JPH05245989A - Fluoropolymer composite material tube and manufacture thereof - Google Patents

Fluoropolymer composite material tube and manufacture thereof

Info

Publication number
JPH05245989A
JPH05245989A JP15945192A JP15945192A JPH05245989A JP H05245989 A JPH05245989 A JP H05245989A JP 15945192 A JP15945192 A JP 15945192A JP 15945192 A JP15945192 A JP 15945192A JP H05245989 A JPH05245989 A JP H05245989A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
substrate
layer
fluoropolymer
material
thermoplastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15945192A
Other languages
Japanese (ja)
Other versions
JPH085167B2 (en )
Inventor
Edward K Krause
Kenneth J Kuenzel
ケイ クラウス エドワード
ジェイ クエンゼル ケニス
Original Assignee
Pilot Ind Inc
パイロット インダストリーズ、インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C47/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C47/0004Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C47/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C47/0009Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the articles
    • B29C47/0023Hollow rigid articles having only one tubular passage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C47/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C47/0038Combined shaping operations
    • B29C47/0045Extrusion moulding in several steps, i.e. components merging outside the die
    • B29C47/005Extrusion moulding in several steps, i.e. components merging outside the die producing hollow articles having components brought in contact outside the extrusion die
    • B29C47/0052Extrusion moulding in several steps, i.e. components merging outside the die producing hollow articles having components brought in contact outside the extrusion die using a plurality of extrusion dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C47/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C47/04Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor of multilayered or multi-component, e.g. co-extruded layers or components or multicoloured articles or coloured articles
    • B29C47/06Multilayered articles or multi-component articles
    • B29C47/065Multilayered articles or multi-component articles with components in layered configuration, i.e. components merging at their long sides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C47/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C47/08Component parts, details or accessories; Auxiliary operations
    • B29C47/12Extrusion nozzles or dies
    • B29C47/20Extrusion nozzles or dies with annular opening, e.g. for tubular articles
    • B29C47/28Cross-head annular extrusion nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C47/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C47/08Component parts, details or accessories; Auxiliary operations
    • B29C47/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C47/58Details
    • B29C47/70Flow dividers
    • B29C47/702Flow dividers comprising means for dividing, distributing and recombining melt flows
    • B29C47/705Flow dividers comprising means for dividing, distributing and recombining melt flows in the die zone, e.g. to create flow homogeneity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/08Surface shaping of articles, e.g. embossing; Apparatus therefor by flame treatment ; using hot gases
    • B29C59/085Surface shaping of articles, e.g. embossing; Apparatus therefor by flame treatment ; using hot gases of profiled articles, e.g. hollow or tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/10Surface shaping of articles, e.g. embossing; Apparatus therefor by electric discharge treatment
    • B29C59/103Surface shaping of articles, e.g. embossing; Apparatus therefor by electric discharge treatment of profiled articles, e.g. hollow or tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/14Surface shaping of articles, e.g. embossing; Apparatus therefor by plasma treatment
    • B29C59/142Surface shaping of articles, e.g. embossing; Apparatus therefor by plasma treatment of profiled articles, e.g. hollow or tubular articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a general shape other than plane
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers, i.e. products comprising layers having different physical properties and products characterised by the interconnection of layers
    • B32B7/04Layered products characterised by the relation between layers, i.e. products comprising layers having different physical properties and products characterised by the interconnection of layers characterised by the connection of layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/12Hoses, i.e. flexible pipes made of rubber or flexible plastics with arrangements for particular purposes, e.g. specially profiled, with protecting layer, heated, electrically conducting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L11/12Hoses, i.e. flexible pipes made of rubber or flexible plastics with arrangements for particular purposes, e.g. specially profiled, with protecting layer, heated, electrically conducting
    • F16L11/127Hoses, i.e. flexible pipes made of rubber or flexible plastics with arrangements for particular purposes, e.g. specially profiled, with protecting layer, heated, electrically conducting electrically conducting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/12Rigid pipes of plastics with or without reinforcement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/12Rigid pipes of plastics with or without reinforcement
    • F16L9/121Rigid pipes of plastics with or without reinforcement with three layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/12Rigid pipes of plastics with or without reinforcement
    • F16L9/125Rigid pipes of plastics with or without reinforcement electrically conducting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C47/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C47/0009Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the articles
    • B29C47/003Articles having cross-sectional irregularities, i.e. being non-flat or having cylindrical cross-sections perpendicular to the extrusion direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/12Use of polyvinylhalogenides or derivatives thereof as moulding material containing fluorine
    • B29K2027/18PTFE, i.e. polytetrafluorethene, e.g. ePTFE, i.e. expanded polytetrafluorethene, Gore Tex (R)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS
    • B29K2077/00Use of PA, i.e. polyamides, e.g. polyesteramides or derivatives thereof as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS
    • B29K2301/00Use of unspecified macromolecular compounds as reinforcement
    • B29K2301/10Thermosetting resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2009/00Layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE, IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2023/00Tubular articles
    • B29L2023/22Tubes or pipes, i.e. rigid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2597/00Tubular articles, e.g. hoses, pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/04Hoses, i.e. flexible pipes made of rubber or flexible plastics
    • F16L2011/047Hoses, i.e. flexible pipes made of rubber or flexible plastics with a diffusion barrier layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • Y10T428/139Open-ended, self-supporting conduit, cylinder, or tube-type article
    • Y10T428/1393Multilayer [continuous layer]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/3154Of fluorinated addition polymer from unsaturated monomers
    • Y10T428/31544Addition polymer is perhalogenated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31725Of polyamide
    • Y10T428/3175Next to addition polymer from unsaturated monomer[s]

Abstract

PURPOSE: To provide a fuel tube in which a fluoropolymer substrate is sufficiently activated for integrally adhering and laminating a thermoplastic polymer body, for instance a nylon top coat or layer. CONSTITUTION: This manufacturing method of a fluoropolymer composite material tube comprises a step of activation of a formed fluoropolymer substrate by subjecting the substrate to a charged gaseous atmosphere formed by electrically ionizing a gas which contracts the substrate and thereafter applying a layer of a thermoplastic polymer to the activated fluoropolymer substrate. The ionizing step can apply corona discharge by electrically formed plasma. In particular, the material is applied for a fuel pipe comprising an inner fluorocarbon layer having electrostatic discharge resistance and hydrocarbon evaporative emission resistance and on top of and integral with, the fluorocarbon layer an outer layer of a thermoplastic polymer.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は、フルオロポリマー製のチューブ、たとえば、燃料管路などに使用するフルオロポリマー複合材料製のパイプの分野に関する。 The present invention relates to a fluoropolymer tube, for example, the field of fluoropolymer composite material of the pipe to be used such as fuel line.

【0002】 [0002]

【従来の技術】蒸発性燃料の基準に対する関心が高まるにつれて、厳しい蒸発排出要件を満たし、同時に耐静電放電性の向上した燃料管路がますます必要とされている。 BACKGROUND OF THE INVENTION As growing interest with respect to the reference of the evaporative fuel, meet stringent evaporative emissions requirements, are antistatic discharge improving fuel conduit of increasingly required simultaneously. さらに、燃料管路は経済的な利害関係も同様に有しており、高度の生産性をもって、低価格で製造可能であるのが好適である。 Further, the fuel conduit economic interests also have similar, with a high degree of productivity, it is preferred and even can be manufactured at low cost. 燃料管路はまた、望ましくは、適切な物理的特性として、十分な引張り強さならびに耐キンク性、すなわち、燃料管路が屈曲時に特定の形状を保持したままとなることに対する抵抗性を有する必要がある。 Fuel line also desirably, suitable physical properties, sufficient tensile strength and kink resistance, that is, required to have resistance to the fuel line is while maintaining a specific shape during flexion there is.

【0003】長年にわたって、各種の材料から構成される燃料管路用のホースが提案されてきた。 [0003] Over the years, the hose of the fuel pipe road composed of various materials have been proposed. テトラフルオロエチレンも使用され、この樹脂は、顕著で優れた耐高温性ならびに耐薬品性を有するものである。 Tetrafluoroethylene also used, the resin is one which has a remarkably excellent high temperature resistance and chemical resistance. 「ホース技術 (Hose Technology)」、出版社:英国エセックス (Es "Hose technology (Hose Technology)", Publisher: UK Essex (Es
sex)、アプライド・サイエンス・パブリッシャー社(App sex), Applied Science Publishers, Inc. (App
lied Science Publisher, Ltd.) 、著者:コリン・W・ lied Science Publisher, Ltd.), Author: Colin · W ·
エバンズ (Colin W.Evans)、第195−211ページ参照。 Evans (Colin W.Evans), see Section 195-211 page. ホース用組成物としては、ナイロンも使用されてきた。 The hose composition, nylon have also been used. フッ素化重合体を使用しようとする際に遭遇する困難としては、この種の材料を他の材料に接着したり、また他の材料をこの種の材料に接着したりして所望の複合材料を得ることが難しいことが挙げられる。 The difficulty encountered in attempts to use a fluorinated polymer, the desired composite or bonded to such materials to other materials, also with or bonded to other materials such materials it may be mentioned that it is difficult to obtain.

【0004】米国特許第4,933,060号には、反応性気体のプラズマを用いたフルオロポリマーの表面変性が開示されている。 [0004] U.S. Patent No. 4,933,060, the surface modification of fluoropolymers is disclosed which uses a plasma of reactive gases. しかしこの文献には、十分な結合を達成するには、次の層の積層の前に接着剤を塗布しておく必要があることがさらに示唆されている。 But in this document, sufficient to achieve coupling, it is necessary to apply the adhesive prior to lamination of the next layer is further suggested. 適当な接着剤は、エポキシ、アクリレート、ウレタンなどであるとされる。 Suitable adhesives are epoxy, acrylate, urethane, and the like.

【0005】米国特許第4,898,638号には、化学薬品に対して耐性の可撓性のガスケットを製造する方法が開示されている。 [0005] U.S. Patent No. 4,898,638, a method of producing a flexible gasket resistance is disclosed to chemicals. 可撓性ガスケットの製造は、PT Manufacture of flexible gasket, PT
FE(ポリテトラフルオロエチレン) の1層のフィルムを未硬化ゴムシートに直接積層し、ゴムシートにPTF FE is directly laminated on uncured rubber sheet a film of one layer of (polytetrafluoroethylene), PTF rubber sheet
Eのフィルムとともに、ゴムを硬化させるのに適した熱ならびに圧力を加えることによって行う。 Film with the E, performed by applying heat and pressure suitable for curing the rubber. フルオロポリマーを結合するにあたっての接着剤の使用は、米国特許第4,743,327号にも同様に記載されており、接着剤の使用は展開操作のために必要であるとされている。 Use of adhesives when combining the fluoropolymer, in U.S. Patent No. 4,743,327 are described similarly, the use of adhesives are to be required for the deployment operation. 米国特許第4,731,156号には、アンモニアガスを使用したフルオロポリマーの活性化が教示されている。 No. 4,731,156, the activation of the fluoropolymer by using ammonia gas is taught.

【0006】しかし、いずれの従来技術にも、多層フルオロポリマーと、これと一体に積層されたナイロン層とからなり、所望の耐静電放電性および耐炭化水素蒸発排出性を有する、多層フルオロポリマー材料、あるいはパイプは記載されていない。 However, in any of the prior art, consists of a multilayer fluoropolymer, nylon layer laminated integrally with, with the desired antistatic discharge resistance and 耐炭 hydrogen evaporative emission resistance, multilayer fluoropolymer material or the pipe is not described. さらに、従来技術には、プラスチック層をしっかりと固定的に結合するには接着剤が必要であることが示唆されている。 Furthermore, the prior art, it to be firmly fixedly coupled plastic layer is required adhesive has been suggested. 本発明は、フルオロポリマー層を熱可塑性樹脂層に結合するにあたって、接着剤をさらに使用することを必須の要件とはしていないものである。 The present invention is a fluoropolymer layer when bonded to the thermoplastic resin layer, in which not an essential requirement to further use an adhesive.

【0007】 [0007]

【発明が解決しようとする課題】本発明の一つの目的は、フルオロポリマー基材を有しており、このフルオロポリマー基材が、熱可塑性重合体、たとえばナイロンのトップコートあるいは層を一体に積層するのに十分な程度に活性化されている燃料パイプあるいはチューブを提供することにある。 One object of the invention is to solve the above invention has a fluoropolymer substrate, laminating the fluoropolymer substrate is a thermoplastic polymer, for example a top coat or layer of nylon together It is to provide a fuel pipe or tube that has been activated to an extent sufficient to.

【0008】本発明のまた別の目的は、フルオロポリマー複合材料の製造を、うち1層が所望の耐静電放電性を有する多層フルオロポリマー基材を押出し、これらのフルオロポリマー層の上に、プラスチック、たとえばポリアミド、好ましくはナイロンの押出し層を積層することによって行うことにある。 [0008] Another object of the present invention, the production of fluoropolymer composite, multilayer fluoropolymer substrates including one layer has the desired antistatic discharge extrusion, on top of these fluoropolymer layer, plastic, such as polyamide, preferably in it is done by laminating the extruded layer of nylon.

