JPH05267409A - Deflection circuit for surface processing and cross-section observing apparatus - Google Patents

Deflection circuit for surface processing and cross-section observing apparatus

Info

Publication number
JPH05267409A
JPH05267409A JP4061829A JP6182992A JPH05267409A JP H05267409 A JPH05267409 A JP H05267409A JP 4061829 A JP4061829 A JP 4061829A JP 6182992 A JP6182992 A JP 6182992A JP H05267409 A JPH05267409 A JP H05267409A
Authority
JP
Japan
Prior art keywords
processing
ion beam
cross
circuit
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4061829A
Other languages
Japanese (ja)
Inventor
Tadatetsu Hattori
忠鐵 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4061829A priority Critical patent/JPH05267409A/en
Publication of JPH05267409A publication Critical patent/JPH05267409A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To form a cross section having different angles at a plurality of points by a method wherein the processing region of a converged ion beam is continuously indicated by a pointer on a secondary electron image which is formed by the converged ion beam on the surface of a sample before processing. CONSTITUTION:A pointer which is inputted from a processing position indicating pointer circuit 21 and a secondary electron image are simultaneously displayed on a display circuit 20 and the points of the outline of a processing region are successively indicated and stored in a processing region storing circuit 22. Directions, intervals, scanning clocks, etc., of ion beam scanning are inputted and stored in a processing program registration circuit 18 as parameters for processing. A processing program calculating circuit 17 calculates rows of X-Y co-ordinates to which the ion beam is applied in accordance with the processing region and the processing parameters and makes a deflection signal generating circuit 16 output deflection signals. Scanning contents such as up and down, left and right, intervals and directions are calculated for all the points inside the outline and scanning signals are supplied to a beam deflection control circuit 15. Therefore, processing of an arbitrarily curved cross section can be instructed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、LSI等の不良解析や
半導体製造のプロセスモニターとして使用され、集束イ
オンビームを試料表面に照射して表面の微小領域を加工
し、その断面の形状や材質分布の拡大像を得る表面加工
及び断面観察装置に於ける集束イオンビームの偏向回路
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used as a process monitor for defect analysis of LSIs and semiconductor manufacturing, and irradiates a focused ion beam on the surface of a sample to process a minute area on the surface, and the shape and material of its cross section The present invention relates to a deflection circuit for a focused ion beam in a surface processing and cross-section observation apparatus for obtaining a magnified image of distribution.

【0002】[0002]

【従来の技術】集束イオンビーム装置の半導体分野での
応用は周知のごとく、主な機能としては、(1)集束イ
オンビームを試料表面スキャンして得られる表面の凸凹
や材質分布の拡大像(二次電子又は二次イオン像)
(2)スパッタリングによる微細領域の加工、すなわち
配線パターンの修正,穴空け,配線切断、(3)タング
ステンなどの金属膜デポジションによる配線追加、など
があげられる。近年のLSIはデバイスの微細化が進
み、サブミクロンオーダの加工手段として集束イオンビ
ーム装置は広く利用されている。特にLSIの故障部位
や異物部位の断面加工を行いその断面観察を得るために
集束イオンビーム装置が注目されている。
2. Description of the Related Art As the application of a focused ion beam device in the semiconductor field is well known, its main functions are: (1) an enlarged image of surface irregularities and material distribution obtained by scanning a sample surface with a focused ion beam ( Secondary electron or secondary ion image)
(2) Processing of a fine area by sputtering, that is, correction of a wiring pattern, punching, wiring cutting, and (3) wiring addition by deposition of a metal film such as tungsten. In recent years, LSI devices have been miniaturized, and focused ion beam devices have been widely used as processing means on the order of submicrons. In particular, a focused ion beam device has been attracting attention in order to obtain a cross-section observation by performing cross-section processing on a failed part or foreign material part of an LSI.

