JPH05251104A - Fuel cell power generating system - Google Patents

Fuel cell power generating system

Info

Publication number
JPH05251104A
JPH05251104A JP5007892A JP5007892A JPH05251104A JP H05251104 A JPH05251104 A JP H05251104A JP 5007892 A JP5007892 A JP 5007892A JP 5007892 A JP5007892 A JP 5007892A JP H05251104 A JPH05251104 A JP H05251104A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
fuel
gas
cell
monooxide
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5007892A
Other languages
Japanese (ja)
Inventor
Kazuo Koseki
和雄 小関
Original Assignee
Fuji Electric Co Ltd
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To provide a fuel cell electricity generating system provided with a fuel reforming apparatus which is safe and does not need large motive force and can lower carbon monooxide in a fuel gas to several ppm. CONSTITUTION:In a fuel cell electricity generating system having a fuel reforming apparatus which reforms the raw fuel into a hydrogen-rich and carbon monooxide concentration-low reformed gas and supplies the gas to the fuel cell, the fuel reforming apparatus has a reformer 2 to use a fossil fuel as the raw fuel and a carbon monooxide converter 3 which is connected to the rear stage and a reactor 11 to produce methane is connected to the outlet side of a reformed gas 3F of the carbon monooxide converter to reduce the carbon monooxide in the reformed gas 3F to methane and the obtained fuel gas 11F is supplied to a fuel electrode 1F of a solid polymer electrolyte-type fuel cell 1.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】この発明は、燃料改質装置から燃料ガスの供給を受けて発電する低温作動型燃料電池を含む燃料電池発電システム、ことに燃料ガス中の一酸化炭素濃度をとくに低減した燃料電池発電システムに関する。 BACKGROUND OF THE INVENTION This invention is a fuel cell power generation system including a low temperature operation type fuel cell generating electricity from fuel reformer is supplied with a fuel gas, in particular in particular reducing the concentration of carbon monoxide in the fuel gas It relates to a fuel cell power generation system.

【0002】 [0002]

【従来の技術】従来、りん酸形燃料電池発電システムにおいては、単位セルの積層体からなる燃料電池スタックの燃料電極側に燃料改質装置から水素リッチな燃料ガスを供給し、酸化剤電極側には酸化剤としての空気を供給し、運転温度を190°C程度に保持することにより、 Conventionally, in a phosphoric acid fuel cell power generation system, to supply a hydrogen-rich fuel gas from a fuel reformer to the fuel electrode side of the fuel cell stack comprising a stack of unit cells, the oxidant electrode side by supplying air as an oxidizing agent, to hold the operating temperature of about 190 ° C in,
一対の電極間で電気化学反応に基づき発電が行われる。 Generating based on an electrochemical reaction takes place between a pair of electrodes.
ところで、燃料改質装置としては、原燃料としての天然ガス,ナフサ等の化石燃料を水蒸気改質し、水素リッチな改質ガスを生成する改質器を含むもの、および原燃料としてのメタノ−ルを水蒸気改質して改質ガスを生成するものが知られているが、改質ガス中の一酸化炭素が触媒毒として作用して燃料電極中の白金触媒を劣化させるという問題があり、上記運転温度の場合、改質ガス中の一酸化炭素濃度を1%程度に低減する必要がある。 Meanwhile, as the fuel reformer, the natural gas as the raw fuel, fossil fuels such as naphtha steam reforming, those containing reformer which generates a hydrogen-rich reformed gas, and methanol as the raw fuel - Although Le those which produce a reformed gas steam reforming are known, there is a problem that carbon monoxide in the reformed gas deteriorating the platinum catalyst to act as catalyst poisons in the fuel electrode, If the operating temperature, it is necessary to reduce the concentration of carbon monoxide in the reformed gas to about 1%.

【0003】そこで、化石燃料を原燃料とする燃料改質装置では、改質器の後段に一酸化炭素変成器を連結して改質ガス中の一酸化炭素を酸化して二酸化炭素に変換し、一酸化炭素濃度を1%程度に低減したものが知られている。 [0003] Therefore, the fossil fuel in the fuel reformer to the raw fuel is oxidized to carbon monoxide in the reformed gas is converted into carbon dioxide by connecting the carbon monoxide shift converter downstream of the reformer , those with reduced carbon monoxide concentration of about 1% is known. またメタノ−ルを原燃料とする燃料改質装置では、水蒸気改質反応が一酸化炭素を二酸化炭素に変換する工程を含み、適切な運転温度および水蒸気比を保持することにより一酸化炭素濃度が1%程度の改質ガスを得ることができる。 The methanol - fuel reformer to raw fuel of Le, the concentration of carbon monoxide by steam reforming reaction of carbon monoxide comprises the step of converting the carbon dioxide, to retain the proper operating temperature and steam ratio it can be obtained about 1% of the reformed gas.