【0009】 [0009]

【課題を解決するための手段】本発明は、 (1) 形成したフルオロポリマー製基材を、基材と接触する気体を電気的にイオン化することによって形成した帯電気体雰囲気に基材を暴露することによって活性化し、そして Means for Solving the Problems The present invention, exposing the substrate to a charged gaseous atmosphere formed by electrically ionizing a gas which contacts the (1) the formed fluoropolymer substrate, the substrate activated by, and
(2) 活性化したフルオロポリマーに、熱可塑性重合体の層を積層する工程からなるフルオロポリマー複合材料製チューブの製造方法に関するものである。 (2) to the activated fluoropolymer, a process for producing a fluoropolymer composite material tube comprising the step of laminating a layer of thermoplastic polymer.

【0010】本発明はまた、耐静電放電性ならびに耐炭化水素蒸発排出性を有するフルオロカーボン製内層と、 [0010] The present invention also comprises a fluorocarbon made inner layer having antistatic discharge as well as 耐炭 hydrocarbon evaporative emissions of,
この内層の上に一体に積層された熱可塑性重合体製の外層とからなる燃料パイプに関するものである。 It relates a fuel pipe comprising a thermoplastic polymer made of an outer layer which is integrally laminated on top of the inner layer.

【0011】 [0011]

【実施例】本発明は、フルオロポリマー複合材料、たとえばパイプあるいはチューブを製造する方法に関するものである。 EXAMPLES The present invention is a fluoropolymer composite material, for example, to a method of manufacturing a pipe or tube. 特に、フルオロポリマーは多層フルオロポリマーとするのが好適である。 In particular, the fluoropolymer is preferred that a multilayer fluoropolymer. フルオロポリマー層は、好ましくは耐静電放電性ならびに耐炭化水素蒸発排出性を有する。 Fluoropolymer layer preferably has a antistatic discharge as well as 耐炭 hydrocarbon evaporative emissions properties. 耐静電放出性は、フルオロポリマー層を導電性フルオロポリマーとすることによって付与するのが好適である。 Antistatic release is preferable to impart by the fluoropolymer layer a conductive fluoropolymer. このようにすると、燃料などの流体がパイプあるいはチューブを通って流れる際に生じることのある静電荷 (電気) が地面まで搬送されることが可能となる。 In this way, fluid such as fuel electrostatic charge that may occur as it flows through the pipe or tube (electricity) is capable of being conveyed to the ground.

【0012】複合材料製チューブは、導電性充填材を含有しない複数の層から構成することもできると理解されたい。 [0012] composite material tube, it is to be understood that it can be composed of a plurality of layers containing no conductive filler. 車両には燃料蒸気回収装置を積載する必要があるので、フルオロカーボン重合体の一層以上の層を、熱可塑性重合体によって包囲するのが望ましいこともある。 Since the vehicle has to be loaded with fuel vapor recovery system, one or more layers of fluorocarbon polymer, it may be desirable to enclose a thermoplastic polymer.
このようにすると、燃料蒸気を単独で、フルオロポリマー/熱可塑性重合体複合材料製チューブを通して、車両の任意所望の位置、たとえば車両に積載した炭素材料を充填したカニスターまで移動させることが可能となる。 In this manner, the fuel vapor alone, through the fluoropolymer / thermoplastic polymer composite material tubes, any desired position of the vehicle, it is possible to move for example to the canister filled with carbon material loaded on the vehicle .
炭素材料は燃料蒸気を吸収することができる。 Carbon material can absorb the fuel vapors.

【0013】本発明で使用することができるフルオロポリマーは、任意の人手が可能なフルオロポリマーとすることができ、その多くが市販されている。 [0013] fluoropolymers that can be used in the present invention may be a fluoropolymer capable any manpower, many of which are commercially available. 適当なフルオロポリマーとしては、エチレン−テトラフルオロエチレン (ETFE) 、エチレン−クロロトリフルオロエチレン (ECTFE) 、フッ素化エチレンブロピレン (FE Suitable fluoropolymers, ethylene - tetrafluoroethylene (ETFE), ethylene - chlorotrifluoroethylene (ECTFE), fluorinated ethylene bromide pyrene (FE
P) 、ペルフルオロアルコキシ (PFA) 、ポリフッ化ビニル (PVF) 、ポリフッ化ビニリデン (PVDF) P), perfluoroalkoxy (PFA), polyvinyl fluoride (PVF), polyvinylidene fluoride (PVDF)
、ポリクロロトリフルオロエチレン (PCTFE) 、 , Poly polychlorotrifluoroethylene (PCTFE),
ポリテトラフルオロエチレン (PTFE) を挙げることができる。 Polytetrafluoroethylene (PTFE) and the like. これら以外のフルオロポリマーとしては、水素原子ならびにフッ素原子を含む過フッ化α−フルオロオレフィン単量体から製造された重合体を挙げることができる。 These other fluoropolymers can include a hydrogen atom and polymers prepared from perfluorinated α- fluoroolefin monomer containing a fluorine atom. α−フルオロオレフィンは2−6個の炭素原子を有する。 α- fluoroolefin has 2-6 carbon atoms. α−フルオロオレフィンの例としては、過フッ化αオレフィン、たとえばヘキサフルオロプロペン、 Examples of α- fluoroolefin, perfluorinated α-olefins, for example hexafluoropropene,
ペルフルオロブテン、ペルフルオロイソブテンなど、水素含有α−フルオロオレフィン、たとえばトリフルオロエチレン、フッ化ビニリデン、フッ化ビニル、ペンタフルオロプロパンなど、およびハロゲン含有α−フルオロオレフィン、たとえばトリフルオロクロロエチレン、 Perfluoro-butene, etc. perfluoroisohexene butene, hydrogen-containing α- fluoroolefins, such trifluoroethylene, vinylidene fluoride, vinyl fluoride, etc. pentafluoropropane, and halogen-containing α- fluoroolefins, for example trifluorochloroethylene,
1,1−ジフルオロ−2,2−ビスクロロエチレン、 1,1-difluoro-2,2-bis chloroethylene,
1,2−ジフルオロ−1,2−ジクロロエチレン、トリフルオロブロモエチレンなど、ならびにペルフルオロアルコキシエチレン重合体がある。 1,2-difluoro-1,2-dichloroethylene, such as trifluoroacetic bromoethylene, as well as perfluoroalkoxyethylene polymers. 特に好適なフルオロポリマーは、テフゼル (Tefzel登録商標) の商標 (デュポン社の商標)で販売されているETFEである。 Particularly preferred fluoropolymers are the ETFE sold under the trademark Tefzel (Tefzel ®) (DuPont trademark).

【0014】静電荷を運びさるためにはフルオロポリマー層を導電性とする必要があり、フルオロポリマー層への導電性の付与は一般に、周知の方法によって行うことができる。 In order to carry away the electrostatic charges is required to be conductive fluoropolymer layer, imparting electrical conductivity to the fluoropolymer layer can generally be carried out by known methods. この導電性の付与は、フルオロポリマー樹脂に、加工の前に導電性粒子を添加しておくことによって行うことができる。 The conductive granted, the fluoropolymer resin may be carried out by leaving the addition of conductive particles prior to machining. フルオロポリマーに含有させる導電性粒子は、米国特許第3,473,087号に記載されており、この文献を本明細書に参考文献として組み込むものである。 Conductive particles to be contained in the fluoropolymers are described in U.S. Patent No. 3,473,087, it is intended to incorporate by reference the document herein. 適当な導電性材料としては、フルオロポリマー層の全重量の0.1−10重量%、好ましくは0. Suitable conductive materials, 0.1-10% of the total weight of the fluoropolymer layer, preferably 0.
1−2重量%の量のカーボンブラックがある。 There is a 1-2% by weight of the amount of carbon black. カーボンブラックは、押出しを行う前にフルオロポリマーと配合しておく。 Carbon black is previously blended with the fluoropolymer prior to performing the extrusion. 導電性フルオロポリマー樹脂も、通常のフルオロポリマー樹脂と同様に市販されている。 Conductive fluoropolymer resins are commercially available as usual fluoropolymer resin.

【0015】フッ素化重合体は溶融押出し法によって押出すのが好適で、その際、第一層を導電性フルオロポリマーとし、この第一層上に、第一層とともに第二層を同時押出しし、この第二層を導電性粒子を含有しないフルオロポリマーとするのが好適である。 [0015] Fluorinated polymers is preferable to be extruded by a melt extrusion method, in which the first layer and the conductive fluoropolymer, to the first layer on the second layer co-extruded with the first layer , it is preferable to fluoropolymer that does not contain the second layer of conductive particles. 第二フルオロポリマー層上には、この第二フルオロポリマー層と一体に、 On the second fluoropolymer layer, integral with the second fluoropolymer layer,
押出し熱可塑性樹脂材料を積層する。 Laminating the extruded thermoplastic resin material. この熱可塑性樹脂材料は各種の熱可塑性樹脂材料とすることができる。 The thermoplastic resin material may be a variety of thermoplastic resin materials. 熱可塑性樹脂材料として適当なのは、フルオロポリマー押出しパイプあるいはチューブ上に溶融押出しすることが可能なものである。 The suitable as the thermoplastic resin material is one capable of melt extrusion onto the fluoropolymer extrusion pipe or tube. この種の樹脂材料としては、アクリレート材料、ポリエステル材料、ブロモイソブテン−イソプレン材料、ポリブタジエン、塩素化ブチルゴム、塩素化ポリエチレン、ポリクロロメチルオキシラン、クロロプレン、クロロスルホニルポリエチレン、エチレンオキシド、およびクロロメチルオキシラン重合体、エチレン−プロピレン−ジエン三元重合体、エチレン−プロピレン共重合体、ポリエーテルウレタン、イソプレン、イソブテンイソプレン、ニトリルブタジエン、ポリアミド、ポリ塩化ビニル、スチレンブタジエン、ポリスルフィド、ポリオレフィン、ポリフェニルスルフィド、およびポリスルホン (たとえば3Mの商標であるアストレル As this kind of resin material, acrylate materials, polyester materials, Buromoisobuten - isoprene materials, polybutadiene, chlorinated butyl rubber, chlorinated polyethylene, poly chloromethyl oxirane, chloroprene, chlorosulfonyl polyethylene, ethylene oxide, and chloromethyl oxirane polymer, ethylene - propylene - diene terpolymers, ethylene - propylene copolymer, polyether urethanes, isoprene, isobutene isoprene, nitrile-butadiene, polyamides, polyvinyl chloride, styrene-butadiene, polysulfides, polyolefins, polyphenyl sulfide, and polysulfones (e.g. it is a trademark of 3M Asutoreru
(Astrel)、ICIのポリエーテルルスルホン、およびユニオンカーバイドの商標であるユーデル(Udel)) を挙げることができる。 (Astrel), ICI polyether Le sulfone, and is a trademark of Union Carbide Udel (Udel)) can be exemplified. ポリアミドを用いるのが特に好適で、 Particularly preferred to use a polyamide,
ナイロン、たとえばアジピン酸とヘキサメチレンジアミンとの縮合生成物であるナイロン66、カプロラクタムの重合体であるナイロン6、ブチロラクタム (2−ピロリドン) の重合体であるナイロン4、ブタジエンから製造したナイロン2などを用いるのがさらに好適である。 Nylon, such as nylon 66 which is a condensation product of adipic acid and hexamethylenediamine, nylon 6 which is a polymer of caprolactam, butyrolactam (2-pyrrolidone) polymers are nylon 4, a nylon 2 made from butadiene it is further preferred to use.
特に好適なナイロンは、スイスのEMSからL25FV Particularly suitable nylon, L25FV from Switzerland of EMS
S40の商標で販売されているナイロン12である。 S40 is a nylon 12 sold under the trademark.

【0016】ポリフルオロポリマー層を形成する際の溶融押出しの過程では、使用押出し温度を約500−約8 [0016] In the course of melt extrusion in forming polyfluoro polymeric layer, about the use extrusion temperature 500 to about 8
00°F、好ましくは約550−700°Fの範囲とし、1分当たりのスクリュー回転速度 (RPM)を約1 00 ° F, preferably in the range of about 550-700 ° F, screw rotation speed per minute and (RPM) of about 1
−約100RPM、好ましくは5−50RPMの範囲とする。 - about 100 RPM, preferably in the range of 5-50RPM. 生成する最終生成物は、図1および2に示すような、上側に熱可塑性樹脂材料10を有する多層フルオロポリマーである。 Resulting final product, as shown in FIG. 1 and 2, a multilayer fluoropolymer having a thermoplastic resin material 10 on the upper side. 導電層12は、非導電層14とともに、同時押出しする。 Conductive layer 12, together with the non-conductive layer 14 is co-extruded. 導電層12中には、導電性粒子 During the conductive layer 12, the conductive particles
(図示せず) が存在している。 (Not shown) are present.

【0017】導電性充填材を含有しない複数の層からなるフルオロポリマー複合材料が望ましい場合には、同一のフルオロポリマーを同時押出しして複数の層を形成する。 [0017] When the fluoropolymer composite comprising a plurality of layers containing no conductive filler is desired, co-extrusion of the same fluoropolymer to form a plurality of layers. 1層だけのフルオロポリマー層が望ましいことももちろんあり、その場合には、単一の押出しダイを使用することができる。 There is also of course the fluoropolymer layer of one layer is desired, in which case, it is possible to use a single extrusion die. その後、さらなる加工工程を引き続き行う。 Then, continue to further processing steps.

