JPH05258896A - Wiggler magnet - Google Patents

Wiggler magnet

Info

Publication number
JPH05258896A
JPH05258896A JP5220592A JP5220592A JPH05258896A JP H05258896 A JPH05258896 A JP H05258896A JP 5220592 A JP5220592 A JP 5220592A JP 5220592 A JP5220592 A JP 5220592A JP H05258896 A JPH05258896 A JP H05258896A
Authority
JP
Japan
Prior art keywords
magnet
magnetic pole
electron beam
magnetic
longitudinal direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5220592A
Other languages
Japanese (ja)
Inventor
Toshimoto Suzuki
敏司 鈴木
Takuya Kusaka
卓也 日下
Kenichi Inoue
憲一 井上
Yasuhiro Wasa
泰宏 和佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP5220592A priority Critical patent/JPH05258896A/en
Publication of JPH05258896A publication Critical patent/JPH05258896A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a convergence type wiggler magnet reducing the precision relaxation of the material, magnetization, and machining of a magnet group constituting the wiggler magnet and the reduction of the converging force due to the magnetic field intensity adjustment. CONSTITUTION:Magnets constituting a magnetic pole line are divided into multiple magnet pieces 7, 8, 9 in the magnet longitudinal direction perpendicular to the electron beam incidence direction and the facing direction of different magnetic poles, and the magnetic field intensity distribution between different magnetic poles of the divided magnets is changed in the magnet longitudinal direction. A magnetic field intensity distribution changing means in the magnet longitudinal direction changes the residual magnetic flux density of the magnets, or the magnetic pole width of the divided magnets in the electron beam incidence direction is changed, and the alignment order of the magnet pieces having different magnetic pole widths in the magnet longitudinal direction is made asymmetrical for each alternate magnetic pole, or the facing magnetic pole intervals of different magnetic poles of the divided magnets are adjusted symmetrically with the center axis in the facing alignment direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,電子工業におけるリソ
グラフィ,工業科学や医療分野における分光分析,光励
起反応プロセスなどに利用することを目的とした産業用
自由電子レーザー装置あるいはSR装置などに装備され
て自由電子レーザーの発振部を構成するウィグラー磁石
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is provided in an industrial free electron laser device or SR device for use in lithography in the electronic industry, spectroscopic analysis in the industrial science and medical fields, photoexcitation reaction process, and the like. The present invention relates to a wiggler magnet that constitutes an oscillation part of a free electron laser.

【0002】[0002]