【0004】ところが、固体高分子電解質型燃料電池を用いた燃料電池発電システムでは、燃料電池の運転温度が80°C程度と低いために、白金触媒の被毒を防ぐための一酸化炭素濃度の制限値を大幅に厳しくする必要がある。 [0004] However, in the fuel cell power generation system using the solid polymer electrolyte fuel cell, for operating temperature of the fuel cell is as low as 80 ° C, the concentration of carbon monoxide in order to prevent poisoning of the platinum catalyst there is a need to significantly tighten the limit values. また、りん酸形燃料電池においても、運転温度を下げて運転する場合や、起動時に低温状態から過渡的に発電を行うことが求められる場合等には、一酸化炭素濃度の制限値を下げる必要がある。 Also in phosphoric acid fuel cell, and when driving lowering the operating temperature, the like if is possible to transiently power from a low temperature state is determined at startup, required to lower the limit value of the concentration of carbon monoxide there is.

【0005】図5は改善された従来の燃料電池発電システムの要部を示すシステムフロ−図であり、天然ガスを原燃料とする改質器1の後段には一酸化炭素変成器3を設けて一酸化炭素濃度を低減し、さらにその後段に一酸化炭素燃焼器4を設け、改質ガスに5%程度の空気を混合して白金触媒と接触させて燃焼させ、2CO+0 2 [0005] Figure 5 is a system flow illustrating a main part of the improved conventional fuel cell power generation system - a diagram, a carbon monoxide shift converter 3 disposed following the reformer 1 to the natural gas and the raw fuel Te reduces concentration of carbon monoxide, further carbon monoxide combustor 4 provided in a subsequent stage, is burned in contact with the platinum catalyst were mixed with 5% of air in the reformed gas, 2CO + 0 2 =
2CO 2なる化学反応に基づいて一酸化炭素COを無害なCO 2に変化させる。 Based on 2CO 2 comprising a chemical reaction changing the carbon monoxide CO into harmless CO 2. この工程で改質ガス中の一酸化炭素濃度は100ppm程度に低下するが、この改質ガス4Fを低温作動形燃料電池,例えば固体高分子電解質型燃料電池1の燃料電極1Fに供給する際、さらに若干の空気を混合して燃料電極1Fの白金触媒上で燃焼させ、一酸化炭素濃度を数ppmオ−ダに低減したものが提案されている。 At this concentration of carbon monoxide in the reformed gas in the process is reduced to about 100ppm, but to supply the reformed gas 4F low temperature operation type fuel cell, for example, the fuel electrode 1F of the solid polymer electrolyte fuel cell 1, further burned over a platinum catalyst in some air are mixed fuel electrode 1F, several ppm OH concentration of carbon monoxide - those reduced da has been proposed. また、一酸化炭素吸着塔(pressure s In addition, carbon monoxide adsorption tower (pressure s
wing adsorpsion )を用いたもの、あるいは一酸化炭素選択透過膜を用いたもの等も知られている。 wing adsorpsion) those using, or are also known such as those using a carbon monoxide selective permeable membrane.

【0006】 [0006]

【発明が解決しようとする課題】一酸化炭素燃焼器を用いた従来の方法では、混入空気量は厳密に制御されているものの、常に爆発の危険性をはらんでおり、しかも一酸化炭素を完全に酸化できず、100ppm程度の一酸化炭素が残留するという問題がある。 In THE INVENTION to be solved INVENTION conventional method using the carbon monoxide combustion, although entrained air amount is strictly controlled, always fraught with danger of explosion, yet carbon monoxide can not be completely oxidized, there is a problem that 100ppm of about carbon monoxide remains. これを解決するため燃料電極で一酸化炭素を燃焼させる方法を用いれば、 Using the method for combusting carbon monoxide in the fuel electrode to solve this,
二重に爆発の危険性が高まることになる。 So that increases the risk of explosion to double. また、一酸化炭素吸着塔や一酸化炭素選択透過膜を用いれば一酸化炭素濃度を数ppmにまで落とすことができるが、圧力損失が大きいために発電量の20%にも相当する大きな動力を必要とし、このためシステム効率が著しく低下してしまうという問題が発生する。 Although the concentration of carbon monoxide can be dropped down to a few ppm by using the carbon monoxide adsorption tower and a carbon monoxide selective permeable membrane, a large power equivalent to 20% of the amount of power generation for the pressure loss is large required, and therefore a problem that system efficiency decreases significantly occurs.