【0018】最上層の熱可塑性樹脂、たとえばポリアミドの層10を押出す前に、フルオロポリマーを活性化しておく必要がある。 The top layer of the thermoplastic resin, for example a layer 10 of polyamide prior to extruding, it is necessary to activate the fluoropolymer. すなわち、熱可塑性樹脂層10と接触することになる非導電層14の外側部分の表面を、プラズマ放電あるいはコロナ放電によって活性化しておく必要がある。 That is, the surface of the outer portion of the non-conductive layer 14 which comes into contact with the thermoplastic resin layer 10, it is necessary to activate the plasma discharge or corona discharge. つまり、フルオロポリマー層14を、基材14に接触する気体を電気的にイオン化することによって形成した帯電気体雰囲気に暴露する。 That is, the fluoropolymer layer 14 is exposed to the charged gaseous atmosphere formed by electrically ionizing a gas which contacts the substrate 14. コロナ電極は、 Corona electrode,
移動するフルオロポリマー製チューブの両側に配置するのが最も好ましい。 To place on both sides of the moving fluoropolymer tube is most preferred. すなわち、コロナ電極の放電の第一階段では、プラスチックチューブの外周の約270°がコロナ放電に暴露される。 That is, in the first stepped discharge of the corona electrode, about 270 ° of the circumference of the plastic tube is exposed to corona discharge. チューブがコロナ電極の放電中を通過する際は、チューブは電極から約0.05−3 When the tube is passing through the discharge of the corona electrode, the tube is approximately from electrode 0.05-3
インチ、好ましくは0.1−0.5インチのところを通過する。 Inch, preferably passes through the place of 0.1-0.5 inch. その後、最初のコロナ放電装置から約3インチから3フィート、好ましくは6インチから18インチ以内で、チューブは、第一段階とは反対側に配置された第二段階コロナ放電と接触し、ここでもまた、チューブの外周の約270°がコロナ放電と接触して処理される。 Then 3 feet to about 3 inches from the first corona discharge device, preferably within 18 inches to 6 inches, tubes, and the first step is contacted with a second stage corona discharge placed on the opposite side, again also, about 270 ° of the circumference of the tube is processed in contact with the corona discharge.
このようにして、チューブの360°の全外周が、コロナ放電によって活性化される。 In this way, the entire circumference of 360 ° of the tube is activated by a corona discharge.

【0019】特に好適に用いることのできるコロナ放電装置が、エネルコン(Enercon) からダイン−A−マイト [0019] In particular corona discharge device which can be suitably used is, dynes -A- mite from Enercon (Enercon)
(Dyne-A-Mite) B12型として販売されており、この装置は処理用プラズマの形成に空気吹きつけ電気アークを使用している。 (Dyne-A-Mite) are sold as B12 type, the apparatus uses an electric arc spraying air to the formation of the processing plasma. すなわち、周囲温度および周囲圧力の開放雰囲気中で2つの別々の工程を構成する、2つの別々のコロナ放電ヘッドが存在する。 That constitute two separate steps in an open atmosphere at ambient temperature and pressure, two separate corona discharge heads exist. それぞれ台形形状をした、エネルコンの装置の各コロナ放電ヘッドは、同一の水平面内で0.35インチの間隙によって隔てられた一対のワイヤ電極 (直径0.065インチ) を有しており、一方のワイヤ電極の端部から、他方のワイヤ電極の端部までの全長は1.9インチである。 And trapezoidal, respectively, each of the corona discharge head of the device of Enercon has a pair of wire electrodes separated by a gap 0.35 inches same horizontal plane (diameter 0.065 inches), the one from the end of the wire electrode, the total length of the end portion of the other wire electrode is 1.9 inches.

【0020】コロナ放電を行うにあたっては、開放大気および開放雰囲気を用いるのが最も経済的な方法であると理解されたい。 [0020] In performing a corona discharge, it should have been understood to be the most economical way to use the open air and open atmosphere. しかし、要求される活性化の程度ならびにフルオロポリマー上に積層される特定の材料によっては、閉鎖チャンバー電極放電装置が使用可能であることも理解されたい。 However, depending on the particular material to be laminated on the degree and the fluoropolymer required activation, it should also be understood that a closed chamber electrode discharge devices could be used. 閉鎖チャンバー環境では、一対の逆に帯電させた (正および負の) 電極を使用し、電極間に電流を通して、気体をイオン化させる。 In the closed chamber environment, using a pair of contrary was charged (positive and negative) electrodes, through current between the electrodes, thereby ionizing the gas. 基材は、イオン化した気体の充満した電場を通過させればよい。 The substrate, it is sufficient to pass the filled and electric field of ionized gas. この気体は、チャンバーにさらに気体、たとえば酸素、窒素、 The gas is further gas to the chamber, such as oxygen, nitrogen,
アルゴン、あるいはもっと別の反応性気体、たとえば一酸化炭素、フッ素化した気体、二酸化炭素、フッ化水素、四フッ化炭素、アンモニアなどを供給することによって、変更することもできる。 Argon or more different reactive gases, such as carbon monoxide, fluorinated gases, carbon dioxide, hydrogen fluoride, carbon tetrafluoride, etc. by supplying ammonia, can be changed. このチャンバーは、減圧、たとえば0.01−100ドル (1気圧=760トル) で運転することができる。 The chamber, the vacuum can be operated, for example, 0.01-100 dollars (1 atm = 760 Torr).

【0021】高度の製造速度を達成するには、同時押出しダイ (図21) を使用する。 [0021] To achieve a high degree of production rate, using a co-extrusion die (Fig. 21). したがって、押出されたチューブがコロナ放電工程を通過する際には、一定速度の高速で移動することになる。 Therefore, when the extruded tube passes through the corona discharge process is caused to move at high speed in a constant speed. この速度は、毎分1−5 This rate, per minute 1-5
0線フィート (FPM) とするのが好ましく、15−3 It is preferable to be 0-wire feet (FPM), 15-3
0FPMとするのがさらに好ましい。 It is further preferred to 0FPM. 上記のエネルコンの装置は、ヘッド1つあたり、約2.5インチ×2インチのコロナ放電処理領域を有する。 Apparatus of the Enercon has per one head 1, a corona discharge treatment area of ​​about 2.5 inches × 2 inches.

【0022】上記のエネルコンのダイン−A−マイトコロナ放電装置を使用する場合には、活性化したチューブは触ってもさほど熱くはないものの、周囲温度より10 [0022] When using a Dyne -A- Maitokorona discharge apparatus of the Enercon, although not much hot to the touch is activated tube 10 than the ambient temperature
ないし20°F温度が高いはずである。 To 20 ° F temperature should high. このことにより、燃料チューブあるいはパイプの製造を一層安全に行うことができる。 Thus, the manufacture of the fuel tube or pipe can be more safely. フッ素化したチューブを活性化した後、熱可塑性樹脂を、図21に図示し、図3に模式的に示したクロスヘッドダイを通して押出す。 After activation of the fluorinated tube, the thermoplastic resin, shown in FIG. 21, extruded through a crosshead die shown schematically in FIG. クロスヘッドダイは、熱可塑性樹脂を溶融するのに十分な押出し温度としておく。 Crosshead die, to melt the thermoplastic resin keep a sufficient extrusion temperature. この温度は一般に、フッ素化プラスチックの押出し温度より有意に低い。 This temperature is generally significantly lower than the extrusion temperature of the fluorinated plastic. クロスヘッドダイの作業温度は、約300−約500°F、好ましくは350− Working temperature of the crosshead die, about 300 to about 500 ° F, preferably 350 -
約450°Fの範囲とし、スクリュー回転速度を、10 In the range of about 450 ° F, a screw rotation speed, 10
−100RPM、好ましくは20−60RPM、線速度を約5−100フィート毎分、好ましくは15−70フィート毎分とする。 -100 rpm, preferably 20-60RPM, a linear speed of about 5-100 feet per minute, preferably 15-70 feet per minute.

【0023】上記のエネルコンの装置は、15,000 [0023] The apparatus of the Enercon is, 15,000
ボルトの出力で、2段階の電極工程を使用して、電極1 At the output of the bolt, using the two-stage electrode process, the electrode 1
つ当たり30ミリアンペアのプラズマとして運転するのが好適である。 It is preferable to operate as a plasma of 30 mA per One. 気体をイオン化するために電極に印加するワット数は広範に変化させることができる。 Gas wattage applied to the electrode to ionize can vary widely. たとえば、処理を行うチューブが (長さが12インチで外径が1インチのチューブであると仮定して) 約25平方インチ/分であるとすると、250ジュール/秒−600ジュール/秒の範囲で、すなわち、約10−24ジュール/チューブの線フィートの範囲でワット数を変化させることができる。 For example, when the tube is to carry out the process (length assuming the outer diameter of 12 inches 1 inch tube) and about 25 square inches / minute, the range of 250 Joules / sec -600 joules / sec in, i.e., it is possible to change the wattage in the range of lines foot about 10-24 joules / tube.

【0024】つぎに図面を説明すると、図3の模式図に示すように、同時押出しを、押出機22および24の同時押出しダイ20から行う。 [0024] Next will be described the drawings, as shown in the schematic diagram of FIG. 3, the coextrusion is carried out from the coextrusion die 20 of the extruder 22 and 24. 形成したチューブは、ダイ20を出た後、減圧水冷室28の入口に位置するダイ2 The formed tube after exiting the die 20, located at the entrance of the vacuum water-cooled chamber 28 Die 2
6に入る。 Enter the 6. 水温は室温とする。 Water temperature and room temperature. つぎにチューブは延伸引取装置30まで水平に送られる。 Then the tube is fed to the horizontal to stretch puller 30. チューブは延伸引取装置を出て、図3に模式的に示すようにコロナ放電32に暴露される。 Tube exits the stretching pulling device, is exposed to the corona discharge 32 as shown schematically in FIG. その後、活性化されたフルオロポリマー基材上に、押出機34から熱可塑性重合体を押出す。 Then, on the fluoropolymer substrate that is activated, extruding a thermoplastic polymer from the extruder 34. この際、フルオロポリマー製の内層を、参照番号36のクロスヘッドダイを通過させて寸法規制する。 In this case, the inner layer made of fluoropolymer, passed through a crosshead die reference numbers 36 dimensions regulations. その後、複合材料製のチューブを減圧冷却装置38によって冷却する。 Thereafter, cooling the tube made of a composite material by reduced pressure cooling device 38. チューブを、引取装置40によって減圧冷却装置3 The tube, vacuum cooling apparatus by puller 40 3
8を通して軸線方向に引張り、その後、切断機42で所望の寸法に切断する。 Pull axially through 8, thereafter, cut to the desired size by the cutting machine 42.

【0025】つぎに、ダイの操作を説明する。 [0025] Next, a description will be given of the operation of the die. 図4には3つの入口管路が示してあるが、一方が導電層で、他方が非導電層である、2層のフッ素化重合体同時押出し層を製造するにあたっては、入口が2つの同時押出しダイを使用するのが最も好適である。 The Figure 4 there is shown a three inlet lines, but one is a conductive layer, and the other is non-conductive layer, in manufacturing the fluoropolymer coextruded layer of two layers, the inlet two simultaneous it is most preferred to use an extrusion die. 単一層のフルオロポリマーのみを使用する場合には、市販のチューブ形成用押出しダイを使用することももちろん可能である。 When using only fluoropolymer single layer, it is of course possible to use a commercially available tube forming extrusion die.

【0026】図4に示すダイ装置50は、主要な構造部材として、内側ダイ部材56、中央ダイ部材58、および外側ダイ部材60を備えたダイハウジング52を有する。 The die assembly 50 shown in FIG. 4, as the primary structural member, having a die housing 52 having an inner die member 56, the center die member 58, and the outer die member 60. ダイ部材56、58および60は同心的に配置されており、ほぼ円筒形状の押出しダイ部材である。 Die members 56, 58 and 60 are concentrically disposed, an extrusion die members generally cylindrical shape. ダイ装置50の軸線「A」に沿って貫通腔54が延在している。 Through lumen 54 along the axis of the die assembly 50 "A" extends. ダイ部材56、58および60は、オリフィス64 Die members 56, 58 and 60, orifice 64
を貫通して延在するボルトあるいはピン62などで一緒に保持されている。 They are held together by a bolt or pin 62 extending through the.

【0027】さらに図5について説明すると、好適実施態様では、押出しダイ部材56、58、および60は、 [0027] Further, FIG. 5 will be described, in a preferred embodiment, the extrusion die members 56, 58, and 60,
それぞれ、ダイハウジング50の外周から関連したダイ部材まで内側に向かって延在する入口70、72および74を有する。 Respectively, having an inlet 70, 72 and 74 extending inwardly to the die member associated from the outer periphery of the die housing 50. 図5に最もよく示されているように、入口70は好ましくは半円周状の分配流路80まで延在し、以下でさらに詳しく説明するように、押出し材料はこの分配流路80を通過して、さらにダイ装置50の押出し端76まで分配される。 As best shown in Figure 5, the inlet 70 preferably extends to the distribution channel 80 of semi-circular shape, as described in more detail below, the extruded material passes through the distribution channel 80 and it is further distributed to the extrusion end 76 of the die assembly 50.