【0003】上記機能(2)の微細領域の加工を行うに
は機能(1)の試料表面の拡大像を用いて加工領域を指
定する。すなわち、従来の集束イオンビーム装置は、集
束イオンビームをXY方向にスキャンして試料表面に照
射し、その試料表面から放出される二次電子又は二次イ
オンを検出して二次電子像又は二次イオン像を得、その
像上で加工領域の指定を行い、次に、試料表面の加工領
域に、集束イオンビームを照射して粗加工及び仕上げ加
工を行う。粗加工とは断面観察するときに集束イオンビ
ームを斜めから照射するために必要なスペースをつくる
ために、所望の断面加工断面観察の前に不要部分を取り
除く加工であり、粗加工領域は所望の断面観察に必要な
断面の深さと観察角度により決まる。一般には集束イオ
ンビームの電流を大きくし、比較的広範囲を速くスパッ
タリングして穴をあける。仕上げ加工とは所望の断面を
きれいに削りだすことで集束イオンビームの電流を小さ
くして、粗加工によってできた断面を少しずつスパッタ
リングする。前記加工後試料を傾斜させその仕上げ面に
集束イオンビームを照射して二次電子像又は二次イオン
像を得、断面観察する。
In order to perform the processing of the fine area of the function (2), the processing area is designated by using the enlarged image of the sample surface of the function (1). That is, the conventional focused ion beam apparatus scans a focused ion beam in the XY directions to irradiate the sample surface, detects secondary electrons or secondary ions emitted from the sample surface, and detects a secondary electron image or secondary ion. A secondary ion image is obtained, a processing region is designated on the image, and then, the processing region on the sample surface is irradiated with a focused ion beam to perform rough processing and finishing processing. Roughing is a process of removing unnecessary parts before observing a desired cross-section in order to create a space necessary for obliquely irradiating a focused ion beam when observing a cross-section. It is determined by the depth of the cross section and the viewing angle required for cross section observation. In general, a focused ion beam is made to have a large current, and a relatively wide range is sputtered quickly to make a hole. The finishing process is to cut a desired cross section cleanly to reduce the current of the focused ion beam and to gradually sputter the cross section formed by rough processing. After the processing, the sample is tilted and the finished surface thereof is irradiated with a focused ion beam to obtain a secondary electron image or a secondary ion image, and the cross section is observed.

【0004】従来の集束イオンビーム装置の加工領域の
指定は、XY偏向信号の始点と終点の2点による矩形パ
ターンである。そして、特開昭63−180385号(S63−
07−25)のごとく、複数の矩形パターンで構成され
る加工領域を一様な速度で加工する方法が公知例として
あげられる。
The designation of the processing area of the conventional focused ion beam apparatus is a rectangular pattern by two points of the start point and the end point of the XY deflection signal. And, JP-A-63-180385 (S63-
07-25), a method of processing a processing area constituted by a plurality of rectangular patterns at a uniform speed is known.

【0005】[0005]

【発明が解決しようとする課題】従来の集束イオンビー
ム装置では、平面の断面のみで、しかも試料を傾斜させ
観察を行う側の一平面である。ところが一般に測定対象
となる試料は立体的に三次元構造を持ち、上記一つの特
定の平面のみでは極めて不都合である。
In the conventional focused ion beam apparatus, it is only a plane cross section, and it is one plane on which the sample is tilted for observation. However, in general, the sample to be measured has a three-dimensional structure in three dimensions, and it is extremely inconvenient to use only one specific plane.