【従来の技術】自由電子レーザーは,高エネルギー電子
ビームを周期的交替磁場(ウィグラー磁場)の中に入射
して蛇行させ,そのときに生じるシンクロトロン放射
と,放射される電磁波が電子の進行方向の密度分布に変
調を与える効果とが一種の共鳴現象を起こし誘導放射作
用が生じることを利用したレーザー発生装置である。自
由電子レーザーは気体レーザーや固体レーザーとは発振
機構が異なり,高出力,高効率で任意波長が得やすいと
いう理由からも多方面にわたる産業用レーザー装置とし
ての期待が高まっている。自由電子レーザーにおける発
振波長は,電子ビームを蛇行させる交替磁場の交替周期
(ウィグラー周期)に比例し,電子ビームエネルギーの
2乗に反比例するので,適切な電子ビーム加速器の選択
と運転条件の設定によって任意の波長を得ることができ
る。また,飽和時の出力は電子ビームの電流値に比例
し,電磁波が伝搬するのは真空空間であることから,原
理的にスケーリング則が成り立ち出力に制限がない。こ
のような特質が次世代の産業用レーザー装置として期待
される所以である。上記したように,自由電子レーザー
の要部となる周期的交替磁場を形成するウィグラー磁石
の従来例構成について以下に説明する。図5は自由電子
レーザー装置の発振部の基本構成を示す概念図で,異磁
極を対向配置した磁石列からなるウィグラー磁石20の
異磁極対向間の中心軸方向に電子ビーム21を入射する
と,電子ビーム21は交替磁場により蛇行してシンクロ
トロン放射を生じ,放射光24が電子ビーム21の入射
方向に発生する。この発生した放射光24を全反射鏡2
2と出力鏡23との間で反復反射させることにより,放
射光24と電子ビーム21との相互作用による誘導放射
が生じるので,数%の透過率を有する出力鏡23から反
復反射している光を取り出してレーザーとして利用する
ことができる。上記ウィグラー磁石20の具体例として
ハルバッハ型ウィグラー磁石を図6に示す。同図に示す
ように直方体形状の磁石25を磁極方向が周期的に交替
を繰り返すように配した磁石列AとBとを異磁極が対向
するように配置して構成されている。この磁石列AとB
との対向間の中心軸方向(Z軸方向)に電子ビームが入
射されたとき,電子ビームに対して異磁極対向方向(Y
軸方向)には収束力を有するが,電子ビームの入射方向
に直交するX軸方向には収束力が作用しないことから,
なんらかの収束力を作用させないと電子ビームはX方向
に発散してしまうことになる。そこで,図6におけるZ
軸方向に入射される電子ビームに対してX,Y両軸方向
に収束力を与えることのできる収束型ウィグラー磁石の
構成として,図7,図8に示すものが提案されている。
図7(a),(b)に示すウィグラー磁石は,磁極形状
がX軸方向にテーパーを付けた台形に形成されており,
テーパーを付けることによりエッジフォーカス効果を調
整して電子ビームのX軸方向での発散力を弱め収束効果
をもたらしている。電子ビームエネルギーに対応したテ
ーパー角度θを設定することによって,X,Y両軸方向
に収束力を有する収束型ウィグラー磁石を構成すること
ができる。図8(a),(b)に示すウィグラー磁石
は,磁極形状を湾曲した形状にして異磁極対向間の両端
部分での磁場強度を中心軸位置より大きくし,電子ビー
ムのX軸方向での発散力を弱めて収束効果をもたらして
いる。
2. Description of the Related Art A free electron laser causes a high energy electron beam to enter a periodic alternating magnetic field (Wiggler magnetic field) to cause it to meander, and the synchrotron radiation generated at that time and the emitted electromagnetic wave are directed in the traveling direction of the electron. This is a laser generator that utilizes the fact that the effect of modulating the density distribution of γ is caused by a kind of resonance phenomenon and induced radiation action occurs. Free electron lasers have different oscillation mechanisms from those of gas lasers and solid-state lasers, and because of their high power, high efficiency, and the ability to easily obtain arbitrary wavelengths, there are growing expectations as a versatile industrial laser device. The oscillation wavelength in a free electron laser is proportional to the alternation period of the alternation magnetic field that causes the electron beam to meander (Wiggler period) and inversely proportional to the square of the electron beam energy, so it is necessary to select an appropriate electron beam accelerator and set operating conditions. Any wavelength can be obtained. In addition, the output at saturation is proportional to the current value of the electron beam, and since electromagnetic waves propagate in the vacuum space, the scaling law holds in principle and there is no limit to the output. This is why these characteristics are expected as next-generation industrial laser devices. As described above, the conventional example structure of the wiggler magnet that forms the periodic alternating magnetic field, which is the main part of the free electron laser, will be described below. FIG. 5 is a conceptual diagram showing the basic configuration of the oscillation part of the free electron laser device. When the electron beam 21 is incident in the central axis direction between the opposite poles of the wiggler magnet 20 composed of magnet rows with opposite poles arranged oppositely, The beam 21 meanders due to the alternating magnetic field to generate synchrotron radiation, and emitted light 24 is generated in the incident direction of the electron beam 21. The radiated light 24 generated is used for the total reflection mirror 2
The repeated reflection between the output mirror 23 and the output mirror 23 causes stimulated emission due to the interaction between the emitted light 24 and the electron beam 21, so that the light repeatedly reflected from the output mirror 23 having a transmittance of several percent. Can be taken out and used as a laser. FIG. 6 shows a Halbach-type wiggler magnet as a specific example of the wiggler magnet 20. As shown in the figure, magnets A and B in which magnets 25 having a rectangular parallelepiped shape are arranged so that their magnetic pole directions are periodically alternated are arranged so that different magnetic poles face each other. This magnet row A and B
When an electron beam is incident in the direction of the central axis (Z-axis direction) between the opposite direction of the magnetic field and the opposite direction (Y
Has a converging force in the axial direction, but does not act in the X-axis direction orthogonal to the incident direction of the electron beam,
If some focusing force is not applied, the electron beam will diverge in the X direction. Therefore, Z in FIG.
As a configuration of a converging-type Wiggler magnet capable of imparting a converging force in both X and Y axis directions to an electron beam incident in the axial direction, those shown in FIGS. 7 and 8 have been proposed.
The wiggler magnet shown in FIGS. 7 (a) and 7 (b) has a trapezoidal pole shape in which the magnetic pole shape is tapered in the X-axis direction.
By tapering, the edge focus effect is adjusted to weaken the diverging force of the electron beam in the X-axis direction and bring about the convergence effect. By setting the taper angle θ corresponding to the electron beam energy, it is possible to construct a converging-type Wiggler magnet having a converging force in both X and Y axis directions. In the wiggler magnet shown in FIGS. 8A and 8B, the magnetic pole shape is curved so that the magnetic field strength at both end portions between the opposite magnetic poles is larger than the central axis position, and the electron beam in the X-axis direction is It weakens the divergence and brings about the convergence effect.