【0028】図10に最もよく示されているように、分配流路80は、一対の軸線方向分配流路82と連通している。 [0028] As best shown in FIG. 10, the distribution channel 80 communicates with a pair of axial distribution channels 82. 図示のように、軸線方向分配流路82は、好ましくは内側ダイ部材56の周囲に対称に配置され、軸線方向に沿って押出し端76に向かって延在している。 As shown, the axial distribution channels 82 are preferably disposed symmetrically around the inner die member 56 and extend toward the extrusion end 76 in the axial direction. 次に図6および9について説明すると、これらの図には内側ダイ部材56の断面図を示す。 Referring now to FIGS. 6 and 9 show a cross-sectional view of the inner die member 56 in these figures. 各軸線方向分配流路82 Each axial distribution channels 82
は、一対の枝分かれ分配流路84と連通している。 Communicates with a pair of branch distribution channels 84. 図示のように、この枝分かれ分配流路84は、内側ダイ部材56のまわりに、ほぼ半円周状に延在している。 As illustrated, the branch distribution channels 84, around the inner die member 56, and extends substantially semi-circumferentially. この枝分かれ分配流路84は、4本の軸線方向分配流路86と連通している。 The branch distribution channels 84 are in communication with four axial distribution channels 86.

【0029】図6について説明すると、軸線方向分配流路86は、内側ダイ部材56の軸線「A」に沿って押出し端76に向かって延在している。 [0029] FIG. 6, will be described, axial distribution channels 86 extend toward the extrusion end 76 along the axis of the inner die member 56 "A". 流路86は、複数の枝分かれ分配流路90と連通しており、この枝分かれ分配流路90は、図8に最もよく示されているように、内側ダイ部材56の周囲に部分的に円周方向に延在している。 Passage 86 is in communication with a plurality of branch distribution channels 90, the branch distribution channels 90, as best shown in FIG. 8, partially circumferentially around the inner die member 56 It extends in direction. 好適実施態様では、この分配流路90は、8本の軸線方向分配流路92 (図6にはそのうち4本のみを特に図示してある) と連通しており、この軸線方向分配流路92も軸線「A」に沿って押出し端76に向かって延在している。 In a preferred embodiment, the distribution channel 90 is in communication with eight axial distribution channels 92 (Aru particularly illustrates only them present 4 in FIG. 6), the axial distribution channels 92 extending toward the extrusion end 76 along the axis "a". 図6に示すように、軸線方向分配流路92 As shown in FIG. 6, the axial distribution channels 92
は、押出し端76の周囲に螺旋状に配置された、複数のほぼネジ形の流路94と連通している。 It is arranged helically around the extrusion end 76, and communicates with the flow passage 94 of a plurality of substantially thread-shaped.

【0030】したがって、押出し材料は入口70から入って内側ダイ部材56まで移動し、半円周状の分配流路80で分かれて軸線方向分配流路82に入る。 [0030] Thus, the extruded material moves to the inner die member 56 enters from the inlet 70 enters the axial distribution channels 82 separated by a semi-circumferential distribution channel 80. 押出し材料は、流路82に沿って移動し、枝分かれ分配流路84 Extruded material moves along the flow path 82, branch distribution channels 84
で再度分かれる。 In divided again. 押出し材料はつぎに、軸線方向分配流路86に入り、この流路に沿って枝分かれ分配流路90 Extruded material then enters the axial distribution channels 86, branch distribution channels 90 along the flow path
まで移動し、ここで再度分かれて、8本の軸線方向分配流路92に入る。 To move, where divided again, into the axial distribution channels 92 eight. 押出し材料はこの流路92から、ネジ形の流路94に入る。 Extruded material from the flow path 92, enters the flow path 94 of the type screw. これらのネジ形の流路94は、押出し過程の間に押出し材料が均等に分配され十分均質となるように機能する。 The flow path 94 of these screw-shaped functions to extruded material is sufficiently homogeneous evenly distributed during the extrusion process.

【0031】図11および15には、中央ダイ部材58 [0031] Figure 11 and 15, the center die member 58
の各種の断面図を示す。 It shows a cross-sectional view of various. 押出し材料は、 (図1に最もよく示されているように) 入口72を通って中央ダイ部材58に入る。 Extrusion material, (as best shown in FIG. 1) into the center die member 58 through the inlet 72. 入口72は、好ましくは半円周状の分配流路10まで延在し、以下でさらに詳しく説明するように、押出し材料はこの分配流路80を通過して、さらに押出し端76'まで分配される。 Inlet 72 preferably extends to the distribution channel 10 of semi-circular shape, as described in more detail below, the extrusion material passes through the distribution channel 80 is distributed further to the extrusion end 76 ' that.

【0032】図15に最もよく示されているように、分配流路100は、一対の軸線方向分配流路102と連通している。 [0032] As best shown in Figure 15, the distribution channel 100 is in communication with a pair of axial distribution channels 102. 図示のように、この軸線方向分配流路102 As illustrated, the axial distribution channels 102
は、好ましくは中央ダイ部材58の周囲に対称に配置され、軸線方向に沿って押出し端76'に向かって延在している。 It is preferably arranged symmetrically around the central die member 58 and extend toward the extrusion end 76 'in the axial direction. 好適実施態様では、各軸線方向分配流路102 In a preferred embodiment, each axial distribution channels 102
は、枝分かれ分配流路104と連通している。 Communicates with branch distribution channels 104. 図14に最もよく示されているように、この枝分かれ分配流路1 As best shown in FIG. 14, the branch distribution channels 1
04は、中央ダイ部材58のまわりに、ほぼ半円周状に延在している。 04, around the center die member 58 and extend substantially semi-circumferentially. この枝分かれ分配流路104は、4本の軸線方向分配流路106と連通している。 The branch distribution channels 104 communicates with four axial distribution channels 106.

【0033】図11について引き続き説明すると、軸線方向分配流路106は、中央ダイ部材58に沿って押出し端76'に向かって延在している。 [0033] When 11 subsequently explained, the axial distribution channels 106 extend toward the extrusion end 76 'along the center die member 58. 流路106は、複数の枝分かれ分配流路110と連通しており、この枝分かれ分配流路110は、図13に最もよく示されているように、中央ダイ部材58の周囲に部分的に円周方向に延在している。 Flow path 106 is communicated with a plurality of branch distribution channels 110, the branch distribution channels 110, as best shown in FIG. 13, partially circumferentially around the central die member 58 It extends in direction. 好適実施態様では、この分配流路110 In a preferred embodiment, the distribution channel 110
は、8本の軸線方向分配流路112 (図11にはそのうち4本のみを特に図示してある) と連通しており、この軸線方向分配流路112も部材58に沿って押出し端7 Is communicated with eight axial distribution channels 112 (Aru particularly illustrates only them present 4 in FIG. 11), the extrusion end 7 along the axial distribution channels 112 members 58
6'に向かって延在している。 Extending toward the 6 '. 図11に示すように、軸線方向分配流路112は、押出し端76'の周囲に螺旋状に配置された、複数のほぼネジ形の流路114と連通している。 As shown in FIG. 11, the axial distribution channels 112 are arranged helically around the extrusion end 76 'and communicates with the flow passage 114 of the plurality of generally screw-shaped.

【0034】運転時には、押出し材料は入口72から入って中央ダイ部材58まで移動し、半円周状の分配流路100で分かれて軸線方向分配流路102に入る。 [0034] In operation, extrusion material is moved to the center die member 58 enters from the inlet 72 enters the axial distribution channels 102 separated by a semi-circumferential distribution channel 100. 押出し材料は、流路102に沿って移動し、枝分かれ分配流路104で再度分かれる。 Extruded material moves along the flow path 102, again divided at branch distribution channels 104. 押出し材料はつぎに、軸線方向分配流路106に入り、この流路に沿って枝分かれ分配流路110まで移動し、ここで再度分かれて、8本の軸線方向分配流路112に入る。 Extruded material then enters the axial distribution channels 106, moves to the branch distribution channels 110 along the flow path, wherein the divided again, into the axial distribution channels 112 of eight. 押出し材料はこの流路112から、ネジ形の流路114に入る。 Extruded material from the passage 112, enters the flow path 114 of the type screw. 内側ダイ部材の場合と同じく、これらのネジ形の流路114は、押出し過程の間に押出し材料が均等に分配され十分均質となるように機能する。 As with the inner die member, the flow passage 114 of the screw type serves to extrude the material is sufficiently homogeneous evenly distributed during the extrusion process.

【0035】図4および5に示してあるように、押出し材料は入口74を通って外側ダイ部材60に入る。 [0035] As is shown in FIGS. 4 and 5, extrusion material enters the outer die member 60 through the inlet 74. 図1 Figure 1
6−20には、外側ダイ部材60の各種の断面図を示す。 6-20 illustrate various cross-sectional view of the outer die member 60. 入口74は、好ましくはトラフ120まで延在し、 Inlet 74, preferably extends to a trough 120,
このトラフ120は、ほぼ半円周状の分配流路122に接続している。 The trough 120 is connected substantially semicircular shaped distribution passage 122. 以下でさらに詳しく説明するように、押出し材料はこの分配流路122を通過して、さらに押出し端76"まで分配される。 As explained in more detail below, the extrusion material through the distribution channel 122 is distributed further to the extrusion end 76 '.

【0036】図16および20について一緒に説明すると、分配流路122は、一対の軸線方向分配流路124 [0036] To describe with reference to FIG. 16 and 20, the distribution channel 122 has a pair of axial distribution channels 124
(図16にはこの内1本のみを示す) と連通している。 Communicates with (of which shows only one in FIG. 16).
図示のように、この軸線方向分配流路124は、好ましくは外側ダイ部材60の周囲に対称に配置され、軸線方向に沿って押出し端76"に向かって延在している。好適実施態様では、各軸線方向分配流路124は、枝分かれ分配流路126と連通している。図19に最もよく示されているように、この枝分かれ分配流路126は、外側ダイ部材60のまわりに、ほぼ半円周状に延在している。この枝分かれ分配流路126は、4本の軸線方向分配流路128と連通している。 As illustrated, the axial distribution channels 124 are in preferably arranged symmetrically around the outside die member 60 and extend toward the extrusion end 76 'in the axial direction. Preferred embodiment each axial distribution channels 124 are in communication with the branch distribution channel 126. as best shown in Figure 19, the branch distribution channels 126, around the outer die member 60, substantially It extends semicircular shape. the branch distribution channels 126 communicates with four axial distribution channels 128.

【0037】図16について引き続き説明すると、軸線方向分配流路128は、外側ダイ部材60に沿って押出し端76"に向かって延在している。流路128は、複数の枝分かれ分配流路130と連通しており、この枝分かれ分配流路130は、図18に最もよく示されているように、外側ダイ部材60の周囲に部分的に円周方向に延在している。好適実施態様では、この分配流路130 [0037] With continued reference to Figure 16, axial distribution channels 128 extend Mashimashi to have. Flow path 128 toward the "extrusion end 76 along the outer die member 60 has a plurality of branch distribution channels 130 communicates with, the branch distribution channels 130, as best shown in FIG. 18, extends partially circumferentially around the outside die members 60. in the preferred embodiment the distribution channel 130
は、8本の軸線方向分配流路132 (図16にはそのうち4本のみを特に図示してある) と連通しており、この軸線方向分配流路132も部材60に沿って押出し端7 Is communicated with eight axial distribution channels 132 (Aru particularly illustrates only them present 4 in FIG. 16), the extrusion end 7 along the axial distribution channels 132 members 60
6"に向かって延在している。図16に示すように、軸線方向分配流路132は、押出し端76"の周囲に螺旋状に配置された、複数のほぼネジ形の流路134と連通している。 "As shown in extended Mashimashi with that. FIG 16 toward the, axial distribution channels 132, the extrusion end 76 '6 are arranged helically around the, the flow path 134 of the plurality of generally screw-shaped communicate with each other.

【0038】運転時には、押出し材料は入口74から入って外側ダイ部材60のトラフ120まで移動し、半円周状の分配流路122で分かれて軸線方向分配流路12 [0038] In operation, extrusion material is moved to the trough 120 of the outer die member 60 enters from the inlet 74, the axial distribution channels 12 separated by a semi-circumferential distribution channel 122
4に入る。 Enter 4. 押出し材料は、流路124に沿って移動し、 Extruded material moves along the channel 124,
枝分かれ分配流路126で再度分かれる。 Again divided at branch distribution channels 126. 押出し材料はつぎに、軸線方向分配流路128に入り、この流路に沿って枝分かれ分配流路130まで移動し、ここで再度分かれて、8本の軸線方向分配流路132に入る。 Extruded material then enters the axial distribution channels 128, moves to the branch distribution channels 130 along the flow path, wherein the divided again, into the axial distribution channels 132 of eight. 押出し材料はこの流路132から、ネジ形の流路134に入る。 Extruded material from the passage 132, enters the flow path 134 of the type screw. 内側ダイ部材ならびに中央ダイ部材の場合と同じく、これらのネジ形の流路134は、押出し過程の間に押出し材料が均等に分配され十分均質となるように機能する。 As with the inner die member and the center die member, the flow passage 134 of the screw type serves to extrude the material is sufficiently homogeneous evenly distributed during the extrusion process.

