JPH05243217A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH05243217A
JPH05243217A JP4270092A JP4270092A JPH05243217A JP H05243217 A JPH05243217 A JP H05243217A JP 4270092 A JP4270092 A JP 4270092A JP 4270092 A JP4270092 A JP 4270092A JP H05243217 A JPH05243217 A JP H05243217A
Authority
JP
Japan
Prior art keywords
pattern
gold
resist
wiring
interconnection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4270092A
Other languages
Japanese (ja)
Inventor
Tsunehiro Taguchi
恒弘 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP4270092A priority Critical patent/JPH05243217A/en
Publication of JPH05243217A publication Critical patent/JPH05243217A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To form a highly reliable interconnection by making the interconnection fine and by improving the cross sectional shape of the interconnection, in the metal plating interconnection forming technology. CONSTITUTION:A fine resist pattern is formed with an upper resist 105 by utilizing the three-layer structure of the upper layer resist 105. The pattern is then transferred to an intermediate layer 104 and a lower resist 103 in this order by dry etching. Then, with the intermediate layer and the lower-layer resist being used as a mask, a metal plating interconnection is formed. By this method, the thickness of the resist film can be thin at the time of formation of the upper-layer resist pattern and thereby a fine pattern can be formed. Moreover, since a rectangular resist formed by dry etching is used as a plating mask, the cross sectional shape of the interconnection is rectangular. Consequently, fineness and reliability of the interconnection, can be increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体装置の製造方法に
係わり、特に半導体装置に用いられる微細金属めっき配
線の形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of forming fine metal plated wiring used in a semiconductor device.

【0002】[0002]

【従来の技術】近年、半導体装置の高集積化が進行する
につれて、高い信頼度を有する微細配線の形成技術が重
要性を増してきている。現在、一般に用いられているア
ルミニウム配線では微細化に伴って、エレクトロマイグ
レーション、及びストレスマイグレーションに起因する
信頼性の劣化が深刻な問題となっている。これを解決す
る方法として、配線材料に金を用いた微細金配線形成技
術が注目を集めている。
2. Description of the Related Art In recent years, as the degree of integration of semiconductor devices has increased, a technique for forming fine wiring with high reliability has become more important. At present, in the commonly used aluminum wiring, deterioration of reliability due to electromigration and stress migration has become a serious problem with miniaturization. As a method of solving this, a fine gold wiring forming technique using gold as a wiring material has been attracting attention.

【0003】この技術における従来の金配線形成方法
は、図3(a)に示すように素子領域を有する半導体基
板301の上面にまず、スパッタ法により金薄膜302
を被着し、更にその上面に、通常のフォトリソグラフィ
法を用いてフォトレジストパターン303を形成し、1
20℃から130℃程度の熱処理(以後、焼きしめと呼
ぶ)を施す。その後、図3(b)に示すようにフォトレ
ジストパターン303をマスクとして電解めっき法によ
り、選択的に金配線304を形成する。この金めっき工
程において、金薄膜302は電流経路を確保するための
給電層となる。又、前述の焼きしめ工程は、フォトレジ
ストと金との接着性を改善するためと、めっき中のフォ
トレジストの変形を防止するためのものである。次に、
不要となるフォトレジストパターン303を有機溶剤或
は酸素プラズマを用いて除去(図3(c))し、更に図
3(d)に示すように、王水を用いた湿式エッチング或
はアルゴン(Ar)等のイオンビームを用いたスパッタ
リングにより露出する金薄膜302の部分を除去して金
配線304間を分離して配線形成の工程を完了する。こ
の時、金配線304も同時にエッチングされるので、そ
の膜厚は金薄膜302の相当する分だけ減少する。
In the conventional gold wiring forming method in this technique, as shown in FIG. 3A, a gold thin film 302 is first formed on the upper surface of a semiconductor substrate 301 having an element region by a sputtering method.
And then a photoresist pattern 303 is formed on the upper surface thereof by using a normal photolithography method.
A heat treatment at about 20 ° C. to 130 ° C. (hereinafter referred to as baking) is performed. After that, as shown in FIG. 3B, the gold wiring 304 is selectively formed by electrolytic plating using the photoresist pattern 303 as a mask. In this gold plating process, the gold thin film 302 serves as a power supply layer for ensuring a current path. The above-mentioned baking process is for improving the adhesion between the photoresist and gold and for preventing the deformation of the photoresist during plating. next,
The unnecessary photoresist pattern 303 is removed using an organic solvent or oxygen plasma (FIG. 3C), and as shown in FIG. 3D, wet etching using aqua regia or argon (Ar). ) And the like, the exposed portion of the gold thin film 302 is removed by sputtering using an ion beam, and the gold wirings 304 are separated from each other to complete the wiring formation process. At this time, since the gold wiring 304 is also etched at the same time, the film thickness thereof is reduced by the amount corresponding to the gold thin film 302.