【0006】[0006]

【課題を解決するための手段】上記問題を解決するため
に、集束イオンビームの偏向回路に二次電子像又は二次
イオン像の上にポインタを重ねる手段とポインタで指示
された点を記憶する手段と加工パラメータを設定する手
段と加工領域を算出する手段とプログラムによって偏向
信号を出力する手段を具備して、加工時には、プログラ
ムされたXY座標列の順に従って試料表面に集束イオン
ビームを照射する。加工時のプログラムとして走査する
方向(左右上下),向き(左右上下),走査間隔(イン
ターレース),走査クロックなどのパラメータが設定さ
れる。更に、複数の加工領域指定がプログラムでき、順
次加工することもできる。従って、曲線的な断面加工も
可能となる。
In order to solve the above problems, a means for superimposing a pointer on a secondary electron image or a secondary ion image and a point designated by the pointer are stored in a deflection circuit for a focused ion beam. Means, means for setting processing parameters, means for calculating a processing area, and means for outputting a deflection signal by a program are provided, and at the time of processing, the sample surface is irradiated with a focused ion beam in the order of the programmed XY coordinate sequence. .. Parameters such as the scanning direction (horizontal up / down), orientation (left / right up / down), scanning interval (interlace), and scanning clock are set as a program for machining. Further, it is possible to program a plurality of processing area designations, and it is possible to perform processing sequentially. Therefore, curved cross-section processing is also possible.

【0007】[0007]

【作用】集束イオンビームの走査によって得られる二次
電子像又は二次イオン像を記憶装置に記憶し、その像の
上のポインタを重ねて所望の加工領域をポインタで指示
しその外郭の点の集まりを記憶する。前記外郭で囲まれ
た内側の全て点を算出し、加工時には、これらの点のみ
に加工パラメータに従って且つプログラムされたXY座
標列の順に従って集束イオンビームを照射する。ポイン
ターで指定できる外郭の点の組合わせにより任意の形状
・曲線の断面加工が得られる。更に、加工時に加工領域
の外郭を順次シフトすることが可能であり、試料表面の
深さ方向に傾斜のある断面加工が得られる。
A secondary electron image or a secondary ion image obtained by scanning a focused ion beam is stored in a storage device, a pointer is placed on the image, and a desired processing area is pointed by the pointer to indicate a point on the outline. Memorize the meeting. All the points inside the outline are calculated, and at the time of processing, only these points are irradiated with the focused ion beam according to the processing parameters and in the order of the programmed XY coordinate sequence. Cross-section processing of arbitrary shape and curve can be obtained by combining the points of the outline that can be specified with the pointer. Furthermore, it is possible to sequentially shift the contour of the processing region during processing, and it is possible to obtain cross-section processing with an inclination in the depth direction of the sample surface.

【0008】[0008]