【0039】図21は、図3に模式的に示したクロスヘッドダイ36の断面図である。 FIG. 21 is a cross-sectional view of a crosshead die 36 schematically shown in FIG. 材料は、オーガー138 The material, auger 138
を有する押出機34から、4本の軸線方向のネジ144 From an extruder 34 having a four axial screws 144
と、横断方向のネジ146によって一緒に保持されているダイハウジング142の入口140へと押出される。 When it is extruded to the inlet 140 of the die housing 142 which is held together by transverse screws 146.
フルオロポリマー製チューブ148は、ダイハウジング142中を軸線方向に移動するので、熱可塑性材料をその周囲に押出して複合材料製チューブ150を製造することができ、このチューブ150がハウジングから出てくる。 Fluoropolymer tube 148, so moving the middle die housing 142 in the axial direction, the thermoplastic material in its periphery is extruded can produce a composite material tube 150, the tube 150 emerges from the housing. 熱可塑性材料は入口140を通って流路152のまわりを移動する。 The thermoplastic material moves around the flow channel 152 through the inlet 140. 熱可塑性材料の所望の外径への制御は、ダイチップ154によって行う。 Desired control of the outer diameter of the thermoplastic material is made by die tip 154. ハウジングは、要素156によって加熱する。 The housing is heated by the element 156.

【0040】本発明の燃料管路は、車両、たとえば乗用車、トラック、航空機、機関車などで一般に使用する炭化水素燃料を搬送するためのものである。 The fuel line of the present invention, the vehicle is intended for conveying example cars, trucks, aircraft, a hydrocarbon fuel typically used in such locomotives. こうした燃料は一般に、炭化水素物質、たとえばプロパン、ブタン、 In such fuel generally, hydrocarbon materials such as propane, butane,
芳香族化合物、たとえばベンジン、トルエンをはじめとする燃焼性の有機物質を大量に含有している。 Aromatic compounds, for example benzene, contains a large amount of combustible organic substances, including toluene. したがって、組み合わせ積層材料、すなわち複合材料は、燃料管路からの燃料蒸気の漏出を防止することとなる。 Thus, the combination laminate material, i.e. the composite material becomes possible to prevent leakage of fuel vapors from the fuel line. 他の燃料、たとえばアルコール系燃料も、本発明の燃料パイプを通して搬送する流体とすることができる。 Other fuels such as alcohol-based fuels may also be a fluid for transporting through the fuel pipe of the present invention. さらに、本発明のパイプでは、これら以外の炭化水素系流体、たとえば油圧用流体も同様に使用することができる。 Furthermore, the pipe of the present invention, these non-hydrocarbon fluids such as hydraulic fluid may be used as well.

【0041】製造過程の各種の位置で複数の溶融押出し工程を使用することによって、溶融押出し温度の高いフルオロポリマーと、それよりは実質的に溶融押出し温度の低い熱可塑性材料とを、効率的に組み合わせることが可能となると理解されたい。 [0041] By using a plurality of melt-extrusion process at various locations of the manufacturing process, high fluoropolymer melt extrusion temperature, it more substantially melt extrusion temperature lower thermoplastic material, effectively it is to be understood that it is possible to combine. すなわち、まずフルオロポリマー層を溶融押出しし、つぎに形成したパイプを、形成したチューブを室温の水の中を通過させることによって冷却することにより、別個の、はっきり異なった熱可塑性重合体を熱可塑性パイプ上への押出しに使用し、かつ融点の低い材料の劣化を防止することが可能となるのである。 That is, the fluoropolymer layer was melt-extruded first, then the formed pipe, by cooling the formed tube by passing through the room temperature water, thermoplastic distinct clearly different thermoplastic polymers use extrusion onto the pipe, and it become possible to prevent deterioration of the low melting point material.

【0042】以下に好適実施態様を説明するが、特記しない限り、度はいずれも摂氏、部はいずれも重量部である。 [0042] While describing the preferred embodiments below, unless otherwise indicated, degrees are both Celsius, parts are both parts. 実施例1各種の処理済フルオロポリマーの表面エネルギーを調べた。 It was examined the surface energy of Example 1 various treated fluoropolymers. ダイン溶液を材料表面に載置した際に材料表面が濡れれば、この材料がダイン溶液より高い表面エネルギーを有することがわかる。 If Nurere is material surface upon placing dyne solution on the surface of the material, the material is seen to have a higher surface energy than the dyne solution. 液滴が「丸まれ」ば、材料の表面エネルギーはダイン溶液より低いことになる。 If droplets "Marumare", the surface energy of the material will be lower than the dyne solution. ダイン溶液の使用は、材料の表面エネルギーを測定する技法である。 Use of dyne solutions is a technique for measuring the surface energy of the material. フルオロポリマー基材の各種のサンプルを調製した。 Various samples of the fluoropolymer substrate was prepared. これらの各基材を、エチルセロソルブ−ホルムアミド(ethyl Cello-Solve-Formamide) (米国コネチカット州、コロテック(Corotec) の商標) のダイン溶液を調べた。 Each of these substrates, ethyl cellosolve - formamide (ethyl Cello-Solve-Formamide) (Connecticut, USA, trademark of Korotekku (Corotec)) examined the dyne solution. サンプルプラックを乾いた布で清拭して表面の汚れを除去した。 To remove surface dirt with a dry cloth the sample plaques wiped to. その際、残留物によって表面に影響が及ぶのを避けるため、溶剤は使用しなかった。 At that time, to avoid affect the surface by the residue, the solvent was not used. ダイン溶液を刷毛で横に一塗りして、溶液を3/4インチ×1インチに塗布した。 Dyne solution was one coating laterally with a brush, the solution was applied to 3/4 inch × 1 inch. 処理済のサンプルと未処理のサンプルの双方について、測定を行った。 For both the sample and the untreated sample of treated, it was measured. 記録値は、2秒以上連続フィルムの形状が維持された溶液を表す。 Recording values ​​representing the shape of more than 2 seconds continuous film was maintained solution. 処理済サンプルは、エネルコン−ダイン−A−マイト装置の放電ヘッドを掃引することによって調製した。 Treated samples Enercon - were prepared by sweeping the discharge head of dynes -A- chromite device. 処理済サンプルの調製にあたっては、放電ヘッドを、約6インチ/秒 (30 In the preparation of the treated sample, a discharge head, about 6 inches / sec (30
フィート/分) の速度で、サンプル表面から1/4から1/2インチ離してサンプルプラックを横切るよう掃引した。 At a rate of ft / min), it was swept so across the sample plaques 1/4 from the sample surface away 1/2 inch. 処理が確実に行われるように、掃引は2回行った。 Process as reliably performed, sweep was carried out twice. 以下に、調べたサンプルについての試験結果を示す。 Hereinafter, the test results for the samples examined. 初期表面 処理後の表面サンプル エネルギー エネルギーカイナー740 1 42、41、42 44、45、44 ハイラー460 2 45、46、45 64、58、60 ハラー500 3 34、35、34 40、37、39 1 :カイナー740(KYNAR740)は、アトケム・オブ・ノース・アメリカ(Atochemof North America) の、PVD Surface samples energy energy after initial surface treatment KYNAR 740 1 42,41,42 44,45,44 Heiler 460 2 45,46,45 64,58,60 Haller 500 3 34,35,34 40,37,39 1: Kynar 740 (KYNAR740) is, Atochem of North America (Atochemof North America), PVD
Fについての商標である。 It is a trademark of F. 2 :ハイラー460(HYLAR460)は、米国ニュージャージー州モーリスタウン(Morristown, New Jersey)のオージモント(Ausimont)の、PVDFについての商標である。 2: Heiler 460 (HYLAR460) is, the United States New Jersey Morristown (Morristown, New Jersey) of Ojimonto of (Ausimont), is a trademark of the PVDF. 3 :ハラー500(HALAR500)は、米国ニュージャージー州モーリスタウンのオージモントの、ECTFEについての商標である。 3: Haller 500 (HALAR500) is, of Ojimonto of the United States New Jersey Morristown, is a trademark of the ECTFE. 以上の結果から、表面エネルギーに変化が生じたことが示唆され、エネルコンコロナ放電装置によってフッ素化サンプルが活性化され、活性化されたサンプルが、熱可塑性樹脂、たとえばポリアミドをその上に押し出すのに満足な基材であることが示唆された。 From the above results, it changes the surface energy occurs is suggested, fluorinated sample is activated by energy con corona discharge device, samples activated, extrude thermoplastic resin, for example a polyamide thereon it was suggested that satisfactory substrates.

【0043】本明細書に記載した本発明の態様は、現時点での好適な態様であり、多くの他の態様も可能である。 The embodiments of the invention described herein is a preferred embodiment of the presently are possible many other aspects. 本明細書は、本発明の可能な均等な態様あるいは変更例のすべてについて説明しようとするものではない。 Herein is not intended to describe all possible equivalent embodiments or modifications of the present invention.
本明細書で使用する用語は、単に説明のために用いたものであって、限定的なものではなく、また、本発明の精神あるいは範囲から逸脱することなく、各種の変更を加えることが可能であると理解されたい。 The terminology used herein are merely used for explanation, limiting rather, also without departing from the spirit or scope of the present invention, it can make various changes it is to be understood that. たとえば、本発明は、燃料フィラーのネックチューブ、あるいはフルオロポリマー/熱可塑性樹脂の複合材料一般にも同等に適用することが可能である。 For example, the present invention is a fuel filler neck tube or to a composite material generally fluoropolymer / thermoplastic resin can be equally applied.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の三層燃料パイプの側面断面図である。 1 is a side sectional view of a three layer fuel pipe of the present invention.

【図2】図1の線2−2に沿って見た断面図である。 2 is a cross-sectional view taken along line 2-2 of FIG.

【図3】本発明の燃料パイプの製造方法の過程についての模式図である。 3 is a schematic diagram of the processes of the fuel pipe manufacturing method of the present invention.

【図4】本発明の燃料パイプの製造方法で使用する、複数の入口を有する押出しダイの断面図である。 [4] used in the production method of a fuel pipe of the present invention, it is a cross-sectional view of an extrusion die having a plurality of inlets.

【図5】図4の線5−5に沿って見た断面図である。 5 is a cross-sectional view taken along line 5-5 of FIG.

【図6】図7の線6−6に沿って見た、複数の入口を有する押出しダイの内側の断面図である。 6 taken along line 6-6 of FIG. 7 is a cross-sectional view of the inner extrusion die having a plurality of inlets.

【図7】図6の線7−7に沿って見た断面図である。 7 is a sectional view taken along line 7-7 of FIG.

【図8】図6の線8−8に沿って見た断面図である。 8 is a sectional view taken along line 8-8 of FIG.

【図9】図6の線9−9に沿って見た断面図である。 9 is a sectional view taken along line 9-9 of FIG.

【図10】図6の線10−10に沿って見た断面図である。 10 is a cross-sectional view taken along line 10-10 of FIG.

【図11】図4の複数の入口を有する押出しダイの一部である、中央押出しダイの断面図である。 11 is a part of an extrusion die having a plurality of inlets in Fig. 4 is a cross-sectional view of the central extrusion die.

【図12】図11の線12−12に沿って見た断面図である。 12 is a sectional view taken along line 12-12 of FIG. 11.

【図13】図11の線13−13に沿って見た断面図である。 13 is a sectional view taken along line 13-13 of FIG. 11.

【図14】図11の線14−14に沿って見た断面図である。 14 is a sectional view taken along line 14-14 of FIG. 11.

【図15】図11の線15−15に沿って見た断面図である。 15 is a sectional view taken along line 15-15 of FIG. 11.

【図16】図4の複数の入口を有する同時押出しダイの一部である、外側押出しダイの断面図である。 16 is a part of a coextrusion die having a plurality of inlets in Fig. 4 is a cross-sectional view of the outer extrusion die.

【図17】図16の線17−17に沿って見た断面図である。 17 is a sectional view taken along line 17-17 of FIG. 16.

【図18】図16の線18−18に沿って見た断面図である。 18 is a cross-sectional view taken along line 18-18 of FIG. 16.

【図19】図16の線19−19に沿って見た断面図である。 19 is a cross-sectional view taken along line 19-19 of FIG. 16.

【図20】図16の線20−20に沿って見た断面図である。 20 is a cross-sectional view taken along line 20-20 of FIG. 16.

【図21】図3に模式的に示すクロスヘッドダイの断面図である。 21 is a cross-sectional view of a cross-head die shown schematically in FIG.