【0007】この発明の目的は、安全かつ大きな動力を必要とせず、燃料ガス中の一酸化炭素を数ppm以下にまで低減できる燃料改質装置を備えた燃料電池発電システムを得ることにある。 An object of this invention is to obtain a fuel cell power generation system provided with safety and without requiring a large power, the fuel reforming apparatus capable of reducing the carbon monoxide in the fuel gas to less than a few ppm.

【0008】 [0008]

【課題を解決するための手段】上記課題を解決するために、この発明によれば、原燃料を水素リッチで一酸化炭素濃度の低い改質ガスに改質して燃料電池に供給する燃料改質装置を含むものにおいて、改質ガス中の一酸化炭素をメタンに還元し,得られた燃料ガスを燃料電池に供給するメタン化反応器を備えてなるものとする。 In order to solve the above problems SUMMARY OF THE INVENTION The fuel reforming supply according to the present invention, the fuel cell raw fuel by reforming the lower reformed gas concentration of carbon monoxide in the hydrogen-rich in those containing quality device, the carbon monoxide in the reformed gas is reduced to methane, the resulting fuel gas and made comprises a methanation reactor to be supplied to the fuel cell.

【0009】また、燃料改質装置が、化石燃料を原燃料とする改質器と、その後段に連結された一酸化炭素変成器とを含み、この一酸化炭素変成器の改質ガス出口側にメタン化反応器を連結してなるもの。 [0009] The fuel reforming apparatus comprises a reformer for fossil fuels and raw fuel, the carbon monoxide shift converter coupled to a subsequent stage, the reformed gas outlet side of the carbon monoxide shift converter made by connecting the methanation reactor. あるいは、燃料改質装置が、化石燃料を原燃料とする改質器と、その後段に連結された一酸化炭素変成器と、この一酸化炭素変成器の後段に連結された一酸化炭素燃焼器とを含み、この一酸化炭素燃焼器の改質ガス出口側にメタン化反応器を連結してなるもの。 Alternatively, the fuel reformer, a reformer for fossil fuels and raw fuel, and carbon monoxide transformer coupled to a subsequent stage, carbon monoxide combustor connected downstream of the carbon monoxide shift converter DOO hints, which formed by connecting a methanation reactor to the reforming gas outlet side of the carbon monoxide combustor. さらには、燃料改質装置がメタノ− Furthermore, the fuel reformer methano -
ルを原燃料とする改質器を含み、この改質器の改質ガス出口側にメタン化反応器を連結してなるものとする。 It includes a reformer for the Le a raw fuel, and made by connecting a methanation reactor to the reforming gas outlet of the reformer.

【0010】 [0010]

【作用】この発明の構成において、改質ガス中の一酸化炭素をメタンに還元し,得られた燃料ガスを燃料電池に供給するメタン化反応器を付加するよう構成したことにより、改質ガス中の一酸化炭素がメタン化反応器内でアルミナ担体上に担持されたメタン化触媒(ルテニウム, [Action] In the configuration of the present invention, by the carbon monoxide in the reformed gas is reduced to methane, the resulting fuel gas is configured to add the supply methanation reactor to the fuel cell, a reformed gas methanation catalyst (ruthenium carbon monoxide is supported on an alumina support in the methanation reactor in,
ロジウム,パラジウム,イリジウム,白金,ニッケル, Rhodium, palladium, iridium, platinum, nickel,
レニウム等)と接触し、3H 2 +CO=CH 4 +H 2 In contact with rhenium, etc.), 3H 2 + CO = CH 4 + H 2 O
なる反応に基づいて一酸化炭素(CO)がメタン(CH Comprising carbon monoxide based on the reaction (CO) methane (CH
4 )に還元されて無害化することにより、得られた燃料ガスを低温作動形燃料電池に供給することにより電極触媒の被毒を防止する機能が得られる。 By harmless is reduced to 4), it functions to prevent poisoning of the electrode catalyst by supplying the obtained fuel gas to low temperature operation type fuel cell is obtained.