【実施例】図1に本発明による表面加工及び断面観察装
置の集束イオンビーム偏向回路を説明する実施例の構成
を示す。液体金属イオン源1とイオンビーム引出電極2
の間に高電圧が加えられ、イオン源1から高輝度のイオ
ンビームが引き出され加速される。静電レンズ3,6及
びスリット4でイオンビーム10は、試料7の表面に細
かく集束される。イオン源1,引出電極2,静電レンズ
3,6にはそれぞれイオン源制御回路12,エミッショ
ン制御回路13,静電レンズ制御回路14が接続され各
々所望の電位が印加される。イオン偏向電極5には、イ
オンビーム偏向制御回路15からイオンビーム位置を決
める直流成分と、二次電子像又は二次イオン像を得るた
めの交流成分すなわち走査信号が重ねて印加される。試
料7の表面に集束イオンビームが照射されると、その試
料表面の形状及び材質分布に特徴づけられる二次電子,
二次イオン、等が放出され、一定時間集束イオンビーム
を照射しつづけると試料表面のスパッタリングが重なっ
て表面加工となる。上記試料表面から放出される二次電
子又は二次イオンを二次荷電粒子検出器9で検出し、イ
オンビーム偏向制御回路15と同期して、二次電子像又
は二次イオン像記憶回路17に記憶する。試料の所望加
工位置を得るために、試料微動ステージ8をステージ制
御回路23により、XYZ,回転,傾斜の設定が行われ
る。一般に処理装置(記載せず)は上記各制御回路を制
御する。ここまでの構成は従来の集束イオンビーム装置
である。又、図2には、上記従来の集束イオンビーム装
置に於ける、試料表面の加工及びその断面観察について
説明する。図2(a)は、水平に位置された試料7の表面
に、集束イオンビーム10(粗加工にはビーム径が太く
ビーム電流も大いものが使用され、微細部位加工や仕上
げ加工にはビーム径は細くビーム電流も小さいものが使
用される)が繰返し加工領域走査することにより、加工
領域の表面がスパッタされて、表面の一部が削り取られ
る。図2(c)のごとく、半導体素子の表面の一部を加
工すると積層処理された内部の構造が現われる。図2
(a),(c)のごとく加工された試料を傾斜させて極微
細に絞ったビーム10を断面に照射し、走査することに
よって得られる二次電子像又は二次イオン像が、集束イ
オンビームによる断面観察である。しかし、従来の集束
イオンビーム装置では、集束イオンビームの偏向はXY
方向の定まった走査のみで矩形の加工領域のみであった
が、本発明に於いては、図1の構成のごとく、加工位置
指定ポインタ回路21から入力されるポインタと二次電
子像又は二次イオン像記憶回路19に記憶されている加
工前の試料表面の二次電子像又は二次イオン像を表示回
路20に同時に表示し、加工領域の外郭の点を連続的に
指定する。この指定はその都度加工領域記憶回路22に
記憶される。又、加工プログラム登録回路18には加工
時のパラメータとしてイオンビームを走査する方向,間
隔,走査クロックなどのパラメータが入力され記憶され
ている。加工プログラム算出回路17は上記記憶されて
いる加工領域と加工パラメータから加工時のイオンビー
ムを照射するXY座標列を算出し、偏向信号発生回路1
6に偏向信号の出力をつかさどる。外郭の内側の点全て
について、上下,左右,間隔,向きなどの走査内容を計
算し、ビーム偏向制御回路15に走査信号を供給する。
従って任意の曲線の断面加工の指定が可能となる。そし
て、又、加工プログラムに加工領域を加工時間とともに
シフトすることを登録して、実行すれば、深さ方向に対
して傾斜した断面も得られる。
FIG. 1 shows the configuration of an embodiment for explaining a focused ion beam deflection circuit of a surface processing and cross-section observation apparatus according to the present invention. Liquid metal ion source 1 and ion beam extraction electrode 2
During this period, a high voltage is applied, and a high-intensity ion beam is extracted from the ion source 1 and accelerated. The ion beam 10 is finely focused on the surface of the sample 7 by the electrostatic lenses 3 and 6 and the slit 4. An ion source control circuit 12, an emission control circuit 13, and an electrostatic lens control circuit 14 are connected to the ion source 1, the extraction electrode 2, and the electrostatic lenses 3 and 6, respectively, and a desired potential is applied to each of them. A direct current component that determines the position of the ion beam and an alternating current component for obtaining a secondary electron image or a secondary ion image, that is, a scanning signal, are applied to the ion deflection electrode 5 in an overlapping manner from the ion beam deflection control circuit 15. When the surface of the sample 7 is irradiated with the focused ion beam, secondary electrons characterized by the shape and material distribution of the sample surface,
When secondary ions and the like are emitted and the focused ion beam is continuously irradiated for a certain period of time, the sputtering on the surface of the sample is overlapped and the surface is processed. Secondary electrons or secondary ions emitted from the surface of the sample are detected by the secondary charged particle detector 9, and in synchronization with the ion beam deflection control circuit 15, a secondary electron image or secondary ion image storage circuit 17 is stored. Remember. In order to obtain a desired processing position of the sample, the sample fine movement stage 8 is set by XYZ, rotation, and inclination by the stage control circuit 23. Generally, a processor (not shown) controls each of the above control circuits. The configuration so far is a conventional focused ion beam device. Further, FIG. 2 illustrates processing of the sample surface and observation of its cross section in the conventional focused ion beam apparatus. FIG. 2 (a) shows a focused ion beam 10 (a beam having a large beam diameter and a large beam current is used for rough processing, and a beam is used for fine portion processing and finishing processing on the surface of a sample 7 positioned horizontally. A small diameter and a small beam current is used.) By repeatedly scanning the processing area, the surface of the processing area is sputtered and a part of the surface is scraped off. As shown in FIG. 2C, when a part of the surface of the semiconductor element is processed, the laminated internal structure appears. Figure 2
The secondary electron image or the secondary ion image obtained by irradiating the sample, which is processed as shown in (a) or (c) with a tilt, with a beam 10 that is extremely finely focused and scanned, is a focused ion beam. It is a cross-sectional observation by. However, in the conventional focused ion beam device, the deflection of the focused ion beam is XY.
Although only the rectangular processing area is formed only by the scanning in which the direction is fixed, in the present invention, as in the configuration of FIG. 1, the pointer input from the processing position designation pointer circuit 21 and the secondary electron image or secondary The secondary electron image or secondary ion image of the sample surface before processing stored in the ion image storage circuit 19 is simultaneously displayed on the display circuit 20, and the points on the outer contour of the processing region are continuously designated. This designation is stored in the machining area storage circuit 22 each time. Further, the machining program registration circuit 18 stores and stores parameters such as a scanning direction of an ion beam, an interval, and a scanning clock as parameters for machining. The machining program calculation circuit 17 calculates an XY coordinate sequence for irradiating an ion beam during machining from the stored machining area and machining parameters, and the deflection signal generation circuit 1
The output of the deflection signal is controlled by 6. The scanning contents such as up / down, left / right, interval, direction, etc. are calculated for all the points inside the outer contour, and a scanning signal is supplied to the beam deflection control circuit 15.
Therefore, it is possible to specify the cross-section processing of an arbitrary curve. Further, if the shift of the machining region with the machining time is registered in the machining program and executed, a cross section inclined with respect to the depth direction can be obtained.