【符号の説明】 DESCRIPTION OF SYMBOLS

10 熱可塑性樹脂 12 導電性フルオロポリマー層 14 非導電性フルオロポリマー層 20 同時押出しダイ 22、24 押出機 26 ダイ 28 減圧水冷室 30 延伸引取装置 32 コロナ放電 34 押出機 36 クロスヘッドダイ 38 冷却装置 40 引取装置 42 切断機 50 ダイ装置 52 ダイハウジング 54 貫通腔 56 内側ダイ部材 58 中央ダイ部材 60 外側ダイ部材 70、72、74 入口 76、76'、7 10 Thermoplastic resin 12 conductive fluoropolymer layer 14 non-conductive fluoropolymer layer 20 coextrusion die 22, 24 an extruder 26 die 28 vacuum water-cooled chamber 30 stretching pulling device 32 corona 34 extruder 36 crosshead die 38 cooling device 40 puller 42 cutter 50 die apparatus 52 die housing 54 through lumen 56 inner die member 58 the central die member 60 the outer die member 70, 72, 74 inlet 76, 76 ', 7
6" 押出し端 80 半円周状分配流路 82、86、9 6 "extrusion end 80 semi circular distribution passage 82,86,9
2 軸線方向分配流路 84、90 枝分かれ分配流路 94 ネジ形流路 100 半円周状分配流路 102、106、112 軸線方向分配流路 104、110 枝分かれ分配流路 114 ネジ形流路 120 トラフ 122 半円周状分配流路 124、128、132 軸線方向分配流路 126、130 枝分かれ分配流路 134 ネジ形流路 138 オーガー 140 入口 142 ダイハウジング 148 フルオロポリマーチューブ 152 流路 154 ダイチップ 2 axial distribution channels 84 and 90 branch distribution channels 94 screw shaped flow path 100 semi circular distribution passage 102,106,112 axial distribution channels 104 and 110 branch distribution channels 114 threaded form channel 120 Trough 122 semi circular distribution passage 124,128,132 axial distribution channels 126, 130 branch distribution channels 134 threaded form channel 138 auger 140 inlet 142 die housing 148 fluoropolymer tube 152 flow path 154 the die chip

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl. 5識別記号 庁内整理番号 FI 技術表示箇所 B32B 27/16 6122−4F 27/34 7016−4F 31/12 7141−4F 31/30 7141−4F F16L 11/04 7123−3J // B29K 27:12 4F 77:00 4F B29L 9:00 4F 23:22 4F (72)発明者 ケニス ジェイ クエンゼル アメリカ合衆国、ミシガン 49240、グラ ース レイク、イー ミシガン アベニュ ー、237 ────────────────────────────────────────────────── ─── front page continued (51) Int.Cl. 5 Docket FI technique in identification symbol Agency display portion B32B 27/16 6122-4F 27/34 7016-4F 31/12 7141-4F 31/30 7141-4F F16L 11/04 7123-3J // B29K 27:12 4F 77:00 4F B29L 9:00 4F 23:22 4F (72) inventor Kenneth Jay Kuenzeru United States, Michigan 49240, Gras over be rake, E Michigan Abenyu over, 237

Claims (18)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 (1) 形成したフルオロポリマー製基材を、基材と接触する気体を電気的にイオン化することによって形成した帯電気体雰囲気に基材を暴露することによって活性化し、そして (2) 活性化したフルオロポリマー製基材に、熱可塑性重合体の層を積層する工程からなるフルオロポリマー複合材料の製造方法。 The method according to claim 1 (1) forming the fluoropolymer substrate is activated by exposing the substrate to a charged gaseous atmosphere formed by electrically ionizing a gas which contacts the substrate, and (2 ) the activated fluoropolymer substrate, method of manufacturing the fluoropolymer composite of laminating a layer of thermoplastic polymer.
  2. 【請求項2】 フルオロポリマー製基材が、内層が導電性フルオロポリマーから構成され、外層がフルオロポリマー樹脂から構成される、一体の多層チューブである請求項1記載の方法。 2. A fluoropolymer substrate, the inner layer is formed of a conductive fluoropolymer outer layer is composed of a fluoropolymer resin The method of claim 1 wherein the integral multi-layer tube.
  3. 【請求項3】 フルオロポリマー製基材の外層を、外層に、250−600ジュール/秒のコロナ放電処理を行うことによって活性化する請求項2記載の方法。 The outer layer of 3. A fluoropolymer substrate, the outer layer, The method of claim 2, wherein activated by performing a corona discharge treatment at 250-600 joules / sec.
  4. 【請求項4】 フルオロポリマー製基材がチューブである請求項1記載の方法。 4. A method according to claim 1, wherein fluoropolymer substrate is a tube.
  5. 【請求項5】 フルオロポリマー製基材を、帯電雰囲気中を1−50線フィート/分の速度で移動させる請求項1記載の方法。 5. The fluoropolymer substrate, The method of claim 1 wherein moving through the charged atmosphere at 1-50 wire ft / min.
  6. 【請求項6】 上記イオン化を、周囲温度ならびに圧力で行う請求項1記載の方法。 The method according to claim 6 wherein said ionization method of claim 1, in which at ambient temperature and pressure.
  7. 【請求項7】 上記イオン化を、周囲温度ならびに圧力の大気の存在化で行う請求項1記載の方法。 7. the ionization method of claim 1, wherein carried out in the presence of atmospheric ambient temperature and pressure.
  8. 【請求項8】 上記熱可塑性重合体がポリアミドである請求項1記載の方法。 8. The method of claim 1 wherein said thermoplastic polymer is a polyamide.
  9. 【請求項9】 上記熱可塑性重合体がポリスルホンである請求項1記載の方法。 9. The method of claim 1 wherein said thermoplastic polymer is a polysulfone.
  10. 【請求項10】 フルオロポリマー製基材と、フルオロポリマー製基材上に一体に積層された、熱可塑性重合体製外層とからなるプラスチック複合材料。 10. A fluoropolymer substrates, laminated together on a fluoropolymer substrate, a plastic composite material comprising a thermoplastic polymer manufactured outer layer.
  11. 【請求項11】 フルオロポリマー製基材が、フルオロポリマー材料製外層と、この外層とともに同時押出しされた導電性フルオロポリマー製内層とを有するプラスチックチューブである請求項10記載のプラスチック複合材料。 11. fluoropolymer substrate is a fluoropolymer material manufactured outer layer plastic composite material according to claim 10, wherein the plastic tube having an inner layer made coextruded conductive fluoropolymer with the outer layer.
  12. 【請求項12】 熱可塑性重合体が、フルオロポリマー製外層上に溶融押出しされたものである請求項10記載のプラスチック複合材料。 12. thermoplastic polymer, plastic composite material according to claim 10, wherein on the fluoropolymer outer layer is one that is melt extruded.
  13. 【請求項13】 フルオロポリマーがエチレンテトラフルオロエチレン重合体で、熱可塑性重合体がポリアミドである請求項10記載のプラスチック複合材料。 13. fluoropolymer is ethylene tetrafluoroethylene polymer, plastic composite material according to claim 10, wherein the thermoplastic polymer is a polyamide.
  14. 【請求項14】 耐静電放電性および耐炭化水素蒸発放出性を有するフルオロカーボン製内層と、フルオロカーボン層上に一体に積層された、熱可塑性重合体製外層とからなる燃料搬送用チューブである請求項10記載の複合材料。 14. A fluorocarbon made inner layer having antistatic discharge resistance and 耐炭 hydrogen evaporative release, are laminated integrally on the fluorocarbon layer, wherein a fuel transfer tube comprising a thermoplastic polymer manufactured by the outer layer the composite material of claim 10, wherein.
  15. 【請求項15】 フルオロカーボン層が、導電性フルオロポリマー製内層と、熱可塑性重合体が積層されるフルオロポリマー製外層とから構成される請求項14記載の燃料チューブ。 15. fluorocarbon layer, a conductive fluoro and polymeric inner layer, thermoplastic fuel tube according to claim 14, wherein composed of polymer and fluoropolymer outer layer to be laminated.
  16. 【請求項16】 フルオロポリマー製の両層が同時押出しされ、熱可塑性樹脂層が非導電性フルオロポリマー製外層上に溶融押出しされた請求項14記載の燃料チューブ。 16. fluoropolymer both layers are coextruded, the fuel tube of the thermoplastic resin layer according to claim 14 which is melt-extruded into a non-conductive fluoropolymer on the outer layer.
  17. 【請求項17】 熱可塑性重合体がポリアミドである請求項14記載の燃料チューブ。 17. The fuel tube according to claim 14, wherein the thermoplastic polymer is a polyamide.
  18. 【請求項18】 フルオロポリマーがエチレンテトラフルオロエチレン重合体で、熱可塑性重合体がナイロンである請求項14記載の燃料チューブ。 18. fluoropolymer is ethylene tetrafluoroethylene polymer, the fuel tube according to claim 14, wherein the thermoplastic polymer is nylon.
JP15945192A 1992-01-06 1992-06-18 Fluoropolymer composite tubes, and a manufacturing method thereof Expired - Fee Related JPH085167B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US81730492 true 1992-01-06 1992-01-06
US07/817304 1992-01-06

Publications (2)

Publication Number Publication Date
JPH05245989A true true JPH05245989A (en) 1993-09-24
JPH085167B2 JPH085167B2 (en) 1996-01-24

Family

ID=25222777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15945192A Expired - Fee Related JPH085167B2 (en) 1992-01-06 1992-06-18 Fluoropolymer composite tubes, and a manufacturing method thereof

Country Status (7)

Country Link
US (2) US5554425A (en)
EP (1) EP0551094B1 (en)
JP (1) JPH085167B2 (en)
KR (1) KR100190411B1 (en)
CA (1) CA2086032C (en)
DE (2) DE69318043T2 (en)
ES (1) ES2114959T3 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5718957A (en) * 1993-09-10 1998-02-17 Tokai Rubber Industries, Ltd. Fuel hose
JP2016515053A (en) * 2012-12-28 2016-05-26 エージーシー ケミカルズ アメリカズ,インコーポレイテッド Layered tube of the hose assembly
JP2016525957A (en) * 2013-05-10 2016-09-01 エージーシー ケミカルズ アメリカズ,インコーポレイテッド Layers for layered tubing and use therein