【0011】また、化石燃料を原燃料とする改質器の場合、その後段に連結された一酸化炭素変成器の改質ガス出口側にメタン化反応器を連結することにより、一酸化炭素変成器で約500°C程度の高温に加熱された改質ガスの持つ熱量を利用してメタン化触媒の温度をその反応進行温度約250°Cに保持して一酸化炭素濃度を数ppmオ−ダに低減できるので、高いシステム効率および安全性が得られる。 [0011] When the reformer for fossil fuels and raw fuel, by connecting the methanation reactor to the reforming gas outlet side of the carbon monoxide shift unit coupled to a subsequent stage, carbon monoxide shift vessel at about 500 ° C about hot heated reformed gas temperature methanation catalyst by utilizing the quantity of heat possessed by holding the reaction proceeds temperature of about 250 ° C carbon monoxide several ppm O a - It can be reduced to da, high system efficiency and safety. さらに、一酸化炭素燃焼器の改質ガス出口側にメタン化反応器を連結するよう構成すれば、燃料電極で一酸化炭素を燃焼させる危険性を侵すことなく一酸化炭素濃度を0ppmにまで低減する機能が得られる。 Furthermore, reduction be configured to couple the methanation reactor to the reforming gas outlet side of the carbon monoxide combustion, carbon monoxide concentration without violating the risk of burning the carbon monoxide in the fuel electrode to the 0ppm the ability to obtain.

【0012】一方、メタノ−ルを原燃料とする改質器を用いた場合、この改質器の改質ガス出口側にメタン化反応器を連結しても一酸化炭素濃度を数ppmに低減できるので、より安全でシステム効率の高い燃料電池発電システムが得られる。 Meanwhile, methanol - when using a reformer for the Le a raw fuel, reduce the concentration of carbon monoxide be connected methanation reactor to the reforming gas outlet of the reformer to several ppm since it, safer, more fuel cell power generation system of the system efficiency.

【0013】 [0013]

【実施例】以下、この発明を実施例に基づいて説明する。 BRIEF DESCRIPTION based the present invention to Examples. 図1はこの発明の実施例1になる燃料電池発電システムの要部を示すシステムフロ−図であり、以下従来技術と同じ構成部分には同一参照符号を付すことにより、 Figure 1 is a system flow illustrating a main part of the fuel cell power generation system according to a first embodiment of the present invention - a drawing, denoted by the same reference numerals to the same components as the prior art or less,
重複した説明を省略する。 A duplicate description will be omitted. 図において、メタン化反応器11は顆粒状のアルミナを触媒担体とし、その表面にルテニウムを担持したメタン化反応触媒を容器に充填し、 In the figure, the methanation reactor 11 is a granular alumina as a catalyst carrier, filling the methanation reaction catalyst supporting ruthenium on the container on the surface thereof,
充填層中に改質ガスを通流するよう構成され、天然ガスを原燃料とする改質器2とその後段に連結された一酸化炭素変成器3の後段に連結され、一酸化炭素変成器3で得られた改質ガス3F中の一酸化炭素を約250°Cの反応進行温度を保持してメタンに還元し、燃料ガス11 Is configured to Tsuryu the reformed gas in the packed bed, is connected downstream of the carbon monoxide shift converter 3 connected reformer 2 and the subsequent stage of the natural gas and the raw fuel, the carbon monoxide shift converter the carbon monoxide obtained reformed gas in 3F 3 holds the reaction progress temperature of about 250 ° C and reduced to methane, fuel gas 11
Fとして低温作動形燃料電池,例えば固体高分子電解質型燃料電池1の燃料電極1Fに供給する。 Low temperature operation type fuel cell as F, for example, supplied to the fuel electrode 1F of the solid polymer electrolyte fuel cell 1.

【0014】表1は実施例1になる燃料電池発電システムで得られたメタン化反応器入口,出口両ガスの組成表であり、一酸化炭素変成器3で一酸化炭素濃度が0.4 [0014] Table 1 obtained methanation reactor inlet in the fuel cell power generation system according to a first embodiment, a composition table of outlets both gases, the carbon monoxide concentration in the carbon monoxide shift converter 3 is 0.4
%に低減された改質ガス3Fは、メタン化反応器11で約0.4%のメタン(CH 4 )に変換され、一酸化炭素濃度が5ppmにまで低減された燃料ガス11Fを固体高分子電解質型燃料電池1の燃料電極1Fに供給できるので、一酸化炭素による白金触媒の被毒を防止することができる。 % Reformed gas 3F which is reduced is converted into about 0.4% methane in methanation reactor 11 (CH 4), the solid polymer fuel gas 11F with reduced carbon monoxide concentration to the 5ppm can be supplied to the fuel electrode 1F electrolyte type fuel cell 1, it is possible to prevent the poisoning of platinum catalysts by carbon monoxide.