【0009】図3に本発明による表面加工の実施例を示
す。図3(a)複雑な加工断面を持ち、複数の箇所を各
々断面の方向も変えた断面例である。図3(b)加工時
に、加工時間とともに加工領域をシフトすることにより
深さ方向に対して傾斜した断面例である。図3(c)部
分的に加工深さを指定し、試料平面と平行な断面と深さ
方向の断面の両方の組合わせの断面例である。図3
(a)と図3(c)を組合わせると立体構造のうちある
点での3つの断面を得る。
FIG. 3 shows an embodiment of surface processing according to the present invention. FIG. 3A is an example of a cross section having a complicated processed cross section and a plurality of locations in which the directions of the cross sections are also changed. FIG. 3B is an example of a cross section that is inclined with respect to the depth direction by shifting the processing region with the processing time during the processing. FIG. 3C is a cross-sectional example of a combination of a cross-section parallel to the sample plane and a cross-section in the depth direction in which the working depth is partially designated. Figure 3
When (a) and FIG. 3 (c) are combined, three cross sections at a certain point in the three-dimensional structure are obtained.

【0010】[0010]

【発明の効果】集束イオンビームの加工領域の指定を、
加工前の試料表面の集束イオンビームによる二次電子又
は二次イオン像の上でポインターにより連続的に指定を
行うことにより複数の点で角度の異なった断面が得られ
る。加工領域を加工時間とともにシフトすることにより
深さ方向に対して傾斜した断面が得られる。
EFFECT OF THE INVENTION Designation of the processing area of the focused ion beam
Cross-sections having different angles at a plurality of points can be obtained by successively designating with a pointer on the secondary electron or secondary ion image by the focused ion beam on the sample surface before processing. By shifting the processing region with the processing time, a cross section inclined with respect to the depth direction can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による実施例を説明するブロック図であ
る。
FIG. 1 is a block diagram illustrating an embodiment according to the present invention.

【図2】一般の集束イオンビーム装置による表面加工及
び断面観察を説明する図である。
FIG. 2 is a diagram illustrating surface processing and cross-sectional observation by a general focused ion beam device.