【0003】[0003]

【発明が解決しようとする課題】ウィグラー磁石内に入
射される電子ビームに対し,入射方向に直交するX,Y
両軸方向に収束力を与えるための収束型ウィグラー磁石
の構成として上記図7,図8に示した構成は,以下に示
すような課題を有している。 (1)ウィグラー磁石を構成する永久磁石のX軸方向
(長手方向幅)の長さdは具体例として10cm程度とな
るため,永久磁石を構成する材質の一様性や着磁の一様
性を勘案すると,X軸方向の全面にわたって均一な磁気
特性を得ることが困難であること。 (2)テーパー角度を与え磁極形状を台形としたウィグ
ラー磁石(図7)では,高エネルギーの電子ビームに対
して適切なテーパー角度が1度未満となり,しかも,そ
の許容角度範囲が非常に狭くなるため,高い加工精度が
要求されること。例えば,40MeVのエネルギーをも
つ電子ビームに対しての適切なテーパー角度θは0.5
〜0.8度の範囲となる。 (3)湾曲した磁極形状としたウィグラー磁石(図8)
では,精度よく曲線加工することが困難であること。特
に,磁極を永久磁石のみで構成する場合,焼結体である
ことが多い永久磁石を曲線加工することは更に困難とな
る。 (4)異磁極対向による磁場強度を変化させるため対向
磁極間隔を変えると,上記図7,図8に示したいずれの
収束型ウィグラー磁石の場合でも,磁極間隔の変化と共
に収束力も変化して適切な収束力が損なわれてしまうこ
と。 本発明は上記課題に鑑みて創案されたもので,ウィグラ
ー磁石を構成する磁石群の材質,着磁,加工の精度緩和
と磁場強度調整による収束力低下とを少なくした収束型
ウィグラー磁石を提供することを目的とするものであ
る。
The X and Y directions orthogonal to the incident direction with respect to the electron beam incident into the wiggler magnet.
The configurations shown in FIGS. 7 and 8 as the configuration of the converging-type Wiggler magnet for giving a converging force in both axial directions have the following problems. (1) Since the length d in the X-axis direction (longitudinal width) of the permanent magnet that constitutes the wiggler magnet is about 10 cm as a specific example, the uniformity of the material that constitutes the permanent magnet and the uniformity of magnetization Considering the above, it is difficult to obtain uniform magnetic characteristics over the entire surface in the X-axis direction. (2) With the Wiggler magnet (Fig. 7) that has a trapezoidal magnetic pole shape with a taper angle, the appropriate taper angle is less than 1 degree for a high-energy electron beam, and the allowable angle range is very narrow. Therefore, high processing accuracy is required. For example, an appropriate taper angle θ for an electron beam having an energy of 40 MeV is 0.5
It is in the range of up to 0.8 degrees. (3) Wiggler magnet with curved magnetic pole shape (Fig. 8)
Then, it is difficult to process curves accurately. In particular, when the magnetic poles are composed of only permanent magnets, it becomes more difficult to curve the permanent magnets, which are often sintered bodies. (4) If the facing magnetic pole spacing is changed to change the magnetic field strength due to the facing of different magnetic poles, the focusing force also changes with the magnetic pole spacing in any of the converging-type Wiggler magnets shown in FIGS. The ability to converge is impaired. The present invention has been made in view of the above problems, and provides a converging-type Wiggler magnet in which the material of the magnet group constituting the wiggler magnet, the magnetization, the accuracy of machining, and the reduction of the focusing force due to the adjustment of the magnetic field strength are reduced. The purpose is that.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に本発明が採用する手段は,異磁極を対向配置した磁極
列により周期的交替磁場を発生させ,該周期的交替磁場
によって前記磁極列の対向配列方向の中心軸に入射され
る電子ビームを蛇行させることにより該電子ビームから
放射光を誘起させるウィグラー磁石において,前記磁極
列を構成する各磁石を電子ビーム入射方向及び異磁極の
対向する方向と直交する磁石長手方向に複数の磁石片に
分割すると共に,該分割された各磁石の異磁極対向間の
磁場強度分布を前記磁石長手方向に異ならせてなること
を特徴とするウィグラー磁石として構成される。上記磁
石長手方向の磁場強度分布を異ならせる手段は,分割さ
れた各磁石の残留磁束密度を異ならせる,あるいは,分
割された各磁石の電子ビーム入射方向の磁極幅を異に
し,該磁極幅の異なる各磁石片の磁石長手方向の配列順
序を交替磁極毎に反対称にする,あるいは,分割された
各磁石の異磁極が対向する磁極間隔を電子ビーム入射方
向の中心軸に対し対称的に変化させることにより実施さ
れる。
In order to achieve the above object, the means adopted by the present invention is to generate a periodic alternating magnetic field by a magnetic pole array in which different magnetic poles are arranged to face each other, and to generate the periodic alternating magnetic field by the periodic alternating magnetic field. In a wiggler magnet for inducing radiated light from an electron beam incident on the central axis of the opposing arrangement direction, the magnets forming the magnetic pole row are opposed to each other in the electron beam incident direction and different magnetic poles. A wiggler magnet characterized in that it is divided into a plurality of magnet pieces in the magnet longitudinal direction orthogonal to the direction, and the magnetic field strength distribution between the opposed magnetic poles of each of the divided magnets is made different in the magnet longitudinal direction. Composed. The means for varying the magnetic field strength distribution in the magnet longitudinal direction varies the residual magnetic flux density of each of the divided magnets, or varies the magnetic pole width of each of the divided magnets in the electron beam incident direction to determine the magnetic pole width. The arrangement order of the different magnet pieces in the longitudinal direction of the magnets is made anti-symmetric for each alternating magnetic pole, or the magnetic pole interval where the different magnetic poles of the divided magnets face each other is changed symmetrically with respect to the central axis in the electron beam incident direction. It is carried out by