【0015】 [0015]

【表1】 [Table 1]

【0016】また、この実施例によれば、一酸化炭素燃焼器を必要としないので爆発の危険性がなく、圧力損失が少なく,かつメタン化触媒の温度をその反応進行温度約250°Cに保持するに必要な熱量として一酸化炭素変成器の廃熱を利用できるので、一酸化炭素吸着塔や一酸化炭素選択透過膜を用いた従来技術に比べて動力が少なく、したがってシステム効率の低下の少ない燃料電池発電システムが得られる。 Further, according to this embodiment, there is no danger of explosion does not require carbon monoxide combustor, less pressure loss, and the temperature of the methanation catalyst to the reaction proceeds temperature of about 250 ° C since the amount of heat required to keep available carbon monoxide shift converter waste heat, less power than the conventional technique using a carbon monoxide adsorption tower and a carbon monoxide selective permeable membrane, thus lowering the system efficiency less fuel cell power generation system can be obtained.

【0017】図2はこの発明の実施例2になる燃料電池発電システムの要部を示すシステムフロ−図であり、メタン化反応器11は、天然ガスを原燃料とする改質器2,一酸化炭素変成器3,および一酸化炭素燃焼器4を経てその後段に連結され、一酸化炭素燃焼器4で得られた改質ガス4F中の一酸化炭素を約250°Cの反応進行温度を保持してメタンに還元し、燃料ガス11Fとして低温作動形燃料電池,例えば固体高分子電解質型燃料電池1の燃料電極1Fに供給するよう構成された点が前述の実施例1と異なっている。 [0017] Figure 2 is a system showing a main part of the fuel cell power generation system according to a second embodiment of the invention flow - a diagram, methanation reactor 11, a reformer 2 to the natural gas and the raw fuel, one carbon monoxide shift converter 3, and is connected to a subsequent stage through the carbon monoxide combustor 4, the carbon monoxide in the resulting reformed gas 4F of carbon monoxide combustor 4 reaction progress temperature of about 250 ° C held by reducing methane, fuel gas 11F low temperature operation type fuel cell as, for example, a solid polymer that electrolyte fuel configured to supply the fuel electrode 1F of the battery 1 is different from the first embodiment described above.

【0018】表2は実施例2になる燃料電池発電システムで得られたメタン化反応器入口,出口両ガスの組成表であり、一酸化炭素燃焼器4で一酸化炭素濃度が30p [0018] Table 2 the obtained methanation reactor inlet in the fuel cell power generation system according to the second embodiment, a composition table of outlets both gases, carbon monoxide carbon monoxide combustor 4 is 30p
pmに低減された改質ガス4Fは、メタン化反応器11 Reformed gas 4F that was reduced to pm, the methanation reactor 11
で一酸化炭素濃度が0ppmにまで低減された燃料ガス11Fとなり、固体高分子電解質型燃料電池1の燃料電極1Fに供給されるので、一酸化炭素による白金触媒の被毒をほぼ完全に防止することができる。 In the fuel gas 11F becomes carbon monoxide concentration has been reduced to 0 ppm, since it is supplied to the fuel electrode 1F of the solid polymer electrolyte fuel cell 1, almost completely prevented poisoning of platinum catalysts by carbon monoxide be able to.

【0019】 [0019]

【表2】 [Table 2]