【図3】本発明による表面加工の実施例を説明する図で
ある。
FIG. 3 is a diagram illustrating an example of surface processing according to the present invention.

【符号の説明】[Explanation of symbols]

1…液体金属イオン源、2…イオンビーム引出電極、
3,6…静電レンズ、4…スリット、5…イオンビーム
偏向電極、7…試料、8…試料微動ステージ、9…二次
荷電粒子検出器、10…集束イオンビーム、11…二次
電子又は二次イオン、12…イオン源制御回路、13…
エミッション制御回路、14…静電レンズ制御回路、1
5…イオンビーム偏向制御回路、16…偏向信号発生回
路、17…加工プログラム算出回路、18…加工プログ
ラム登録回路、19…二次電子像又は二次イオン像記憶
回路、20…表示回路、21…加工位置指定ポインター
回路、22…加工領域記憶回路、23…試料微動ステー
ジ制御回路。
1 ... Liquid metal ion source, 2 ... Ion beam extraction electrode,
3, 6 ... Electrostatic lens, 4 ... Slit, 5 ... Ion beam deflection electrode, 7 ... Sample, 8 ... Sample fine movement stage, 9 ... Secondary charged particle detector, 10 ... Focused ion beam, 11 ... Secondary electron or Secondary ions, 12 ... Ion source control circuit, 13 ...
Emission control circuit, 14 ... Electrostatic lens control circuit, 1
5 ... Ion beam deflection control circuit, 16 ... Deflection signal generation circuit, 17 ... Machining program calculation circuit, 18 ... Machining program registration circuit, 19 ... Secondary electron image or secondary ion image storage circuit, 20 ... Display circuit, 21 ... Machining position designation pointer circuit, 22 ... Machining area storage circuit, 23 ... Sample fine movement stage control circuit.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/66 N 8406−4M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01L 21/66 N 8406-4M

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】イオンを発生する手段と静電レンズとスリ
ットによって構成されるイオンビーム集束手段を具備し
て集束イオンビームを試料表面に照射して、イオンビー
ムをXY偏向する手段と二次電子又は二次イオンを検出
する手段とその二次電子像信号又は二次イオン像信号を
記憶し表示する手段を具備して試料表面から放出される
二次電子又は二次イオンを検出し、所望の領域の試料表
面像を得、二次電子像又は二次イオン像上で指定する試
料表面に集束イオンビームを照射する手段を具備して表
面加工し、次に、試料を傾斜させる手段を具備して前記
試料表面像を得る手段により断面観察する表面加工及び
断面観察装置に於いて、 二次電子像又は二次イオン像と同時に表示され位置指定
入力できるポインタ手段とポインタにより指定された加
工領域指定を記憶する手段と加工時のパラメータを入力
し登録する手段と加工時のXY座標列を算出する手段と
を具備して、試料表面に照射する集束イオンビームの偏
向を、X座標とY座標と照射時間の任意の組合わせで、
表面加工することができることを特徴とする表面加工及
び断面観察装置の偏向回路。
1. A means for generating ions, an ion beam focusing means composed of an electrostatic lens and a slit, and irradiating the focused ion beam on a sample surface to deflect the XY beam of the ion beam and secondary electrons. Alternatively, a means for detecting secondary ions and a means for storing and displaying the secondary electron image signal or the secondary ion image signal thereof are provided to detect the secondary electrons or secondary ions emitted from the sample surface, The sample surface image of the area is obtained, the sample surface designated on the secondary electron image or the secondary ion image is provided with a means for irradiating a focused ion beam for surface processing, and then the sample is inclined. In the surface processing and cross-section observing device for observing the cross section by the means for obtaining the sample surface image, the pointer means and the pointer means which can be displayed simultaneously with the secondary electron image or the secondary ion image and designated and designated can be designated. It is equipped with a means for storing the designated processing area designation, a means for inputting and registering parameters at the time of processing, and a means for calculating an XY coordinate sequence at the time of processing, and the deflection of the focused ion beam irradiated on the sample surface Any combination of coordinates, Y coordinate and irradiation time,
A deflection circuit for a surface processing and cross-section observation apparatus, which is capable of surface processing.
JP4061829A 1992-03-18 1992-03-18 Deflection circuit for surface processing and cross-section observing apparatus Pending JPH05267409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4061829A JPH05267409A (en) 1992-03-18 1992-03-18 Deflection circuit for surface processing and cross-section observing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4061829A JPH05267409A (en) 1992-03-18 1992-03-18 Deflection circuit for surface processing and cross-section observing apparatus