Families Citing this family (127)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5520223A (en) * 1994-05-02 1996-05-28 Itt Industries, Inc. Extruded multiple plastic layer coating bonded to the outer surface of a metal tube having an optical non-reactive inner layer and process for making the same
US5759329A (en) * 1992-01-06 1998-06-02 Pilot Industries, Inc. Fluoropolymer composite tube and method of preparation
US20030168157A1 (en) * 1992-01-06 2003-09-11 Kuenzel Kenneth J. Fluoropolymer composite tube and method of preparation
US6517657B1 (en) 1992-01-06 2003-02-11 Pilot Industries, Inc. Fluoropolymer composite tube and method of preparation
US5916404A (en) * 1992-01-06 1999-06-29 Pilot Industries, Inc. Fluoropolymer composite tube and method of preparation
JP2578705B2 (en) * 1992-03-30 1997-02-05 東海ゴム工業株式会社 Fuel pipe resin tube and their preparation
US5865218A (en) 1992-04-14 1999-02-02 Itt Corporation Multi-layer fuel and vapor tube
US5460771A (en) * 1992-10-16 1995-10-24 Itt Corporation Process for producing corrugated multi-layer tubing having layers of differing plastic characteristics
US6378562B1 (en) 1992-04-14 2002-04-30 Itt Industries, Inc. Multi-layer tubing having electrostatic dissipation for handling hydrocarbon fluids
US5678611A (en) * 1992-04-14 1997-10-21 Itt Corporation Multi-layer fuel and vapor tube
US5743304A (en) * 1992-04-14 1998-04-28 Itt Corporation Multi-layer fuel and vapor tube
US5469892A (en) * 1992-04-14 1995-11-28 Itt Automotive, Inc. Corrugated polymeric tubing having at least three layers with at least two respective layers composed of polymeric materials dissimilar to one another
US6321795B1 (en) 1992-04-14 2001-11-27 Itt Industries, Inc. Multi-layer fuel and vapor tube
US5524673A (en) * 1992-04-14 1996-06-11 Itt Corporation Multi-layer tubing having electrostatic dissipation for handling hydrocarbon fluids
US5884672A (en) * 1992-04-14 1999-03-23 Itt Industries, Inc. Multi-layer fuel and vapor tube
DE4302628A1 (en) * 1993-01-30 1994-08-04 Huels Chemische Werke Ag A multilayer plastic pipe
DE4336291A1 (en) * 1993-10-25 1995-04-27 Huels Chemische Werke Ag Thermoplastic multilayer composites
DE4336289A1 (en) * 1993-10-25 1995-04-27 Huels Chemische Werke Ag A multilayer plastic pipe
DE4336290A1 (en) * 1993-10-25 1995-04-27 Huels Chemische Werke Ag A multilayer plastic pipe
US5427831B1 (en) * 1993-11-12 1998-01-06 Du Pont Fluoropolymer laminates
EP0679825A1 (en) * 1994-04-28 1995-11-02 Ems-Inventa Ag Single or multilayer extruded polymer hose or pipe
DE4414955C1 (en) * 1994-04-28 1995-09-21 Inventa Ag Extruded multilayer polymer hose or pipe
US5590691A (en) * 1994-05-02 1997-01-07 Itt Corporation Extruded multiple plastic layer coating bonded to a metal tube
US5941286A (en) * 1994-06-30 1999-08-24 Cadillac Rubber & Plastics, Inc. Composite fuel and vapor barrier tube and process for making same
ES2153426T3 (en) * 1994-06-30 2001-03-01 Avon Property Man Co tight composite pipe and fuel vapors and manufacturing process.
US5656121A (en) * 1994-08-19 1997-08-12 Minnesota Mining And Manufacturing Company Method of making multi-layer composites having a fluoropolymer layer
US5658670A (en) * 1994-08-19 1997-08-19 Minnesota Mining And Manufactury Company Multi-layer compositions having a fluoropolymer layer
US5552199A (en) * 1994-09-02 1996-09-03 Minnesota Mining And Manufacturing Company Melt-processable electroconductive fluoroplastic
US5653266A (en) * 1994-10-11 1997-08-05 Markel Corporation Chemically bonded multi-wall conduit
US5512225A (en) * 1994-10-24 1996-04-30 Minnesota Mining And Manufacturing Company Method of increasing interlayer adhesion of multi-layer compositions having a fluoroplastic layer
US5566720A (en) 1995-01-10 1996-10-22 Itt Corporation Elongated fuel and vapor tube having multiple layers and method of making the same
US5641445A (en) * 1995-07-25 1997-06-24 Cadillac Rubber & Plastics, Inc. Apparatus and method for extruding multi-layered fuel tubing
US6057014A (en) * 1995-07-26 2000-05-02 E. I. Du Pont De Nemours And Company Laminates of composition for improving adhesion of elastomers to polymer compositions
DE19535489C2 (en) * 1995-09-23 2003-08-21 Cooper Standard Automotive D Flexible cooling water pipe for motor vehicles
US6012496A (en) * 1996-01-29 2000-01-11 Hybritech Polymers Multi-layer tubing assembly for fluid and vapor handling systems
US6209587B1 (en) * 1996-01-29 2001-04-03 Hybritech Polymers Multi-layer assembly for fluid and vapor handling and containment systems
US5931201A (en) * 1996-01-29 1999-08-03 Bundy Corporation Multi-layer tubing assembly for fluid and vapor handling systems
US6039085A (en) * 1996-01-29 2000-03-21 Bundy Corporation Multi-layer tubing assembly with foamed outer layer
US6192942B1 (en) * 1996-01-29 2001-02-27 Hybritech Polymers Multi-layer tubing assembly for fluid and vapor handling systems
US6176268B1 (en) 1996-01-29 2001-01-23 Hybritech Polymers Multi-layer assembly for fluid and vapor handling and containment systems
US6155304A (en) * 1996-01-29 2000-12-05 Ti Group Automotive Systems Corp. Reinforced flexible tubing for fluid handling systems and method
US5934336A (en) * 1996-01-29 1999-08-10 Bundy Corporation Multi-layer tubing assembly for fluid and vapor handling systems
US6263920B1 (en) * 1996-01-29 2001-07-24 Hybritech Polymers Multi-layer assembly for fluid and vapor handling and containment systems
US5891373A (en) * 1996-05-23 1999-04-06 Eagle-Picher Industries, Inc. Process of making a multi-layer tube
US5922425A (en) * 1996-05-28 1999-07-13 Minnesota Mining And Manufacturing Company Multi-layer compositions and articles comprising fluorine-containing polymer
WO1998005493A1 (en) 1996-08-05 1998-02-12 E.I. Du Pont De Nemours And Company Coextruded laminate
US5855977A (en) * 1996-08-26 1999-01-05 Minnesota Mining And Manufacturing Company Multi-layer compositions comprising a fluoropolymer
US6723400B1 (en) 1996-12-16 2004-04-20 Toray Industries, Inc. Laminates for making electroconductive fuel tubes
WO1998026922A1 (en) * 1996-12-16 1998-06-25 Toray Industries, Inc. Conductive multilayer blow molding and conductive resin composition
US6130404A (en) 1997-03-03 2000-10-10 Itt Automotive, Inc. Electro-optical removal of plastic layer bonded to a metal tube
DE19718504A1 (en) * 1997-05-02 1998-11-05 Huels Chemische Werke Ag Composite of a molding composition based on polyamide on the one hand and on the other hand vulcanizable fluoroelastomers
DE19720317A1 (en) 1997-05-15 1998-11-19 Huels Chemische Werke Ag Adhesion promoter for a multilayer composite
US6197393B1 (en) 1997-06-27 2001-03-06 3M Innovative Properties Company Multi-layer compositions comprising a fluoropolymer
US6117508A (en) 1997-06-27 2000-09-12 Dyneon Llc Composite articles including a fluoropolymer blend
US6482482B1 (en) 1997-07-25 2002-11-19 E. I. Du Pont De Nemours And Company Hydrocarbon fluid containment for motorized transportation vehicles
DE19834065C2 (en) * 1997-08-08 2003-02-27 Kaco Gmbh Co Component of at least one support and at least a part attached to it, and methods of making a connection between a support and a part of such a component
US5972176A (en) * 1997-10-03 1999-10-26 3M Innovative Properties Company Corona treatment of polymers
US6270901B1 (en) 1997-12-19 2001-08-07 Dyneon Llc Compositions for bonding fluoroplastics
US6482522B1 (en) 1997-12-19 2002-11-19 Dyneon Llc Elastomer compositions for bonding to fluoropolymers
US6257281B1 (en) 1998-02-13 2001-07-10 Itt Manufacturing Enterprises, Inc. Multi-layer tubing having at least one intermediate layer formed from a polyamide alloy
US6180197B1 (en) 1998-02-13 2001-01-30 Itt Manufacturing Enterprises, Inc. Multi-layer tubing having at least one intermediate layer formed from a polyamide/polyketone alloy
US6156400A (en) 1998-04-09 2000-12-05 3M Innovative Properties Company Multi-layer compositions comprising a fluoropolymer
US6096428A (en) * 1998-04-09 2000-08-01 3M Innovative Properties Company Multi-layer compositions comprising a fluoropolymer
US5960977A (en) * 1998-05-14 1999-10-05 Itt Manufacturing Enterprises, Inc. Corrugated polymeric filler neck tubing
EP1094941B1 (en) * 1998-06-06 2011-08-31 Minnesota Mining And Manufacturing Company Paint replacement appliques
US6602565B1 (en) 1998-08-10 2003-08-05 Tokai Rubber Industries, Ltd. Method of producing fuel hose and fuel hose obtained thereby
JP2000154890A (en) 1998-11-18 2000-06-06 Tokai Rubber Ind Ltd Tube for fuel pipe
US6742545B2 (en) 1998-12-21 2004-06-01 Parker-Hannifin Corporation Hose construction
DE69920511D1 (en) 1998-12-21 2004-10-28 Parker Hannifin Corp hose construction Pressure Resistant
US6287508B1 (en) * 1999-02-26 2001-09-11 Dayco Products, Inc. Method for manufacturing curved thermoplastic tubes
US6240970B1 (en) 1999-04-01 2001-06-05 Itt Manufacturing Enterprises, Inc. Tubing for handling hydrocarbon materials and having an outer jacket layer adhered thereto
US6276400B1 (en) 1999-06-08 2001-08-21 Itt Manufacturing Enterprises, Inc. Corrosion resistant powder coated metal tube and process for making the same
FR2794837B1 (en) * 1999-06-10 2001-08-10 Atofina Tube for transporting petrol
US6306781B1 (en) 1999-07-21 2001-10-23 Senior Investments Ag Expansion joint patch apparatus
JP3896850B2 (en) * 2000-02-10 2007-03-22 ダイキン工業株式会社 Resin laminate
DE60140116D1 (en) * 2000-03-23 2009-11-19 Daikin Ind Ltd Oduktes
KR100830789B1 (en) 2000-03-23 2008-05-20 다이낑 고오교 가부시키가이샤 Process for Producing Multilayered Product
WO2002016111A1 (en) * 2000-08-23 2002-02-28 Dyneon Llc Process for preparing a multi-layer article having a fluoroplastic layer and an elastomer layer
US6773755B2 (en) 2001-08-08 2004-08-10 3M Innovative Properties Company Process for preparing a multi-layer article having a fluoroplastic layer and an elastomer layer
DE10064333A1 (en) * 2000-12-21 2002-06-27 Degussa Multi-layer composite with an EVOH layer
JP4109117B2 (en) * 2001-03-01 2008-07-02 シーメンス アクチエンゲゼルシヤフトSiemens Aktiengesellschaft Solid surface layer and an adhesive film is formed by a cover
JP4096291B2 (en) 2002-02-13 2008-06-04 旭硝子株式会社 The fluorine-containing copolymer
JP4240201B2 (en) 2002-02-22 2009-03-18 旭硝子株式会社 The fluorine-containing copolymer
US6759129B2 (en) 2002-04-18 2004-07-06 3M Innovative Properties Company Adhesion and bonding of multi-layer articles including a fluoropolymer layer
US20030198770A1 (en) * 2002-04-18 2003-10-23 3M Innovative Properties Company Composite fluoropolymer-perfluoropolymer assembly
US7569275B2 (en) 2002-04-18 2009-08-04 3M Innovative Properties Company Fluoropolymer articles
US6849314B2 (en) * 2002-04-18 2005-02-01 3M Innovative Properties Company Fluoropolymer blends and multilayer articles
US6805927B2 (en) * 2002-08-16 2004-10-19 Guardian Industries Corporation Composite laminate structures especially useful for automotive trim components, and methods and tie layers employed to make the same
US20040058112A1 (en) * 2002-09-25 2004-03-25 Ats Products, Inc. Method for making tubular articles
CA2411597A1 (en) * 2002-11-12 2004-05-12 L. Keith Campbell High density plastic tubing with included power transmission cabling for downhole use in petroleum industry
DE60311592D1 (en) * 2002-11-26 2007-03-22 Parker Hannifin Corp Tubular polymer compositions for tubes and tube constructions
US6742952B1 (en) 2003-02-28 2004-06-01 Bic Corporation Transparent or translucent tubular structure
JP4619624B2 (en) * 2003-03-31 2011-01-26 宇部興産株式会社 Laminated hose
DE10324365A1 (en) * 2003-05-27 2005-01-05 Forschungszentrum Jülich GmbH Device having a space for receiving the hyperpolarized noble gas
DE10331608A1 (en) * 2003-07-12 2005-01-27 Hew-Kabel/Cdt Gmbh & Co. Kg A method of coating and / or partial encapsulation of flexible elongate
GB2405456B (en) * 2003-08-23 2007-10-10 Petrotechnik Ltd Improved pipe
WO2005071301A1 (en) * 2004-01-27 2005-08-04 Ube Industries, Ltd. Laminated tube
JP2005325275A (en) * 2004-05-17 2005-11-24 Yunimatekku Kk Fluoropolymer molded product and its laminate
US20060070677A1 (en) * 2004-09-28 2006-04-06 Tokai Rubber Industries, Ltd. Hose with sealing layer, direct-connect assembly including the same, and method of manufacturing the same
FR2886708B1 (en) * 2005-06-02 2007-08-17 Arkema Sa Use of fluorinated polymer changes for transporting water or gas
FR2886707B1 (en) * 2005-06-02 2007-08-17 Arkema Sa The use of a tube base polymer fluorine grafting by irradiation for the transport of pressurized fluids
EP1885557B1 (en) * 2005-06-02 2017-01-11 Arkema France Multilayer tube for transporting water or gas
US20060280889A1 (en) * 2005-06-10 2006-12-14 Powell Steven M Tubular nylon alloy members for tubing and hose constructions
JP4759404B2 (en) * 2006-02-23 2011-08-31 東海ゴム工業株式会社 Method of manufacturing a hose
EP2054228B1 (en) * 2006-07-06 2016-05-25 Arkema Inc. Flexible multilayer vinylidene fluoride tubes
US8765255B2 (en) 2007-03-06 2014-07-01 E I Du Pont De Nemours And Company Breathable waterproof garment
US7993523B2 (en) 2007-03-06 2011-08-09 E. I. Du Pont De Nemours And Company Liquid filtration media
US8038013B2 (en) 2007-03-06 2011-10-18 E.I. Du Pont De Nemours And Company Liquid filtration media
FR2918067B1 (en) * 2007-06-27 2011-07-01 Arkema France composite material comprising nanotubes dispersed in a polymeric matrix fluroree.
US20100034504A1 (en) * 2008-08-08 2010-02-11 E.I. Du Pont De Nemours And Company Melt Processible Semicrystalline Fluoropolymer Comprising Repeating Units Arising from Tetrafluoroethylene and a Hydrocarbon Monomer Having a Functional Group and a Polymerizable Carbon-Carbon Double Bond, and Multilayer Articles Therefrom
US8524097B2 (en) * 2009-03-18 2013-09-03 Medtronic, Inc. Plasma deposition to increase adhesion
US8361334B2 (en) * 2009-03-18 2013-01-29 Medtronic, Inc. Plasma deposition to increase adhesion
WO2011011268A1 (en) 2009-07-24 2011-01-27 Parker-Hannifin Corporation Fire resistant hose assembly
US20130011595A1 (en) 2010-04-29 2013-01-10 Parker-Hannifin Corporation Nylon airbrake tubing constructions
US8713944B2 (en) 2010-09-23 2014-05-06 Delavan Inc. High temperature manifolds for gas turbine engines
JP5505484B2 (en) * 2012-10-22 2014-05-28 Nok株式会社 Resin rubber compound
US20160214343A1 (en) 2013-09-04 2016-07-28 Ube Industries, Ltd. Multi-layer tube
WO2016128829A1 (en) * 2015-02-13 2016-08-18 Societe Bic S.A. Coextrusion process for tubular articles and coextruded products
EP3069875B1 (en) 2015-03-17 2017-07-05 Evonik Degussa GmbH Multilayer compound with one fluoropolymer layer
EP3069871B1 (en) 2015-03-17 2017-07-19 Evonik Degussa GmbH Multilayer composite with an evoh layer
EP3069876A1 (en) 2015-03-17 2016-09-21 Evonik Degussa GmbH Laminate with one layer made of a partially aromatic polyamide
EP3069874B1 (en) 2015-03-17 2017-07-19 Evonik Degussa GmbH Laminate with one polyester layer
EP3069872B1 (en) 2015-03-17 2017-07-05 Evonik Degussa GmbH Multilayer composite with layers of partially aromatic polyamides
EP3069873B1 (en) 2015-03-17 2017-09-06 Evonik Degussa GmbH Multilayer composite with layers of partially aromatic polyamides
DE102015208980A1 (en) * 2015-05-15 2016-11-17 Infiana Germany Gmbh & Co. Kg An evacuable mold for fiber-reinforced plastic components
DE202016008382U1 (en) 2016-09-21 2017-09-25 Evonik Degussa Gmbh Multilayered hollow body with high washout
EP3299165A1 (en) 2016-09-21 2018-03-28 Evonik Degussa GmbH Multilayer hollow body with high washing resistance