【0020】また、この実施例によれば、一酸化炭素燃焼器は残るものの、燃料電池の燃料電極で一酸化炭素を燃焼させないで済むので、安全性の向上が期待されるとともに、一酸化炭素の還元反応量が実施例1に比べて少ないので、メタン化反応触媒の充填量も少なく、メタン化反応器を小型に形成できる利点が得られる。 Further, according to this embodiment, although the carbon monoxide combustor remains, since the fuel electrode of the fuel cell need not to burn the carbon monoxide along with improvement in safety can be expected, carbon monoxide since the amount of reduction is small as compared with example 1, loading of methanation catalyst is small and the advantage of forming a compact obtained methanation reactor. 図3はこの発明の実施例1および2になる固体高分子電解質型燃料電池の出力電流−電圧特性を従来技術のそれと比較して示す特性線図であり、図中鎖線曲線で示す実施例1, Figure 3 is the output current of the solid polymer electrolyte fuel cell according to a first embodiment and 2 of the present invention - a characteristic diagram showing a voltage characteristic as compared with that of the prior art, the first embodiment shown by a chain line curve in FIG. ,
実線で示す実施例2の出力特性は、破線で示す比較例(図5に示す従来技術)曲線と同等以上の特性を示しており、この結果から、メタン化反応器を付加して一酸化炭素濃度を低減することにより、安全かつ大きな動力を必要とせず、燃料ガス中の一酸化炭素を数ppm以下にまで低減でき、したがって電極触媒の被毒による劣化を阻止して固体高分子電解質型燃料電池の出力特性を高度に維持できることが実証された。 Output characteristics of the second embodiment shown by the solid line, the comparative example shown by a broken line shows a curve equivalent to or more characteristics (prior art shown in FIG. 5), from this result, the carbon monoxide by adding the methanation reactor by reducing the concentration, safe and does not require a large power, the carbon monoxide in the fuel gas can be reduced to less than several ppm, thus to prevent deterioration due to poisoning of the electrode catalyst solid polymer electrolyte fuel it has been demonstrated that they can maintain highly output characteristics of the battery.

【0021】図4はこの発明の実施例3になる燃料電池発電システムの要部を示すシステムフロ−図であり、メタノ−ルを原燃料とする改質器12の改質ガス出口側に、メタン化反応器11を連結した点が前述の各実施例と異なっており、一酸化炭素濃度を数ppmに低減できるとともに、より安全でシステム効率が高く、構成が簡素な燃料電池発電システムとすることができる。 FIG. 4 is a system flow illustrating a main part of the fuel cell power generation system according to the third embodiment of the present invention - a diagram, methanol - reformed gas outlet side of the reformer 12 to the Le a raw fuel, point connecting the methanation reactor 11 is different from the respective embodiments described above, it is possible to reduce the concentration of carbon monoxide in a few ppm, more secure system efficiency is high, construction and simple fuel cell power generation system be able to.

【0022】 [0022]

【発明の効果】この発明は前述のように、改質ガス中の一酸化炭素をメタンに還元し,得られた燃料ガスを燃料電池に供給するメタン化反応器を付加するよう構成したことにより、改質ガス中の一酸化炭素濃度を数ppm以下に低減して低温作動形燃料電池に供給することが可能になり、従来固体高分子電解質型燃料電池や始動時から発電するりん酸形燃料電池等で問題となった燃料ガス中の一酸化炭素による電極触媒の被毒が回避され、電極の被毒による発電性能の低下が無く、長期安定性に優れた燃料電池発電システムを提供することができる。 Effects of the Invention The present invention as described above, by carbon monoxide in the reformed gas is reduced to methane, the resulting fuel gas was configured to add the methanation reactor is supplied to the fuel cell , it is possible to supply the low-temperature operation fuel cells by reducing the concentration of carbon monoxide in the reformed gas to below several ppm, the conventional solid polymer electrolyte fuel cells and phosphoric acid fuel for power generation from the start poisoning of the electrode catalyst by carbon monoxide in the fuel gas in question at the battery or the like is avoided, there is no decrease in power generation performance due to poisoning of the electrodes, providing excellent fuel cell power generation system in long-term stability can.

【0023】また、化石燃料を原燃料とする改質器の場合、その後段に連結された一酸化炭素変成器の改質ガス出口側にメタン化反応器を連結することにより、一酸化炭素燃焼器が排除されて爆発の危険性がなく、かつ一酸化炭素変成器の廃熱をメタン化触媒の反応熱に利用して熱効率の高い燃料電池発電システムを提供することができる。 Further, when the reformer for fossil fuels and raw fuel, by connecting the methanation reactor to the reforming gas outlet side of the carbon monoxide shift unit coupled to a subsequent stage, carbon monoxide combustion vessel without the danger of explosion is eliminated, and carbon monoxide transformer waste heat can provide high fuel cell power generation system thermal efficiency by utilizing the heat of reaction methanation catalyst.