【0004】[0004]

【発明が解決しようとする課題】金配線の膜厚は配線の
信頼性を確保する必要から一般的に2μm程度のものが
用いられており、このために、金めっき工程において
は、それよりも膜厚の厚いフォトレジスト(通常、約
2.5μm以上)を使用して金配線間の分離を行う必要
がある。このフォトレジスト膜厚は半導体装置の他の製
造工程で用いられる膜厚(通常、1.0〜1.5μm)
よりも非常に厚くなっているのが特徴である。
The thickness of the gold wiring is generally about 2 μm because it is necessary to secure the reliability of the wiring. Therefore, in the gold plating process, the film thickness is more than that. It is necessary to use a thick photoresist (usually about 2.5 μm or more) to separate the gold wirings. This photoresist film thickness is a film thickness used in other manufacturing processes of semiconductor devices (usually 1.0 to 1.5 μm).
It is characterized by being much thicker than.

【0005】その結果、従来の金配線形成方法では、フ
ォトレジストパターンを形成するフォトリソグラフィ工
程において、厚膜化に伴う解像度の低下、パターン断面
形状の劣化(矩形とならず順テーパー形状となる)が生
ずるという問題があった。更に、前述の焼きしめ工程を
行うとフォトレジストパターンが熱変形を起こし、その
断面形状は更に劣化してしまう。
As a result, in the conventional gold wiring forming method, in the photolithography process for forming the photoresist pattern, the resolution is lowered and the pattern cross-sectional shape is deteriorated due to the thicker film (the shape is not a rectangle but a forward taper shape). There was a problem that. Further, if the above-mentioned baking process is performed, the photoresist pattern is thermally deformed, and the sectional shape thereof is further deteriorated.

【0006】従って、このようなフォトレジストパター
ンを金めっきのマスクに用いる従来の金配線形成方法で
は、第1に微細な配線パターンが形成されない。第2に
配線パターンの断面形状が逆テーパー状となるため、以
降の配線層間の絶縁膜形成工程において、物理的衝撃に
より倒壊しやすくなり、又、絶縁膜がこの段差を充分に
覆うことができず、配線パターン下部に空隙が生じて配
線の信頼性が損われるという欠点があった。
Therefore, in the conventional gold wiring forming method using such a photoresist pattern as a gold plating mask, firstly, a fine wiring pattern is not formed. Second, since the cross-sectional shape of the wiring pattern is inversely tapered, it is easy to collapse due to physical impact in the subsequent insulating film forming process between the wiring layers, and the insulating film can sufficiently cover this step. However, there is a drawback that a void is formed under the wiring pattern and the reliability of the wiring is impaired.

【0007】[0007]

【課題を解決するための手段】本発明の半導体装置の製
造方法は、素子領域を含む半導体基板上に電気めっきの
電流経路となる金属導電膜を形成する工程と、該金属導
電膜上に有機膜を塗布して形成する工程と、該有機膜上
に無機材料より成る中間層を形成する工程と、該中間層
上にフォトレジスト膜を塗布したのちにフォトレジスト
パターンを形成する工程と、該フォトレジストパターン
をマスクとして前記中間層をドライエッチングにより選
択的に除去する工程と、前記フォトレジストパターンと
前記中間層とをマスクとして前記有機膜をドライエッチ
ングにより選択的に除去する工程と、少なくとも前記有
機膜をマスクとして電解めっきにより金属めっき膜を形
成する工程とを含んで構成される。
A method of manufacturing a semiconductor device according to the present invention comprises a step of forming a metal conductive film serving as a current path for electroplating on a semiconductor substrate including an element region, and an organic film formed on the metal conductive film. A step of coating and forming a film, a step of forming an intermediate layer made of an inorganic material on the organic film, a step of applying a photoresist film on the intermediate layer and then forming a photoresist pattern, A step of selectively removing the intermediate layer by dry etching using a photoresist pattern as a mask; a step of selectively removing the organic film by dry etching using the photoresist pattern and the intermediate layer as a mask; And a step of forming a metal plating film by electrolytic plating using the organic film as a mask.

【0008】[0008]

【実施例】次に本発明について図面を参照して説明す
る。図1(a)乃至(e)は本発明の第1の実施例の微
細金属めっき配線の形成方法を説明するための工程順断
面図である。
The present invention will be described below with reference to the drawings. 1A to 1E are cross-sectional views in order of steps for explaining a method for forming a fine metal-plated wiring according to the first embodiment of the present invention.

【0009】まず図1(a)に示すように、素子領域を
有する半導体基板101の上面に30〜100nm(ナ
ノメータ)程度の金薄膜102をスパッタリングにより
被着し、更にその上面に下層フォトレジスト103を回
転塗布し、膜厚を約2.5μmとする。この下層フォト
レジスト103としては例えば、東京応化工業(株)の
OFPR−800,住友化学工業のPF−7400等の
ノボラック樹脂系フォトレジストを用いるが、必ずし
も、感光性を有するフォトレジストである必要はなく、
感光剤を取り去った樹脂のみでも良い。又、この膜厚は
形成すべき金配線の膜厚以上であればいずれでも良い。
First, as shown in FIG. 1A, a gold thin film 102 of about 30 to 100 nm (nanometer) is deposited on the upper surface of a semiconductor substrate 101 having an element region by sputtering, and a lower layer photoresist 103 is further formed on the upper surface. Is spin coated to a film thickness of about 2.5 μm. As the lower layer photoresist 103, for example, a novolac resin type photoresist such as OFPR-800 manufactured by Tokyo Ohka Kogyo Co., Ltd. or PF-7400 manufactured by Sumitomo Chemical Co., Ltd. is used, but it is not always necessary that the photoresist has photosensitivity. Without
Only the resin from which the photosensitizer has been removed may be used. Further, this film thickness may be any as long as it is equal to or larger than that of the gold wiring to be formed.