【0005】[0005]

【作用】本発明によれば,磁極列を構成する各磁石を電
子ビーム入射方向及び異磁極の対向する方向と直交する
磁石長手方向に複数の磁石片に分割することにより,該
磁石片を所定配列で集合させた磁石群としてウィグラー
磁石を構成することになり,磁石片の体積は小さくなる
ため,均一な磁気特性を有する磁石を得ることが容易に
なる。この各磁極片の異磁極を対向させて形成される磁
場の磁場強度分布を磁石長手方向に異ならせることによ
り,異磁極対向間に入射される電子ビームに前記磁石長
手方向の収束力を与えることができる。上記磁石長手方
向の磁場強度分布を異ならせるために,磁石長手方向に
配列される磁石片の残留磁束密度を異ならせる実施手段
によれば,電子ビーム入射方向に対し直交する方向の磁
場強度分布を電子ビーム入射中心軸から外に遠ざかるほ
ど磁場強度が高くなる磁場勾配にすれば,磁石長手方向
で湾曲させたと同様の作用により電子ビームに対する収
束力を高めることができる。また,各磁石片の電子ビー
ム入射方向の磁極幅を異にし,且つ磁極幅の異なる磁石
片の磁石長手方向の配列順序を交替磁極毎に反対称にす
ることにより,磁石長手方向にテーパー角度を設けた磁
石の配列と同様の作用によって電子ビームに対する収束
力を高めることができる。また,各磁石片の異磁極が対
向する磁極間隔を電子ビーム入射方向の中心軸に対し対
称的に変化させることにより,電子ビーム入射方向に対
し直交する方向の磁場強度分布を電子ビーム入射中心軸
から外に遠ざかるほど磁場強度が高くなる磁場勾配にす
れば,磁石長手方向で湾曲させたと同様の作用により電
子ビームに対する収束力を高めることができ,磁極間隔
の調整によって最適の収束力を求めることもできる。
According to the present invention, each magnet constituting the magnetic pole array is divided into a plurality of magnet pieces in the magnet longitudinal direction orthogonal to the electron beam incident direction and the facing direction of the different magnetic poles, so that the magnet pieces are predetermined. Since the Wiggler magnet is configured as a group of magnets assembled in an array and the volume of the magnet pieces is reduced, it is easy to obtain magnets having uniform magnetic characteristics. By making the magnetic field strength distribution of the magnetic field formed by opposing the different magnetic poles of each pole piece different in the longitudinal direction of the magnet, a converging force in the longitudinal direction of the magnet is given to the electron beam incident between the opposing magnetic poles. You can In order to make the magnetic field strength distribution in the magnet longitudinal direction different, in order to make the residual magnetic flux density of the magnet pieces arranged in the magnet longitudinal direction different, the magnetic field strength distribution in the direction orthogonal to the electron beam incident direction is If the magnetic field gradient is such that the magnetic field strength increases as the distance from the electron beam entrance central axis increases, the focusing force for the electron beam can be increased by the same action as when the magnet is curved in the longitudinal direction. Also, by making the magnetic pole widths of the respective magnet pieces different in the electron beam incident direction and making the arrangement order of the magnet pieces of different magnetic pole widths in the magnet longitudinal direction antisymmetric for each alternate magnetic pole, the taper angle in the magnet longitudinal direction can be made. The focusing force for the electron beam can be increased by the same action as the arrangement of the provided magnets. In addition, the magnetic field intensity distribution in the direction orthogonal to the electron beam incident direction is changed by changing the magnetic pole interval where the different magnetic poles of each magnet piece face each other symmetrically with respect to the central axis of the electron beam incident direction. If the magnetic field gradient is such that the magnetic field strength increases as the distance from the target increases, the focusing force for the electron beam can be increased by the same action as bending in the longitudinal direction of the magnet, and the optimum focusing force can be obtained by adjusting the magnetic pole spacing. You can also

【0006】[0006]