Publications (1)

Publication Number Publication Date
JPH05267409A true JPH05267409A (en) 1993-10-15

Family

ID=13182380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4061829A Pending JPH05267409A (en) 1992-03-18 1992-03-18 Deflection circuit for surface processing and cross-section observing apparatus

Country Status (1)

Country Link
JP (1) JPH05267409A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128068A (en) * 2004-09-29 2006-05-18 Hitachi High-Technologies Corp Ion beam processing apparatus and processing method
JP2007188887A (en) * 2006-01-12 2007-07-26 Carl Zeiss Smt Ltd Charged particle beam device including computer which can be operated by responding to command input by user of the device, for controlling the same
JP2012129212A (en) * 2004-09-29 2012-07-05 Hitachi High-Technologies Corp Ion beam processing device and processing method
JP2012252941A (en) * 2011-06-06 2012-12-20 Hitachi High-Technologies Corp Charged particle beam device and sample manufacturing method
JP2013089431A (en) * 2011-10-18 2013-05-13 Hitachi High-Technologies Corp Charged particle beam device and sample processing and observation method
CN113436654A (en) * 2017-09-29 2021-09-24 富士胶片株式会社 Magnetic tape and magnetic recording/reproducing apparatus
US11361792B2 (en) 2018-03-23 2022-06-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11361793B2 (en) 2018-03-23 2022-06-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11417357B2 (en) 2018-07-27 2022-08-16 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11417359B2 (en) 2019-09-17 2022-08-16 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device
US11417358B2 (en) 2019-01-31 2022-08-16 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11423935B2 (en) 2018-12-28 2022-08-23 Fujifilm Corporation Magnetic tape with particular refractive index characteristics, magnetic tape cartridge, and magnetic tape apparatus
US11430478B2 (en) 2018-12-28 2022-08-30 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11468911B2 (en) 2018-10-22 2022-10-11 Fujifilm Corporation Magnetic tape having characterized magnetic layer, magnetic tape cartridge, and magnetic tape apparatus
US11475915B2 (en) 2017-06-23 2022-10-18 Fujifilm Corporation Magnetic recording medium
US11501799B2 (en) 2017-09-29 2022-11-15 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11514943B2 (en) 2018-03-23 2022-11-29 Fujifilm Corporation Magnetic tape and magnetic tape device
US11514944B2 (en) 2018-03-23 2022-11-29 Fujifilm Corporation Magnetic tape and magnetic tape device