【0024】さらに、一酸化炭素燃焼器の改質ガス出口側にメタン化反応器を連結するよう構成すれば、燃料電極で一酸化炭素を燃焼させる危険性を侵すことなく一酸化炭素濃度を0ppmにまで低減できる燃料電池発電システムを提供することができる。 Furthermore, 0 ppm be configured to couple the methanation reactor to the reforming gas outlet side of the carbon monoxide combustion, carbon monoxide concentration without violating the risk of burning the carbon monoxide in the fuel electrode it is possible to provide a fuel cell power generation system can be reduced to. 一方、メタノ−ルを原燃料とする改質器を用いた場合、この改質器の改質ガス出口側にメタン化反応器を連結しても一酸化炭素濃度を数ppmに低減できるので、より安全でシステム効率が高く、構成が簡素な燃料電池発電システムを提供できる利点が得られる。 On the other hand, methanol - when using a reformer for the Le a raw fuel, since the concentration of carbon monoxide be connected methanation reactor to the reforming gas outlet of the reformer can be reduced to a few ppm, safer high system efficiency, advantages configuration can provide a simple fuel cell power generation system can be obtained.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】この発明の実施例1になる燃料電池発電システムの要部を示すシステムフロ−図 [1] System showing a main part of the fuel cell power generation system according to a first embodiment of the invention flow - Figure

【図2】この発明の実施例2になる燃料電池発電システムの要部を示すシステムフロ−図 Figure 2 system showing the main part of the fuel cell power generation system according to a second embodiment of the invention flow - Figure

【図3】この発明の実施例1および2になる固体高分子電解質型燃料電池の出力電流−電圧特性を従来技術のそれと比較して示す特性線図 Characteristic diagram showing a comparison with that of the voltage characteristics prior art - [3] the output current of the solid polymer electrolyte fuel cell according to a first embodiment and 2 of the present invention

【図4】この発明の実施例3になる燃料電池発電システムの要部を示すシステムフロ−図 [4] The system flow illustrating a main part of the fuel cell power generation system according to the third embodiment of the present invention - FIG.

【図5】改善された従来の燃料電池発電システムの要部を示すシステムフロ−図 [5] System showing a main part of the improved conventional fuel cell power generation system flow - Figure

【符号の説明】 DESCRIPTION OF SYMBOLS

1 低温作動形燃料電池(固体高分子電解質型燃料電池) 2 天然ガスを原燃料とする改質器 3 一酸化炭素変成器 4 一酸化炭素燃焼器 11 メタン化反応器 12 メタノ−ルを原燃料とする改質器 3F 改質ガス 4F 改質ガス 11F 燃料ガス 1 low temperature operation type fuel cell (solid polymer electrolyte fuel cell) 2 natural gas and raw fuel reformer 3 CO transformer 4 carbon monoxide combustion chamber 11 methanation reactor 12 methanol - Le raw fuel reformer 3F reformed gas 4F reformed gas 11F fuel gas to

Claims (4)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】原燃料を水素リッチで一酸化炭素濃度の低い改質ガスに改質して燃料電池に供給する燃料改質装置を含むものにおいて、改質ガス中の一酸化炭素をメタンに還元し,得られた燃料ガスを前記燃料電池に供給するメタン化反応器を備えてなることを特徴とする燃料電池発電システム。 1. A one containing a fuel reformer for supplying the raw fuel reforming lower reformed gas concentration of carbon monoxide in the hydrogen-rich in the fuel cell, the carbon monoxide in the reformed gas to methane fuel cell power generation system characterized by reduced and becomes the resulting fuel gas comprises a methanation reactor to be supplied to the fuel cell.
  2. 【請求項2】燃料改質装置が、化石燃料を原燃料とする改質器と、その後段に連結された一酸化炭素変成器とを含み、この一酸化炭素変成器の改質ガス出口側にメタン化反応器を連結してなることを特徴とする請求項1記載の燃料電池発電システム。 2. A fuel reformer comprises a reformer for fossil fuels and raw fuel, the carbon monoxide shift converter coupled to a subsequent stage, the reformed gas outlet side of the carbon monoxide shift converter the fuel cell power generation system according to claim 1, characterized in that by connecting the methanation reactor.
  3. 【請求項3】燃料改質装置が、化石燃料を原燃料とする改質器と、その後段に連結された一酸化炭素変成器と、 3. A fuel reformer, a reformer for fossil fuels and raw fuel, and carbon monoxide transformer coupled to a subsequent stage,
    この一酸化炭素変成器の後段に連結された一酸化炭素燃焼器とを含み、この一酸化炭素燃焼器の改質ガス出口側にメタン化反応器を連結してなることを特徴とする請求項1記載の燃料電池発電システム。 And a carbon monoxide shift converter of carbon monoxide combustor connected downstream, claims, characterized in that formed by connecting the methanation reactor to the reforming gas outlet side of the carbon monoxide combustion 1 fuel cell power generation system according.
  4. 【請求項4】燃料改質装置がメタノ−ルを原燃料とする改質器を含み、この改質器の改質ガス出口側にメタン化反応器を連結してなることを特徴とする請求項1記載の燃料電池発電システム。 4. A fuel reformer methano - comprises a reformer for the Le a raw fuel, characterized by comprising connecting the methanation reactor to the reforming gas outlet of the reformer according the fuel cell power generation system of claim 1, wherein.
JP5007892A 1992-03-09 1992-03-09 Fuel cell power generating system Granted JPH05251104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5007892A JPH05251104A (en) 1992-03-09 1992-03-09 Fuel cell power generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5007892A JPH05251104A (en) 1992-03-09 1992-03-09 Fuel cell power generating system