【実施例】以下,添付図面を参照して本発明を具体化し
た実施例につき説明し,本発明の理解に供する。尚,以
下の実施例は本発明を具体化した一例であって,本発明
の技術的範囲を限定するものではない。ここに,図1は
本発明の第1実施例に係るウィグラー磁石の構成を示す
斜視図,図2は本発明の第2実施例に係るウィグラー磁
石の磁極配列を示す部分平面図,図3は本発明の第3実
施例に係るウィグラー磁石の構成を示す要部斜視図,図
4は本発明の第4実施例に係るウィグラー磁石の構成を
示す要部斜視図である。図1に示す本発明の第1実施例
に係るウィグラー磁石1は,磁石片7,8,9に分割さ
れた永久磁石6をZ軸方向に磁極方向が周期的に交替す
るように配列して,電子ビーム入射方向(Z軸方向)軸
を中心軸にして,Y軸方向に磁石列Aと磁石列Bとを異
磁極が周期的に交替して対向するように配置されてい
る。各磁石片7,8,9の残留磁束密度は,X軸方向の
両端に位置する磁石片7,9が大きく,中央に位置する
磁石片が小さく配列されている。このようにX軸方向の
磁場強度分布を電子ビーム入射方向に対して両側で大き
くすることによって,通過する電子ビームに収束作用を
与えることができる。上記のように個々の磁石6を磁石
片7,8,9に分割することによって,X軸方向に磁場
強度分布を変化させ,電子ビームに収束作用を与える効
果を多様に実施することができる。上記は磁石片7,
8,9の残留磁束密度の変化であるが,磁石片7,8,
9毎の磁極幅の変化,異磁極対向する間隔の変化によっ
てもX軸方向に磁場強度分布の変化を与えることができ
る。図2に第2実施例として示すウィグラー磁石2は,
磁石列AまたはBの部分を示す平面図で,図1中のX−
Y平面内のa−o−b平面に相当する。異磁極が磁石列
AとBとで対向する磁石片7,8,9のZ軸方向幅を変
化させ,さらに,磁極幅変化の配列が交互に逆配置され
ている。このように磁極幅に変化を与えることによっ
て,磁場強度分布がX軸方向に変化し,エッジフォーカ
ス作用によってZ軸方向に入射される電子ビームに収束
作用を与えることができる。先に従来例の図7で示した
テーパー角度を有する磁極構造と同様の電子ビームに対
しての収束作用をもたらすものであるが,磁石が磁石片
7,8,9として分割されているため,矩形形状の磁石
片7,8,9の加工や磁気特性の均一化が得やすい利点
がある。
Embodiments of the present invention will be described below with reference to the accompanying drawings for the understanding of the present invention. The following embodiments are examples of embodying the present invention and do not limit the technical scope of the present invention. 1 is a perspective view showing the structure of a wiggler magnet according to a first embodiment of the present invention, FIG. 2 is a partial plan view showing a magnetic pole arrangement of a wiggler magnet according to a second embodiment of the present invention, and FIG. FIG. 4 is a perspective view showing a constitution of a wiggler magnet according to a third embodiment of the present invention, and FIG. 4 is a perspective view showing a constitution of a wiggler magnet according to a fourth embodiment of the present invention. In the wiggler magnet 1 according to the first embodiment of the present invention shown in FIG. 1, permanent magnets 6 divided into magnet pieces 7, 8 and 9 are arranged so that the magnetic pole directions are periodically alternated in the Z-axis direction. The magnet array A and the magnet array B are arranged such that the different magnetic poles alternately alternate and face each other in the Y-axis direction with the axis of the electron beam incident direction (Z-axis direction) as the central axis. Regarding the residual magnetic flux densities of the magnet pieces 7, 8 and 9, the magnet pieces 7 and 9 located at both ends in the X-axis direction are large, and the magnet piece located in the center is arranged small. By thus increasing the magnetic field strength distribution in the X-axis direction on both sides with respect to the electron beam incident direction, it is possible to give a converging action to the passing electron beam. By dividing each magnet 6 into the magnet pieces 7, 8 and 9 as described above, it is possible to change the magnetic field strength distribution in the X-axis direction and variously exert the effect of converging the electron beam. The above is the magnet piece 7,
As for the change of the residual magnetic flux density of Nos. 8 and 9, the magnet pieces 7, 8,
The magnetic field strength distribution can be changed in the X-axis direction also by changing the magnetic pole width for each 9 and changing the distance between different magnetic poles. The wiggler magnet 2 shown as a second embodiment in FIG.
FIG. 2 is a plan view showing a portion of the magnet array A or B, which is indicated by X- in FIG.
It corresponds to the aob plane in the Y plane. The different magnetic poles change the widths of the magnet pieces 7, 8 and 9 facing each other in the magnet rows A and B in the Z-axis direction, and further, the arrangements of the magnetic pole width changes are alternately reversed. By changing the magnetic pole width in this way, the magnetic field strength distribution changes in the X-axis direction, and the electron beam incident in the Z-axis direction can be converged by the edge focus action. The magnetic pole structure having the taper angle shown in FIG. 7 of the conventional example brings about a focusing action for an electron beam, but since the magnet is divided into magnet pieces 7, 8 and 9, There is an advantage that it is easy to process the rectangular magnet pieces 7, 8 and 9 and to make the magnetic characteristics uniform.