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006128068A (en) * 2004-09-29 2006-05-18 Hitachi High-Technologies Corp Ion beam processing apparatus and processing method
JP2012129212A (en) * 2004-09-29 2012-07-05 Hitachi High-Technologies Corp Ion beam processing device and processing method
JP2007188887A (en) * 2006-01-12 2007-07-26 Carl Zeiss Smt Ltd Charged particle beam device including computer which can be operated by responding to command input by user of the device, for controlling the same
JP2012252941A (en) * 2011-06-06 2012-12-20 Hitachi High-Technologies Corp Charged particle beam device and sample manufacturing method
US8933423B2 (en) 2011-06-06 2015-01-13 Hitachi High-Technologies Corporation Charged particle beam device and sample production method
JP2013089431A (en) * 2011-10-18 2013-05-13 Hitachi High-Technologies Corp Charged particle beam device and sample processing and observation method
US11631427B2 (en) 2017-06-23 2023-04-18 Fujifilm Corporation Magnetic recording medium
US11475915B2 (en) 2017-06-23 2022-10-18 Fujifilm Corporation Magnetic recording medium
US11462242B2 (en) 2017-09-29 2022-10-04 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11501799B2 (en) 2017-09-29 2022-11-15 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
CN113436654A (en) * 2017-09-29 2021-09-24 富士胶片株式会社 Magnetic tape and magnetic recording/reproducing apparatus
US11373680B2 (en) 2017-09-29 2022-06-28 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11581015B2 (en) 2018-03-23 2023-02-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11551716B2 (en) 2018-03-23 2023-01-10 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11514944B2 (en) 2018-03-23 2022-11-29 Fujifilm Corporation Magnetic tape and magnetic tape device
US11514943B2 (en) 2018-03-23 2022-11-29 Fujifilm Corporation Magnetic tape and magnetic tape device
US11361793B2 (en) 2018-03-23 2022-06-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11361792B2 (en) 2018-03-23 2022-06-14 Fujifilm Corporation Magnetic tape having characterized magnetic layer and magnetic recording and reproducing device
US11417357B2 (en) 2018-07-27 2022-08-16 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11430475B2 (en) 2018-07-27 2022-08-30 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11468911B2 (en) 2018-10-22 2022-10-11 Fujifilm Corporation Magnetic tape having characterized magnetic layer, magnetic tape cartridge, and magnetic tape apparatus
US11423935B2 (en) 2018-12-28 2022-08-23 Fujifilm Corporation Magnetic tape with particular refractive index characteristics, magnetic tape cartridge, and magnetic tape apparatus
US11443766B2 (en) 2018-12-28 2022-09-13 Fujifilm Corporation Magnetic tape with particular refractive index characteristics, magnetic tape cartridge, and magnetic tape apparatus
US11430478B2 (en) 2018-12-28 2022-08-30 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11437063B2 (en) 2019-01-31 2022-09-06 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11417358B2 (en) 2019-01-31 2022-08-16 Fujifilm Corporation Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus
US11417359B2 (en) 2019-09-17 2022-08-16 Fujifilm Corporation Magnetic recording medium having characterized magnetic layer and magnetic recording and reproducing device

Similar Documents

Publication Publication Date Title
JPH05267409A (en) Deflection circuit for surface processing and cross-section observing apparatus
EP1209737B1 (en) Method for specimen fabrication
JP2811073B2 (en) Cross section processing observation device
KR101550921B1 (en) Section processing method and its apparatus
JP2006128068A (en) Ion beam processing apparatus and processing method
JP7043057B2 (en) Cross-section processing observation method, charged particle beam device
JPH0562638A (en) Focused ion beam device
JP5105281B2 (en) Sample processing method and apparatus
JP2003229462A (en) Circuit pattern testing apparatus
JPH09259810A (en) Method for analyzing object using focusing ion beam device
JP3041403B2 (en) Charged beam cross-section processing / observation equipment
JP3260356B2 (en) Focused ion beam processing method
JP4230899B2 (en) Circuit pattern inspection method
JP4855598B2 (en) Sample preparation apparatus and sample preparation method
JP2824340B2 (en) Section processing observation method
JP2935180B2 (en) Cross-section processing image observation method
JP2002270128A (en) Focused ion beam device and method of working using the same
JP5792767B2 (en) Ion beam processing apparatus and processing method
JPH04373125A (en) Converged ion beam device and processing method using that
JP2887407B2 (en) Sample observation method using focused ion beam
JP3174316B2 (en) Focused ion beam apparatus and sample image display method using the same
JP2001185592A (en) Inspection apparatus and method of inspection
JP3275687B2 (en) 3D figure processing designation method
JPH0638329B2 (en) Focused ion beam scanning method
JPH05144900A (en) Surface processing sectional observation device