Publications (1)

Publication Number Publication Date
JPH05251104A true true JPH05251104A (en) 1993-09-28

Family

ID=12848980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5007892A Granted JPH05251104A (en) 1992-03-09 1992-03-09 Fuel cell power generating system

Country Status (1)

Country Link
JP (1) JPH05251104A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5612012A (en) * 1994-06-08 1997-03-18 Ngk Insulators, Ltd. Method for removing carbon monoxide from reformed gas
JP2002037605A (en) * 2000-05-19 2002-02-06 Mitsubishi Heavy Ind Ltd Device for manufacturing of hydrogen
US6413479B1 (en) 1996-06-28 2002-07-02 Matsushita Electric Works, Ltd. Reforming apparatus for making a co-reduced reformed gas
JP2005538019A (en) * 2002-09-06 2005-12-15 エンゲルハード・コーポレーシヨンEngelhard Corporation Article for the removal of carbon monoxide

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5612012A (en) * 1994-06-08 1997-03-18 Ngk Insulators, Ltd. Method for removing carbon monoxide from reformed gas
US6413479B1 (en) 1996-06-28 2002-07-02 Matsushita Electric Works, Ltd. Reforming apparatus for making a co-reduced reformed gas
USRE39675E1 (en) 1996-06-28 2007-06-05 Matsushita Electric Works, Ltd. Reforming apparatus for making a co-reduced reformed gas
JP2002037605A (en) * 2000-05-19 2002-02-06 Mitsubishi Heavy Ind Ltd Device for manufacturing of hydrogen
JP2005538019A (en) * 2002-09-06 2005-12-15 エンゲルハード・コーポレーシヨンEngelhard Corporation Article for the removal of carbon monoxide

Similar Documents

Publication Publication Date Title
Song Fuel processing for low-temperature and high-temperature fuel cells: Challenges, and opportunities for sustainable development in the 21st century
Eguchi et al. Fuel flexibility in power generation by solid oxide fuel cells
US20020142198A1 (en) Process for air enrichment in producing hydrogen for use with fuel cells
US6383468B1 (en) Method for operating a system for water-vapor reforming of a hydrocarbon
US6521204B1 (en) Method for operating a combination partial oxidation and steam reforming fuel processor
US5928805A (en) Cover and startup gas supply system for solid oxide fuel cell generator
US6572837B1 (en) Fuel processing system
US6245214B1 (en) Electro-catalytic oxidation (ECO) device to remove CO from reformate for fuel cell application
US20020150532A1 (en) Reformer system process
Amphlett et al. On board hydrogen purification for steam reformation/PEM fuel cell vehicle power plants
US20050089731A1 (en) Solid oxide fuel cell system
US20040146458A1 (en) Method of operating a reformer and a vehicle
US20060090398A1 (en) Pre-processing assembly for pre-processing fuel feedstocks for use in a fuel cell system
JPH09312167A (en) Fuel cell power generator and operation method thereof
US20020114747A1 (en) Fuel processing system and apparatus therefor
US6660416B2 (en) Self-inerting fuel processing system
US6551732B1 (en) Use of fuel cell cathode effluent in a fuel reformer to produce hydrogen for the fuel cell anode
JP2004319420A (en) Fuel battery and operation method of the same
JP2006190605A (en) Starting method of solid oxide fuel cell system
JP2003229164A (en) Solid oxide fuel cell system
US20060024541A1 (en) Solid-oxide fuel cell system having an upstream reformate combustor
US20020108309A1 (en) Fuel reformer system
US5147735A (en) Method of operating a solid electrolyte fuel cell
JPH11191426A (en) Fuel cell power generating system
JP2003229151A (en) Catalyst combustion unifying heat exchanger for solid oxide fuel cell