【0007】図3に第3実施例として示すウィグラー磁
石3は,磁石片7,8,9の異磁極対向方向(Y軸方
向)の磁極間隔を調整可能としたもので,磁極間隔は電
子ビーム入射方向(Z軸方向)を中心軸として,X軸方
向とY軸方向とに対称的に変化させて調整する。Z軸方
向の両側に位置する磁石片7,9の異磁極対向間隔を少
なく,中央の磁石片8の異磁極対向間隔を大きくするこ
とによって,磁場強度分布が電子ビーム入射方向の両側
で磁場強度が大きくなり,第1実施例(図1)で示した
磁石片7,8,9毎の残留磁束密度の変化,あるいは従
来例で示した湾曲磁極(図8)と同等の電子ビームに対
する収束作用が発揮される。しかも,対向磁極間隔が調
整可能であるので,収束作用を調整して最適の磁極間隔
を選択することができる。図4に第4実施例として示す
ウィグラー磁石4は,永久磁石としてプラセオジウム−
鉄−ボロン磁石を用いたもので,先の第1〜3実施例に
おいて示した磁石片7,8,9をX方向磁石列毎に一体
化して製作したものである。プラセオジウム−鉄−ボロ
ン磁石は圧延工程で磁化方向を配向させるもので,焼結
体である従来の希土類磁石に比べ機械加工がしやすい特
徴を有する。同図に示すように着磁前に幅数cm,厚さ数
cm,長さ2〜3mの部分磁石10,11,12を製作
し,これを図示するような矩形形状の磁極に加工する。
磁極形状の配列は,先に図2に示した磁極幅を変化させ
た実施例と同様に,部分磁石10,11,12のZ軸方
向の磁極幅を変化させ,且つ変化幅が交互に配列され
る。これを部分磁石10,11,12毎に製作して,着
磁後図示するように配列してウィグラー磁石4が完成さ
れる。以上実施例として示した各ウィグラー磁石1〜4
は,いずれも磁石長手方向に3分割して磁石片を形成し
ているが,分割数は最適の電子ビーム収束作用が得ら
れ,且つ加工,調整の難度を考慮して適切な分割数を選
ぶことができる。
A wiggler magnet 3 shown as a third embodiment in FIG. 3 is capable of adjusting the magnetic pole spacing of the magnet pieces 7, 8 and 9 in the different magnetic pole facing direction (Y-axis direction). Adjustment is performed by changing symmetrically in the X-axis direction and the Y-axis direction with the incident direction (Z-axis direction) as the central axis. By reducing the distance between the different magnetic poles of the magnet pieces 7 and 9 located on both sides in the Z-axis direction and increasing the distance between the different magnetic poles of the central magnet piece 8, the magnetic field strength distribution is increased on both sides in the electron beam incident direction. Becomes larger, the change in the residual magnetic flux density for each of the magnet pieces 7, 8, 9 shown in the first embodiment (FIG. 1), or the focusing action on the electron beam equivalent to the curved magnetic pole (FIG. 8) shown in the conventional example. Is demonstrated. Moreover, since the opposing magnetic pole spacing can be adjusted, the focusing action can be adjusted to select the optimum magnetic pole spacing. A wiggler magnet 4 shown as a fourth embodiment in FIG. 4 is a praseodymium magnet as a permanent magnet.
An iron-boron magnet is used, and the magnet pieces 7, 8 and 9 shown in the first to third embodiments are integrally manufactured for each X-direction magnet array. The praseodymium-iron-boron magnet is oriented in the direction of magnetization in the rolling process, and has the characteristic of being easier to machine than the conventional rare earth magnet that is a sintered body. As shown in the figure, the width is several cm and the thickness is several before magnetization.
The partial magnets 10, 11 and 12 having a cm length of 2 to 3 m are manufactured and processed into rectangular magnetic poles as illustrated.
The arrangement of the magnetic pole shapes is such that the magnetic pole widths of the partial magnets 10, 11 and 12 in the Z-axis direction are changed and the change widths are alternately arranged, as in the embodiment in which the magnetic pole width is changed as shown in FIG. To be done. The partial magnets 10, 11 and 12 are manufactured, magnetized and arranged as shown in the figure to complete the wiggler magnet 4. Each of the wiggler magnets 1 to 4 shown as examples above
In each case, the magnet piece is formed by dividing the magnet into three pieces in the longitudinal direction of the magnet, but the number of divisions is such that an optimum electron beam converging action can be obtained, and an appropriate number of divisions is selected in consideration of the difficulty of processing and adjustment. be able to.

【0008】[0008]

【発明の効果】以上の説明の通り本発明によれば,磁極
列を構成する各磁石を電子ビーム入射方向及び異磁極の
対向する方向と直交する磁石長手方向に複数の磁石片に
分割することにより,該磁石片を所定配列で集合させた
磁石群としてウィグラー磁石を構成することになり,磁
石片の体積は小さくなるため,均一な磁気特性を有する
磁石を得ることが容易になる。この各磁極片の異磁極を
対向させて形成される磁場の磁場強度分布を磁石長手方
向に異ならせることにより,異磁極対向間に入射される
電子ビームに前記磁石長手方向の収束力を与えることが
できる。上記磁石長手方向の磁場強度分布を異ならせる
ために,磁石長手方向に配列される磁石片の残留磁束密
度を異ならせる実施手段によれば,電子ビーム入射方向
に対し直交する方向の磁場強度分布を電子ビーム入射中
心軸から外に遠ざかるほど磁場強度が高くなる磁場勾配
にすれば,磁石長手方向で湾曲させたと同様の作用によ
り電子ビームに対する収束力を高めることができる。ま
た,各磁石片の電子ビーム入射方向の磁極幅を異にし,
且つ磁極幅の異なる磁石片の磁石長手方向の配列順序を
交替磁極毎に反対称にすることにより,磁石長手方向に
テーパー角度を設けた磁石の配列と同様の作用によって
電子ビームに対する収束力を高めることができる。ま
た,各磁石片の異磁極が対向する磁極間隔を対向配列方
向の中心軸に対し対称的に調整することにより,電子ビ
ーム入射方向に対し直交する方向の磁場強度分布を電子
ビーム入射中心軸から外に遠ざかるほど磁場強度が高く
なる磁場勾配にすれば,磁石長手方向で湾曲させたと同
様の作用により電子ビームに対する収束力を高めること
ができ,磁極間隔の調整によって最適の収束力を求める
こともできる。
As described above, according to the present invention, each magnet constituting the magnetic pole array is divided into a plurality of magnet pieces in the magnet longitudinal direction orthogonal to the electron beam incident direction and the opposite direction of the different magnetic poles. As a result, the Wiggler magnet is configured as a magnet group in which the magnet pieces are assembled in a predetermined arrangement, and the volume of the magnet pieces is reduced, so that it is easy to obtain a magnet having uniform magnetic characteristics. By making the magnetic field strength distribution of the magnetic field formed by opposing the different magnetic poles of each pole piece different in the longitudinal direction of the magnet, a converging force in the longitudinal direction of the magnet is given to the electron beam incident between the opposing magnetic poles. You can In order to make the magnetic field strength distribution in the magnet longitudinal direction different, in order to make the residual magnetic flux density of the magnet pieces arranged in the magnet longitudinal direction different, the magnetic field strength distribution in the direction orthogonal to the electron beam incident direction is If the magnetic field gradient is such that the magnetic field strength increases as the distance from the electron beam entrance central axis increases, the focusing force for the electron beam can be increased by the same action as when the magnet is curved in the longitudinal direction. Also, the magnetic pole width of each magnet piece in the electron beam incident direction is different,
Further, by making the arrangement order of the magnet pieces having different magnetic pole widths in the magnet longitudinal direction antisymmetric for each alternate magnetic pole, the focusing force for the electron beam is enhanced by the same action as the arrangement of the magnets having the taper angle in the magnet longitudinal direction. be able to. In addition, by adjusting the magnetic pole spacing where the different magnetic poles of each magnet piece face each other symmetrically with respect to the central axis in the facing arrangement direction, the magnetic field strength distribution in the direction orthogonal to the electron beam incident direction can be adjusted from the electron beam incident central axis. When the magnetic field gradient is such that the magnetic field strength increases as it moves away from the outside, the focusing force for the electron beam can be increased by the same action as bending the magnet in the longitudinal direction of the magnet, and the optimal focusing force can be obtained by adjusting the magnetic pole spacing. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1実施例に係るウィグラー磁石の
斜視図。
FIG. 1 is a perspective view of a wiggler magnet according to a first embodiment of the present invention.

【図2】 本発明の第2実施例に係るウィグラー磁石の
要部平面図。
FIG. 2 is a plan view of a main portion of a wiggler magnet according to a second embodiment of the present invention.

【図3】 本発明の第3実施例に係るウィグラー磁石の
要部斜視図。
FIG. 3 is a perspective view of a main part of a wiggler magnet according to a third embodiment of the present invention.

【図4】 本発明の第4実施例に係るウィグラー磁石の
要部斜視図。
FIG. 4 is a perspective view of a main portion of a wiggler magnet according to a fourth embodiment of the present invention.

【図5】 ウィグラー磁石によるレーザー発振の基本構
成を示す概念図。
FIG. 5 is a conceptual diagram showing a basic configuration of laser oscillation by a wiggler magnet.

【図6】 従来例ハルバッハ型ウィグラー磁石の構成を
示す斜視図。
FIG. 6 is a perspective view showing a configuration of a conventional Halbach-type wiggler magnet.

【図7】 従来例のテーパー磁極による収束型ウィグラ
ー磁石の構成を示す斜視図。
FIG. 7 is a perspective view showing a configuration of a converging-type Wiggler magnet using a tapered magnetic pole of a conventional example.

【図8】 従来例の湾曲磁極による収束型ウィグラー磁
石の構成を示す斜視図。
FIG. 8 is a perspective view showing a configuration of a converging-type Wiggler magnet using a curved magnetic pole of a conventional example.

【符号の説明】[Explanation of symbols]

1,2,3,4──ウィグラー磁石 7,8,9──磁石片 X──磁石長手方向 Y──異磁極対向方向 Z──電子ビーム入射方向(磁極配列方向) 1,2,3,4 --- Wiggler magnet 7,8,9--Magnet piece X--Magnet longitudinal direction Y--Different magnetic pole facing direction Z--Electron beam incident direction (Magnetic pole array direction)

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01S 3/30 A 8934−4M H05H 13/04 F 9014−2G ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Office reference number FI technical display location H01S 3/30 A 8934-4M H05H 13/04 F 9014-2G