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5358588A (en) * 1976-11-09 1978-05-26 Asahi Glass Co Ltd Synthetic resin laminate with exellent weatherability and corrosionresistance
JPS5733373U (en) * 1980-08-01 1982-02-22
JPS58114979U (en) * 1982-01-30 1983-08-05
JPS58201613A (en) * 1982-05-19 1983-11-24 Toagosei Chem Ind Co Ltd Adhesion of fluoric resin

Family Cites Families (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA686119A (en) * 1964-05-12 T. Mcbride Richard Process for imparting adherability to polyfluorocarbon surfaces
US3017339A (en) * 1957-01-24 1962-01-16 American Can Co Method of and apparatus for treating surfaces of extruded thermoplastic tubing with corona discharge
BE604952A (en) * 1960-06-15 1961-12-13
US3133854A (en) * 1960-11-15 1964-05-19 Du Pont Polyvinyl fluoride laminates and process for making same
US3352714A (en) * 1961-03-13 1967-11-14 Du Pont Polyfluorocarbon substrate coated with polyamide and method
BE632328A (en) * 1962-05-22
NL6609025A (en) * 1965-06-29 1966-12-30
US3457139A (en) * 1966-01-19 1969-07-22 Albert L James Unheated dry lamination process for producing laminations from thermoplastic and substrates
US3507763A (en) * 1967-12-22 1970-04-21 Du Pont Method for electrical discharge treatment of organic polymeric materials
US3676181A (en) * 1969-09-16 1972-07-11 Du Pont Electrical discharge treatment of tetrafluoroethylene/hexafluoropropylene copolymer in acetone
GB1541521A (en) * 1976-04-06 1979-03-07 Ugine Kuhlmann Process for the treatment of the surface of polyvinylidenefluoride
US4330017A (en) * 1977-04-22 1982-05-18 Nissan Motor Company, Limited Rubber hose for automotive fuel line
JPS5738272Y2 (en) * 1977-11-29 1982-08-23
US4188426A (en) * 1977-12-12 1980-02-12 Lord Corporation Cold plasma modification of organic and inorganic surfaces
US4293663A (en) * 1979-10-23 1981-10-06 Minnesota Mining And Manufacturing Company Fluoroelastomer/polyepichlorohydrin elastomer articles
US4343861A (en) * 1979-10-23 1982-08-10 Minnesota Mining And Manufacturing Company Fluoroelastomer/polyepichlorohydrin elastomer articles
DE3018194C2 (en) * 1980-05-13 1985-01-17 Henze Gmbh, 5210 Troisdorf, De
JPS6018015B2 (en) * 1980-08-05 1985-05-08 Hitachi Cable
JPS5738272A (en) * 1980-08-20 1982-03-02 Hitachi Ltd Inhibitor for noise of elevator
US4358559A (en) * 1981-11-19 1982-11-09 Minnesota Mining And Manufacturing Company Tacky fluoroelastomer compositions
JPS58114979A (en) * 1981-12-28 1983-07-08 Hitachi Koki Co Ltd Print hammer for printer
US5051978A (en) * 1982-11-30 1991-09-24 Burroughs Corporation Coated media for optical recording
US4995028A (en) * 1982-12-17 1991-02-19 Unisys Corp. Coated media for optical recording, with soft/hard overcoat
US4770927A (en) * 1983-04-13 1988-09-13 Chemical Fabrics Corporation Reinforced fluoropolymer composite
US4564662A (en) * 1984-02-23 1986-01-14 Minnesota Mining And Manufacturing Company Fluorocarbon elastomer
US4634615A (en) * 1984-04-06 1987-01-06 Versteegh Willem M Heat recoverable coextruded articles
US4654235A (en) * 1984-04-13 1987-03-31 Chemical Fabrics Corporation Novel wear resistant fluoropolymer-containing flexible composites and method for preparation thereof
US4743327A (en) * 1984-06-15 1988-05-10 Cordis Corporation Adhesive bonding of fluoropolymers
JPS6122590A (en) * 1984-07-10 1986-01-31 Daikin Ind Ltd Polymer composite heater
JPH0362136B2 (en) * 1984-12-14 1991-09-25 Shinetsu Chem Ind Co
US4636272A (en) * 1985-02-19 1987-01-13 Cordis Corporation Process for thermally bonding plastic tubes
US4603712A (en) * 1985-03-29 1986-08-05 The Gates Rubber Company Compounded polychloroprene formulation used as an adhesive layer in the manufacture of elastomeric articles
DE3688000T2 (en) * 1985-05-16 1993-10-21 Chemfab Corp A fluorine-containing polymer flexible composite laminates.
US4758455A (en) * 1985-07-10 1988-07-19 Handy & Harman Automotive Group Inc. Composite fuel and vapor tube having increased heat resistance
JPS6268844A (en) * 1985-09-19 1987-03-28 Central Glass Co Ltd Fluorine-containing flexible resin composition
GB2182999B (en) * 1985-11-15 1989-09-27 Italiana Serrature Torino A fuel filler member for vehicles
JPH0559828B2 (en) * 1986-01-13 1993-09-01 Ube Industries
JP2742579B2 (en) * 1986-02-01 1998-04-22 臼井国際産業 株式会社 Flexible composite hose
JPH0457699B2 (en) * 1986-02-20 1992-09-14 Central Glass Co Ltd
JPS639533A (en) * 1986-07-01 1988-01-16 Lonseal Corp Production of interior decorative material
JPH0380621B2 (en) * 1986-09-02 1991-12-25 Toray Industries
US4731156A (en) * 1987-02-25 1988-03-15 Itt Avionics, A Division Of Itt Corporation Plasma processes for surface modification of fluoropolymers using ammonia
US4933060A (en) * 1987-03-02 1990-06-12 The Standard Oil Company Surface modification of fluoropolymers by reactive gas plasmas
JPH0580348B2 (en) * 1987-03-16 1993-11-08 Sumitomo Bakelite Co
GB2204932B (en) * 1987-05-14 1991-12-11 Usui Kokusai Sangyo Kk Flexible composite hose
US4826731A (en) * 1987-05-15 1989-05-02 E. I. Du Pont De Nemours And Company Dual cured fluoropolymer laminates
JPS6414029A (en) * 1987-07-08 1989-01-18 Tokai Rubber Ind Ltd Hose
FR2623745B1 (en) * 1987-11-26 1990-05-11 Valois flexible joints manufacturing Method resistant to chemicals and seals obtained
JPH01154755A (en) * 1987-12-11 1989-06-16 Furukawa Electric Co Ltd:The Composite polyolefine tube and its manufacture
JP2596771B2 (en) * 1987-12-28 1997-04-02 東レ・ダウコーニング・シリコーン株式会社 Method for producing a silicone rubber-coated fabric laminate
DE3827628A1 (en) * 1988-08-16 1990-03-15 Hoechst Ag Method and apparatus for oberflaechenvorbehandlung formkoerpers a plastic by means of an electrical corona discharge
US5059480A (en) * 1988-12-21 1991-10-22 Raychem Corporation Curable adhesives
US5008340A (en) * 1988-12-21 1991-04-16 Raychem Corporation Curable adhesives
US5141800A (en) * 1989-02-02 1992-08-25 Chemical Fabrics Corporation Method of making laminated PTFE-containing composites and products thereof
US5124878A (en) * 1989-02-02 1992-06-23 Teleflex Incorporated Coated braided hose method
JPH02229985A (en) * 1989-03-01 1990-09-12 Japan Gore Tex Inc Multifunctional composite tube
US5056512A (en) * 1989-06-06 1991-10-15 E. I. Du Pont De Nemours And Company Multilayered hood with elastomeric neck seal
JPH0369887A (en) * 1989-08-07 1991-03-26 Usui Internatl Ind Co Ltd Resin-made composite tube
DE3930350A1 (en) * 1989-09-12 1991-03-14 Pahl Gummi Asbest tube
JPH03114829A (en) * 1989-09-29 1991-05-16 Shin Etsu Chem Co Ltd Packing material
US5089200A (en) * 1989-10-06 1992-02-18 E. I. Dupont De Nemours And Company Process for melt extrusion of polymers
US5077115A (en) * 1990-05-08 1991-12-31 Rogers Corporation Thermoplastic composite material
EP0479592B1 (en) * 1990-10-05 1995-06-28 Bridgestone Corporation Surface treatment of fluorochemical members and preparation of composite products therefrom
US5108780A (en) * 1991-01-28 1992-04-28 Brigham Young University Enhanced thermoplastic adhesion to fibers by using plasma discharge
US5170011A (en) * 1991-09-25 1992-12-08 Teleflex Incorporated Hose assembly
US5357005A (en) * 1991-12-11 1994-10-18 International Business Machines Corporation Reactive surface functionalization
US5284184A (en) * 1992-04-14 1994-02-08 Itt Corporation Corrugated multi-layer tubing having at least one fluoroplastic layer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5358588A (en) * 1976-11-09 1978-05-26 Asahi Glass Co Ltd Synthetic resin laminate with exellent weatherability and corrosionresistance
JPS5733373U (en) * 1980-08-01 1982-02-22
JPS58114979U (en) * 1982-01-30 1983-08-05
JPS58201613A (en) * 1982-05-19 1983-11-24 Toagosei Chem Ind Co Ltd Adhesion of fluoric resin

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5718957A (en) * 1993-09-10 1998-02-17 Tokai Rubber Industries, Ltd. Fuel hose
US5919326A (en) * 1993-09-10 1999-07-06 Tokai Rubber Industries, Ltd. Method for the production of a fuel hose
USRE38087E1 (en) 1993-09-10 2003-04-22 Tokai Rubber Industries, Ltd. Fuel hose and method of its production
JP2016515053A (en) * 2012-12-28 2016-05-26 エージーシー ケミカルズ アメリカズ,インコーポレイテッド Layered tube of the hose assembly
JP2016525957A (en) * 2013-05-10 2016-09-01 エージーシー ケミカルズ アメリカズ,インコーポレイテッド Layers for layered tubing and use therein

Also Published As

Publication number Publication date Type
US5500257A (en) 1996-03-19 grant
KR100190411B1 (en) 1999-06-01 grant
ES2114959T3 (en) 1998-06-16 grant
JPH085167B2 (en) 1996-01-24 grant
DE69318043T2 (en) 1998-08-13 grant
EP0551094A1 (en) 1993-07-14 application
CA2086032C (en) 1996-01-30 grant
EP0551094B1 (en) 1998-04-22 grant
US5554425A (en) 1996-09-10 grant
DE69318043D1 (en) 1998-05-28 grant
CA2086032A1 (en) 1993-07-07 application

Similar Documents

Publication Publication Date Title
US3274089A (en) Surface treatment of polymeric shaped structures
US3184358A (en) Method of forming laminated plastic tubing
US4510974A (en) Fluid conveying hose
US6039084A (en) Expanded fluoropolymer tubular structure, hose assembly and method for making same
US5482770A (en) Highly oriented multilayer film
US5960977A (en) Corrugated polymeric filler neck tubing
US5314749A (en) High density polyethylene shrink film
US3913625A (en) Poly-polymer plastic material and device made therefrom
US5566720A (en) Elongated fuel and vapor tube having multiple layers and method of making the same
US6077609A (en) Composite articles including fluoropolymers and non-fluorinated polymers and method for making the same
US6365250B2 (en) Blends of fluoroelastomer interpolymers with thermo fluoroplastic interpolymers and the use of such blends in hoses
US3423231A (en) Multilayer polymeric film
US6655414B2 (en) Fuel hose
US5775378A (en) Fluid conduit systems and methods for making
US6316537B1 (en) Product with antistatic properties
US5937911A (en) Fuel transporting hose having resin tube of fluorine-contained resin layer and other synthetic resin layer, and process of producing the resin tube
US4059847A (en) Hose having an electrically conductive layer for dissipating static electricity and method of making same
US4898638A (en) Method of manufacturing flexible gaskets which withstand chemical agents
US6000436A (en) Fluid conduit systems and methods for making
US6524671B1 (en) Coextruded fluoropolymer/polyamide laminate
US4585694A (en) Multi-layered thermoplastic structures comprising a layer of a vinyl or vinylidene fluoride polymer bonded to a layer of an alpha-olefin polymer
US5653266A (en) Chemically bonded multi-wall conduit
US3916488A (en) Poly-polymer plastic device
US6257280B1 (en) Composite hose assembly
US4008352A (en) Heat lamination of thermoplastic films

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090124

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees