JPH0525826B2 - - Google Patents

Info

Publication number
JPH0525826B2
JPH0525826B2 JP57140992A JP14099282A JPH0525826B2 JP H0525826 B2 JPH0525826 B2 JP H0525826B2 JP 57140992 A JP57140992 A JP 57140992A JP 14099282 A JP14099282 A JP 14099282A JP H0525826 B2 JPH0525826 B2 JP H0525826B2
Authority
JP
Japan
Prior art keywords
alkali metal
silica
alkali
sodium
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57140992A
Other languages
Japanese (ja)
Other versions
JPS5930748A (en
Inventor
Hiroshi Isozaki
Sadayuki Iwamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP14099282A priority Critical patent/JPS5930748A/en
Publication of JPS5930748A publication Critical patent/JPS5930748A/en
Publication of JPH0525826B2 publication Critical patent/JPH0525826B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、無収縮結合材、詳しくは、従来にな
い全く新しいタイプのアルカリ−シリカ反応によ
る無収縮結合材に関する。 従来、収縮補償セメントとは、生石灰が水和し
て消石灰になるか、カルシウムアルミネートある
いは無水カルシウムサルホアルミネート(アウイ
ン)とセツコウと石灰が水和反応しエトリンガイ
ドとよばれる多水和結晶物を生成するときの体積
膨張を利用するものであつた。 本発明は、これらと異なつたメカニズム、つま
り、アルカリ−シリカ反応により膨潤して、発生
した膨張圧を利用した無収縮結合材を提供するも
のである。 即ち、本発明は、ブレーン比表面積1000cm2/g
以上の潜在水硬性物質、ブレーン比表面積200〜
6000cm2/gのシリカ物質並びにアルカリ金属水酸
化物及び/又はアルカリ金属塩からなり、シリカ
物質とアルカリ金属水酸化物及び/又はアルカリ
金属塩のR2O/SiO2モル比(酸化物換算、ただ
し、Rはアルカリ金属)が0.05〜5.0であること
を特徴とする無収縮結合材である。 以下本発明を説明する。 本発明に係る潜在水硬性物質とは、具体的に
は、高炉スラグや転炉スラグのような鉄鋼スラ
グ、フライアツシユであるが、本発明では、潜在
水硬性の高い高炉水砕スラグの使用が最も好まし
い。 高炉水砕スラグは、ガラス化率が50%以上、塩
基度=(CaO+MgO+Al2O3)/SiO2が1.5以上で
あるものが好ましい。 潜在水硬性物質の粉末度は、ブレーン比表面積
で1000cm2/g以上は必要であり、2000〜6000cm2
gが好ましい。粉末度が1000cm2/g未満であると
強度発現が充分でなく、8000cm2/g以上では経済
的でないばかりでなく、乾燥収縮が大きくなる傾
向となる。 本発明に係るシリカ物質としては、反応性シリ
カやアルカリ金属珪酸塩などであり、具体的に
は、活性シリカ、シリカフラワー、オパール、粉
末又は液状の1・2・3・4号水ガラス、メタ珪
酸ナトリウム、オルソ珪酸ナトリウム、及びピロ
珪酸ナトリウム等が挙げられ、なかでも、R2O/
SiO2のモル比が1.0以下のものが好ましい。 シリカ物質の粉末度は、ブレーン比表面積で
200〜6000cm2/gであり、300〜4000cm2/gが好ま
しい。粉末度が200cm2/g未満ではアルカリ−シ
リケートゲルの生成量は少なく、膨張量も小さ
く、乾燥収縮低減効果は少ない。逆に、6000cm2
gを越えると初期に反応が進みすぎ、膨張にあま
り寄与しなくなる傾向がある。 本発明に係るアルカリ金属水酸化物及び/又は
アルカリ金属塩とは、潜在水硬性を刺激して水和
反応を保進させる物質であり、具体的には、アル
カリ金属の水酸化物、炭酸塩、炭酸水素塩、硫酸
塩、亜硫酸塩、硝酸塩、亜硝酸塩、塩化物、アル
ミン酸塩、及びリン酸塩等が挙げられ、膨張性を
付与する本発明では、特にアルカリ金属水酸化物
の使用が好ましい。 アルカリ金属塩としては、リチウム塩、ナトリ
ウム塩、及びカリウム塩があるが、ナトリウム塩
が工業的に最も好ましい。 水酸イオン(OH-)の存在下で、シリカ
(SiO2)はアルカリ金属イオン(Na+,K+等)と
反応しアルカリ−シリケートゲルを生成する。そ
の際、R2O/SiO2モル比は変化するが、水をほぼ
無制限に取り込み膨潤し膨張力を生ずる。 膨張力を生ずる過程は2つあり、1つはアルカ
リ−シリケート反応によりアルカリ−シリケート
ゲルを形成する過程であり、もう一つは水を取り
込み膨潤する過程である。 このようにシリカ物質と、アルカリ金属水酸化
物及び/又はアルカリ金属塩(以下アルカリ化合
物という)は、アルカリ−シリケート反応し、シ
リカ物質の粉末度、シリカ物質とアルカリ化合物
との組成比、即ち、R2O/SiO2のモル比、添加水
量、養生温度、及び湿度等により、アルカリ−シ
リケート反の反応性は変化する。 シリカ物質の反応性や比表面積が大きすぎる
と、アルカリ−シリケートゲルの生成量は増える
が、反応自体が短期間に終了し膨張にはあまり寄
与しない傾向がある。逆に、反応性や比表面積が
小さすぎるとアルカリ−シリケートゲルの発生量
は少なすぎて膨張力を生じない傾向がある。 特に、本発明では、シリカ物質とアルカリ化合
物との組成比、即ち、R2O/SiO2のモル比は0.05
〜5.0であり、0.1〜5.0が好ましい。0.05〜5.0の範
囲外では、膨張力を生ずるアルカリ−シリケート
ゲルの生成量は少なくなり、強度も低下するので
好ましくない。 シリカ物質とアルカリ化合物の使用量は、潜在
水硬性物質100重量部に対して、両者の合計量で
1〜100重量部程度が好ましい。 本発明の無収縮結合材を製造するに当たり、前
記のシリカ物質とアルカリ化合物と共に、セメン
ト減水剤を併用することも可能である。 セメント減水剤としては、一般に用いられるも
のの使用が可能であり、特に、分子内にスルホン
基を有する化合物、オキシ有機酸、及び糖類等が
好ましく、これらのうち一種又は二種以上を選ん
で使用することが好ましい。 セメント減水剤を使用する場合その使用量は、
潜在水硬性物質100重量部に対して、0.01〜6重
量部が好ましく、0.05〜3重量部がより好まし
い。 本発明は、従来と異なつたメカニズムを利用し
た無収縮結合材であり、乾燥収縮が大きいとされ
ている従来のセメントの欠点を改良し、長さ変化
率の変動の少ない画期的な結合材を提供するもの
である。 本発明の無収縮結合材の用途としては、セメン
ト製品全般に適用することができるが、特に、ひ
び割れや乾燥収縮の少ないことが要求される製品
や場所に使用することが好ましい。 以下、実施例で本発明をさらに説明する。 実施例 1 第1表の配合の結合材を用いて、結合材400
Kg/m3、水160Kg/m3、砂717Kg/m3、及び砂利
1087Kg/m3の単位量で、水−結合材比40%、細骨
材率40%、及び最大骨材寸法25mmのコンンクリー
ト配合によりコンクリートを混練し、10φ×20cm
の圧縮強度測定用供試体と10×10×40cmの長さ変
化測定用の供試体を作製した。 長さ変化は、20℃、80%RHの気乾養生と、20
℃の水中養生を行ない、コンパレータ法によつて
基長は材令1日で測定した。 また、圧縮強度は、20℃、80%RHの養生で測
定したものである。それらの結果を第2表に示
す。 結合材100重量部に対して、セメント減水剤と
してリグニンスルホン酸ナトリウムを0.2重量部、
グルコン酸ソーダを0.1重量部添加した。 〈使用材料〉 潜在水硬性物質A:高炉スラグ B:フライアツシユ シリカ物質 C:オパール D:3号珪酸ナトリウム E:メタ珪酸ナトリウム アルカリ化合物F:水酸化ナトリウム G:炭酸化ナトリウム
The present invention relates to a non-shrinkage bonding material, and more particularly to a completely new type of non-shrinkage bonding material based on an alkali-silica reaction. Conventionally, shrinkage-compensating cement is either quicklime hydrated to become slaked lime, or calcium aluminate or anhydrous calcium sulfoaluminate (auin), lime, and lime undergo a hydration reaction to produce polyhydrated crystals called ettrin guide. It utilized volumetric expansion when creating objects. The present invention provides a non-shrinkage bonding material that uses a different mechanism, namely, swelling due to an alkali-silica reaction and utilizing the generated expansion pressure. That is, the present invention has a Blaine specific surface area of 1000 cm 2 /g.
Potential hydraulic substances with a Blaine specific surface area of 200~
It consists of 6000 cm 2 /g of silica material and an alkali metal hydroxide and/or alkali metal salt, and the R 2 O/SiO 2 molar ratio of the silica material and the alkali metal hydroxide and/or alkali metal salt (in terms of oxide, However, it is a non-shrinkage bonding material characterized in that R (alkali metal) is 0.05 to 5.0. The present invention will be explained below. Specifically, the latent hydraulic substance according to the present invention is steel slag such as blast furnace slag and converter slag, and fly ash, but in the present invention, it is most preferable to use granulated blast furnace slag, which has high latent hydraulic properties. preferable. The granulated blast furnace slag preferably has a vitrification rate of 50% or more and a basicity=(CaO+MgO+Al 2 O 3 )/SiO 2 of 1.5 or more. The powder degree of the latent hydraulic substance is required to be 1000cm 2 /g or more in Blaine specific surface area, and 2000 to 6000cm 2 /g.
g is preferred. If the fineness is less than 1000 cm 2 /g, strength development will not be sufficient, and if it is more than 8000 cm 2 /g, it will not only be uneconomical but also tend to have large drying shrinkage. The silica substances according to the present invention include reactive silica and alkali metal silicates, and specifically, activated silica, silica flour, opal, powdered or liquid No. 1, 2, 3, and 4 water glass, and methane. Examples include sodium silicate, sodium orthosilicate, and sodium pyrosilicate, among which R 2 O/
It is preferable that the molar ratio of SiO 2 is 1.0 or less. The fineness of silica material is determined by the Blaine specific surface area.
It is 200 to 6000 cm 2 /g, preferably 300 to 4000 cm 2 /g. When the powderiness is less than 200 cm 2 /g, the amount of alkali-silicate gel produced is small, the amount of expansion is small, and the effect of reducing drying shrinkage is small. Conversely, 6000cm 2 /
If it exceeds g, the reaction tends to progress too much in the initial stage and does not contribute much to the expansion. The alkali metal hydroxide and/or alkali metal salt according to the present invention is a substance that stimulates latent hydraulic properties and promotes hydration reaction. Specifically, alkali metal hydroxide, carbonate, etc. , bicarbonates, sulfates, sulfites, nitrates, nitrites, chlorides, aluminates, phosphates, etc. In the present invention, which imparts expandability, the use of alkali metal hydroxides is particularly recommended. preferable. Alkali metal salts include lithium salts, sodium salts, and potassium salts, and sodium salts are industrially most preferred. In the presence of hydroxide ions (OH - ), silica (SiO 2 ) reacts with alkali metal ions (Na + , K + , etc.) to form an alkali-silicate gel. At this time, although the R 2 O/SiO 2 molar ratio changes, it absorbs water almost unlimitedly and swells, producing swelling power. There are two processes that generate swelling force: one is the process of forming an alkali-silicate gel through an alkali-silicate reaction, and the other is the process of swelling by taking in water. In this way, the silica substance and the alkali metal hydroxide and/or alkali metal salt (hereinafter referred to as alkali compound) undergo an alkali-silicate reaction, and the fineness of the silica substance, the composition ratio of the silica substance and the alkali compound, i.e. The reactivity of the alkali-silicate reaction changes depending on the molar ratio of R2O / SiO2 , the amount of water added, the curing temperature, humidity, etc. If the reactivity or specific surface area of the silica material is too large, the amount of alkali-silicate gel produced increases, but the reaction itself tends to end in a short period of time and does not contribute much to expansion. On the other hand, if the reactivity or specific surface area is too small, the amount of alkali-silicate gel generated is too small and tends not to produce any swelling force. In particular, in the present invention, the composition ratio of the silica material and the alkaline compound, that is, the molar ratio of R 2 O/SiO 2 is 0.05.
-5.0, preferably 0.1-5.0. If it is outside the range of 0.05 to 5.0, the amount of alkali-silicate gel that produces swelling force will be less and the strength will also be lowered, which is not preferable. The amount of the silica material and the alkali compound to be used is preferably about 1 to 100 parts by weight in total based on 100 parts by weight of the latent hydraulic substance. In producing the non-shrinkage bonding material of the present invention, it is also possible to use a cement water reducing agent together with the silica substance and alkaline compound. As the cement water reducing agent, commonly used ones can be used, and compounds having a sulfonic group in the molecule, oxyorganic acids, sugars, etc. are particularly preferred, and one or more of these can be selected and used. It is preferable. When using cement water reducer, the amount used is:
It is preferably 0.01 to 6 parts by weight, more preferably 0.05 to 3 parts by weight, based on 100 parts by weight of the latent hydraulic substance. The present invention is a non-shrinkage bonding material that utilizes a mechanism different from conventional ones, and is an innovative bonding material that improves the drawbacks of conventional cement, which is said to have large drying shrinkage, and has less fluctuation in length change rate. It provides: The non-shrinkage bonding material of the present invention can be applied to cement products in general, but it is particularly preferable to use it for products and places that require less cracking and drying shrinkage. The present invention will be further explained below with reference to Examples. Example 1 Using the binder with the composition shown in Table 1, the binder 400
Kg/m 3 , water 160Kg/m 3 , sand 717Kg/m 3 , and gravel
Mix concrete with a unit amount of 1087Kg/ m3 , a water-binder ratio of 40%, a fine aggregate ratio of 40%, and a maximum aggregate size of 25mm to form a 10φ x 20cm concrete.
A specimen measuring 10 cm x 10 cm x 40 cm was prepared for measuring compressive strength and a test specimen measuring length change. Length change was achieved by air-drying at 20℃ and 80% RH, and by 20℃.
The wood was cured in water at a temperature of 100°C, and the base length was measured at 1 day old using the comparator method. Moreover, the compressive strength was measured after curing at 20°C and 80% RH. The results are shown in Table 2. For 100 parts by weight of the binder, add 0.2 parts by weight of sodium lignin sulfonate as a cement water reducing agent.
0.1 part by weight of sodium gluconate was added. <Materials used> Potential hydraulic substance A: Blast furnace slag B: Fly-ash silica material C: Opal D: No. 3 sodium silicate E: Sodium metasilicate alkaline compound F: Sodium hydroxide G: Sodium carbonate

【表】 各材料の単位は重量部
[Table] The units for each material are parts by weight.

【表】 第2表より、水中養生における長さ変化率はど
の配合No.においてもそれ程変わらないが、気乾養
生ではシリカ物質の粉末度やR2O/SiO2のモル比
が長さ変化率に大きく影響を与えることが明らか
である。本発明により、普通ポルトランドセメン
トに比べ無収縮な結合材が得られることが示され
た。 なお、配合No.21〜23、25、及び26で、珪酸ナト
リウムの硬化剤であるケイフツ化ナトリウム又は
りん酸アルミニウムを、珪酸ナトリウム100重量
部に対して、15重量部添加したところ、圧縮強度
は50%以下となつたが、気乾養生において+0.01
〜0.05%の膨張を示した。 比較例 比較のため、ブレーン比表面積4980cm2/gの高
炉スラグ100重量部、ブレーン比表面積3000cm2
gのオパール3重量部、及び水酸化マグネシウム
20重量部を使用したもの(比較例1)、本発明の
無収縮結合材の代わりに普通ポルトランドセメン
トを使用したもの(比較例2)について、実施例
1と同様に行つた。結果を第3表に示す。
[Table] From Table 2, the rate of change in length during water curing does not change much for any formulation number, but during air dry curing, the length changes due to the fineness of the silica substance and the molar ratio of R 2 O / SiO 2 . It is clear that this has a significant impact on the rate. It has been shown that the present invention provides a binder that exhibits no shrinkage compared to ordinary Portland cement. In addition, when 15 parts by weight of sodium silicate or aluminum phosphate, which is a hardening agent for sodium silicate, was added to 100 parts by weight of sodium silicate in formulation Nos. 21 to 23, 25, and 26, the compressive strength was It was less than 50%, but it increased by +0.01 in air-drying.
It showed ~0.05% expansion. Comparative Example For comparison, 100 parts by weight of blast furnace slag with a Blaine specific surface area of 4980 cm 2 /g and a Blaine specific surface area of 3000 cm 2 /g.
g of opal 3 parts by weight, and magnesium hydroxide
The same procedure as in Example 1 was carried out for the case where 20 parts by weight was used (Comparative Example 1) and the case where ordinary Portland cement was used instead of the non-shrinkable binder of the present invention (Comparative Example 2). The results are shown in Table 3.

【表】 ×は硬化せず〓
実施例 2 実施例1の配合No.8の系で、リグニンスルホン
酸ナトリウムとグルコン酸ソーダを使用しなかつ
たこと以外は実施例1と同様に行つた。結果を第
4表に示す。
[Table] × means no hardening〓
Example 2 The same procedure as in Example 1 was conducted except that sodium lignosulfonate and sodium gluconate were not used in the system of formulation No. 8 of Example 1. The results are shown in Table 4.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] ブレーン比表面積1000cm2/g以上の潜在水硬性
物質、ブレーン比表面積200/6000cm2/gのシリ
カ物質並びにアルカリ金属水酸化物及び/又はア
ルカリ金属塩からなり、シリカ物質とアルカリ金
属水酸化物及び/又はアルカリ金属塩のR2O/
SiO2モル比(酸化物換算、ただし、Rはアルカ
リ金属)が0.05〜5.0であることを特徴とする無
収縮結合材。
It consists of a latent hydraulic substance with a Blaine specific surface area of 1000 cm 2 /g or more, a silica substance with a Blaine specific surface area of 200/6000 cm 2 /g, and an alkali metal hydroxide and/or an alkali metal salt. /or R 2 O of alkali metal salt/
A non-shrinkage bonding material characterized in that the SiO2 molar ratio (in terms of oxide, where R is an alkali metal) is 0.05 to 5.0.
JP14099282A 1982-08-16 1982-08-16 Manufacture of non-shrinkage binder Granted JPS5930748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14099282A JPS5930748A (en) 1982-08-16 1982-08-16 Manufacture of non-shrinkage binder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14099282A JPS5930748A (en) 1982-08-16 1982-08-16 Manufacture of non-shrinkage binder

Publications (2)

Publication Number Publication Date
JPS5930748A JPS5930748A (en) 1984-02-18
JPH0525826B2 true JPH0525826B2 (en) 1993-04-14

Family

ID=15281626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14099282A Granted JPS5930748A (en) 1982-08-16 1982-08-16 Manufacture of non-shrinkage binder

Country Status (1)

Country Link
JP (1) JPS5930748A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06303086A (en) * 1993-04-09 1994-10-28 Daishinku Co Electrode structure for piezoelectric vibrator

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6259562A (en) * 1985-09-06 1987-03-16 電気化学工業株式会社 Hydraulic composition
ES2207573T5 (en) * 2001-03-02 2012-01-02 Saint-Gobain Weber Gmbh MIXING OF CONSTRUCTION MATERIALS CONTAINING SOLUBLE GLASS.
KR100464819B1 (en) * 2002-02-16 2005-01-06 기초소재 주식회사 An ultra-rapid setting inorganic binder compound based of alkali-activated alumino-silicate
KR100759855B1 (en) 2005-11-01 2007-09-18 요업기술원 Non-sintering inorganic binder using fly-ash
JP5460700B2 (en) * 2008-05-30 2014-04-02 コンストラクション リサーチ アンド テクノロジー ゲーエムベーハー Mixtures containing slag sand, especially building material mixtures
WO2013178967A1 (en) 2012-06-01 2013-12-05 David Ball Group Plc Cementitious binders, activators and methods for making concrete
JP6270567B2 (en) * 2014-03-19 2018-01-31 日新製鋼株式会社 Impermeable civil engineering materials

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5229329A (en) * 1975-08-28 1977-03-05 Daiichi Shokai:Kk Device for managing pachinko equipment
JPS5241765A (en) * 1975-09-29 1977-03-31 Kubota Ltd Oilhydraulic reversing gear
JPS5333220A (en) * 1976-09-08 1978-03-29 Osaka Cement Method of manufacturing low shrinkage cement having high strength and moderate expansibility
JPS55162456A (en) * 1979-05-31 1980-12-17 Flowcon Oy Slurry mortar and manufacture of bonding agent for use in concrete
JPS5777054A (en) * 1980-10-28 1982-05-14 Asahi Glass Co Ltd Slag hardened body
JPS5795858A (en) * 1980-12-04 1982-06-14 Denki Kagaku Kogyo Kk High insulation resistant cement composition
JPS6366788A (en) * 1986-09-09 1988-03-25 Nec Corp Buffer circuit

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5229329A (en) * 1975-08-28 1977-03-05 Daiichi Shokai:Kk Device for managing pachinko equipment
JPS5241765A (en) * 1975-09-29 1977-03-31 Kubota Ltd Oilhydraulic reversing gear
JPS5333220A (en) * 1976-09-08 1978-03-29 Osaka Cement Method of manufacturing low shrinkage cement having high strength and moderate expansibility
JPS55162456A (en) * 1979-05-31 1980-12-17 Flowcon Oy Slurry mortar and manufacture of bonding agent for use in concrete
JPS5777054A (en) * 1980-10-28 1982-05-14 Asahi Glass Co Ltd Slag hardened body
JPS5795858A (en) * 1980-12-04 1982-06-14 Denki Kagaku Kogyo Kk High insulation resistant cement composition
JPS6366788A (en) * 1986-09-09 1988-03-25 Nec Corp Buffer circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06303086A (en) * 1993-04-09 1994-10-28 Daishinku Co Electrode structure for piezoelectric vibrator

Also Published As

Publication number Publication date
JPS5930748A (en) 1984-02-18

Similar Documents

Publication Publication Date Title
CA2243977C (en) Fly ash cementitious material and method of making a product
RU2538570C2 (en) System of inorganic binding substance for obtaining chemically stable building chemical products
Allahverdi et al. Methods to control efflorescence in alkali-activated cement-based materials
EA023687B1 (en) Single-phase hydraulic binder, method for the production thereof and building material produced therewith
EA023750B1 (en) Single-phase hydraulic binder, method for the production thereof and structural material produced therewith
EP3245171B1 (en) Method for making concrete compositions
JPH0525826B2 (en)
JPH0352420B2 (en)
JPS5957934A (en) Manufacture of glass fiber reinforced concrete and low alka-line cement composition
JPH07501038A (en) Method of production of concrete with thermal insulation properties, lightweight ballast concrete or mortar and its use
JPS6366788B2 (en)
JP2534932B2 (en) Concrete cement admixture for repair, concrete cement composition for repair, and repair method using the same
JPH0147421B2 (en)
Li et al. Study on abilities of mineral admixtures and geopolymer to restrain ASR
JP2710354B2 (en) Underwater concrete / mortar binder
JPH11130498A (en) Accelerating material, spraying material and spraying technique
JPH0412043A (en) Hydraulic binder
CN115836036A (en) Free-flowing powder comprising a porous substrate functionalized with at least one promoter
JP2716758B2 (en) Cement admixture
JP3560446B2 (en) Quick setting material, spraying material, and spraying method
Chaunsali et al. Microstructural and mineralogical characterization of cement kiln dust–Activated fly ash binder
JPH03115148A (en) Hydraulic cement
GB2188923A (en) High alumina cement composition
JPS5930746A (en) High chemical resistance binder
JPS6250428B2 (en)