamentous fungi
Roy et al. Microbial hollow fiber bioreactors
JPH07121216B2 (en) Stirred bioreactor and incubator
CN103571818A (en) Immobilization method of penicillium citrinum
Chang Membrane bioreactors: engineering aspects
Heath et al. Membranes and bioreactors
JP2661848B2 (en) Culture method and culture device
Mehaia et al. Immobilization of Lactobacillus bulgaricus in a hollowfiber bioreactor for production of lactic acid from acid whey permeate
JPH0528594B2 (en)
JPH0640815B2 (en) Bioreactor
CA1220745A (en) Biocatalytic reactor
Giorno et al. Membrane bioreactors for biotechnology and medical applications
JPH0659206B2 (en) Bioreactor
Sode et al. Continuous asymmetric reduction of 4-oxoisophorone by thermophilic bacteria using a hollow fiber reactor
CA1210719A (en) Method of immobilizing enzymes
Giorno Membrane bioreactors
JP2984748B2 (en) Method for culturing microorganisms using air-permeable membrane
JPH0462715B2 (en)
Drioli Membranes and membrane processes in biotechnology
JPH0866178A (en) Method for simultaneously culturing bacillus bifidus and propionic acid bacteria

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term