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 異磁極を対向配置した磁極列により周期
的交替磁場を発生させ,該周期的交替磁場によって前記
磁極列の対向配列方向の中心軸に入射される電子ビーム
を蛇行させることにより該電子ビームから放射光を誘起
させるウィグラー磁石において,前記磁極列を構成する
各磁石を電子ビーム入射方向及び異磁極の対向する方向
と直交する磁石長手方向に複数の磁石片に分割すると共
に,該分割された各磁石の異磁極対向間の磁場強度分布
を前記磁石長手方向に異ならせてなることを特徴とする
ウィグラー磁石。
1. A periodic alternating magnetic field is generated by a magnetic pole array in which different magnetic poles are opposed to each other, and the electron beam incident on the central axis of the magnetic pole array in the opposing arrangement direction is meandered by the periodic alternating magnetic field. In a Wiggler magnet for inducing radiated light from an electron beam, each magnet constituting the magnetic pole array is divided into a plurality of magnet pieces in the magnet longitudinal direction orthogonal to the electron beam incident direction and the opposite direction of different magnetic poles, and the division A magnetic field strength distribution between different magnets facing each other is different in the longitudinal direction of the magnet.
【請求項2】 上記分割された各磁石の残留磁束密度を
異ならせることにより,上記磁石長手方向の磁場強度分
布を異ならせた請求項1記載のウィグラー磁石。
2. The wiggler magnet according to claim 1, wherein the magnetic field strength distribution in the longitudinal direction of the magnet is varied by varying the residual magnetic flux density of each of the divided magnets.
【請求項3】 上記分割された各磁石の電子ビーム入射
方向の磁極幅を異にし,該磁極幅の異なる各磁石片の磁
石長手方向の配列順序を交替磁極毎に反対称にすること
により上記磁石長手方向の磁場強度分布を異ならせた請
求項1記載のウィグラー磁石。
3. The magnetic pole widths of the divided magnets in the electron beam incident direction are made different, and the arrangement order of the magnet pieces having different magnetic pole widths in the magnet longitudinal direction is made antisymmetric for each alternating magnetic pole. The wiggler magnet according to claim 1, wherein the magnetic field strength distribution in the longitudinal direction of the magnet is different.
【請求項4】 上記分割された各磁石の異磁極が対向す
る磁極間隔を電子ビーム入射方向の中心軸に対し対称的
に変化させることにより上記磁石長手方向の磁場強度分
布を異ならせた請求項1記載のウィグラー磁石。
4. The magnetic field strength distribution in the longitudinal direction of the magnets is varied by changing the magnetic pole interval in which the different magnetic poles of the divided magnets face each other symmetrically with respect to the central axis in the electron beam incident direction. 1. The wiggler magnet according to 1.
JP5220592A 1992-03-11 1992-03-11 Wiggler magnet Pending JPH05258896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5220592A JPH05258896A (en) 1992-03-11 1992-03-11 Wiggler magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5220592A JPH05258896A (en) 1992-03-11 1992-03-11 Wiggler magnet

Publications (1)

Publication Number Publication Date
JPH05258896A true JPH05258896A (en) 1993-10-08

Family

ID=12908278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5220592A Pending JPH05258896A (en) 1992-03-11 1992-03-11 Wiggler magnet

Country Status (1)

Country Link
JP (1) JPH05258896A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012195048A (en) * 2004-07-23 2012-10-11 Data Security Inc Permanent magnet bulk demagnetization device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012195048A (en) * 2004-07-23 2012-10-11 Data Security Inc Permanent magnet bulk demagnetization device

Similar Documents

Publication Publication Date Title
US5019863A (en) Wedged-pole hybrid undulator
US4800353A (en) Micropole undulator
US4876687A (en) Short-period electron beam wiggler
JPH0793200B2 (en) Multipolar wiggler
JP6393929B1 (en) Magnet for undulator, undulator and synchrotron radiation generator
Petrosyan et al. Undulator with permanent ferrimagnetic magnets
JPH05258896A (en) Wiggler magnet
US5099217A (en) Constant gap cladded twister
CA1291817C (en) Short-period electron beam wiggler
JP2971179B2 (en) Wiggler magnet
Smolyakov Planar microundulator with rectangular grooved poles
JPH0529098A (en) Wiggler magnet
Jong et al. IMP, a free electron laser amplifier for plasma heating in the Microwave Tokamak Experiment
JPS6015098B2 (en) Magnetic field generation method and device
JPH10270197A (en) Permanent magnet type deflecting magnet device and electron storage ring
US7046703B2 (en) Bessel free electron laser device
Sircilli et al. Design of a hybrid undulator for free-electron lasers
KR0147039B1 (en) 4pole electromagnet of accelerator
Marshall et al. Wake Fields Excited in a Micron‐Scale Dielectric Rectangular Structure by a Train of Femtosecond Bunches
JPH02215177A (en) Hybrid wiggler/undulator
Cremer et al. Planar permanent magnet multipoles: measurements and configurations
JP3480524B2 (en) Magnetic field generator for insertion light source emitting white light with narrow divergence angle and method of emitting white light
JPH0660998A (en) Convergent type multipolar undulator
JP4106500B2 (en) Insertion type polarization generator
JPH03141615A (en) Solid mass iron core electromagnet