【0010】次に、温度約200℃にて1時間程度の熱
処理を施してフォトレジスト層を硬化した後、酸化硅素
を主成分とするシリカフィルムを膜厚が100〜200
nmとなるように回転塗布し、再度、80〜200℃の
熱処理を2〜3時間行って中間層104を形成する。そ
の後、通常のフォトリソグラフィ法に従って上層となる
フォトレジストを塗布、露光、現像し、上層レジストパ
ターン105を形成する。この時、上層レジストの膜厚
は、従来の金配線形成技術で用いられる膜厚(2.5μ
m以上)よりも大幅に薄くし、0.5μm程度とする。
このフォトリソグラフィ工程ではフォトレジストの膜厚
が薄くなると解像度が向上し、且つ、矩形に近いパター
ン断面形状を得ることができるので、従来に較べ、微細
な上層レジストパターン105を得ることができる。
Next, after heat-treating at a temperature of about 200 ° C. for about 1 hour to cure the photoresist layer, a silica film containing silicon oxide as a main component is formed to a film thickness of 100 to 200.
spin coating is carried out to a thickness of 80 nm and heat treatment at 80 to 200 ° C. is carried out again for 2 to 3 hours to form the intermediate layer 104. After that, an upper layer photoresist is applied, exposed, and developed according to a normal photolithography method to form an upper layer resist pattern 105. At this time, the film thickness of the upper layer resist is the film thickness (2.5 μm) used in the conventional gold wiring forming technology.
(m or more) to about 0.5 μm.
In this photolithography process, the resolution is improved and the pattern cross-sectional shape close to a rectangle can be obtained when the film thickness of the photoresist is thin, and thus a finer upper layer resist pattern 105 can be obtained as compared with the conventional case.

【0011】次に、この上層レジストパターン105を
マスクとして、主にフロン系ガス(例えば、CF4 ,C
HF3 )を用いたドライエッチングにより、中間層10
4を選択的にエッチング除去する。引き続き、上層レジ
ストパターン105と選択的に形成された中間層104
とをエッチングのマスクとして用い、酸素プラズマを主
体とするドライエッチングにより、下層レジスト103
を選択的に除去する(図1(b))。この時、上層レジ
ストパターン105は酸素プラズマ中でエッチングされ
るので、消滅するが、中間層104は充分な耐性がある
ので、そのまま残存する。この下層レジスト103のパ
ターン側面はドライエッチングの特性により、非常に急
峻であり、矩形の断面形状となる。
Next, using the upper resist pattern 105 as a mask, mainly a chlorofluorocarbon gas (for example, CF 4 , C) is used.
The intermediate layer 10 is formed by dry etching using HF 3 ).
4 is selectively removed by etching. Subsequently, the upper layer resist pattern 105 and the intermediate layer 104 selectively formed.
Is used as an etching mask, and the lower layer resist 103 is formed by dry etching mainly containing oxygen plasma.
Are selectively removed (FIG. 1 (b)). At this time, since the upper layer resist pattern 105 is etched in oxygen plasma and disappears, the intermediate layer 104 remains as it is because it has sufficient resistance. The pattern side surface of the lower layer resist 103 is extremely steep and has a rectangular cross-sectional shape due to the characteristics of dry etching.

【0012】その後、図1(c)に示すように、従来の
金めっき技術に従って、硫酸、硫酸金ナトリウム、リン
酸を主成分とする電解質溶液中にて、本試料を負電極側
に、表面が白金で覆われた小片を陽電極側に、それぞれ
設置し、20分程度金めっきを行なって膜厚約2μmの
金配線106を形成する。この金配線106の断面形状
は、めっきのマスクとなる下層レジスト103が矩形の
断面形状を有しているために、従来技術のように逆テー
パー状になることはなく、矩形となる。
Thereafter, as shown in FIG. 1 (c), this sample was placed on the negative electrode side in the electrolyte solution containing sulfuric acid, sodium gold gold sulfate, and phosphoric acid as the main components according to the conventional gold plating technique. The small pieces covered with platinum are placed on the positive electrode side respectively, and gold plating is performed for about 20 minutes to form the gold wiring 106 having a film thickness of about 2 μm. The cross-sectional shape of the gold wiring 106 is rectangular rather than the reverse taper shape as in the prior art because the lower layer resist 103 that serves as a plating mask has a rectangular cross-sectional shape.

【0013】次に、不要となる中間層104を弗化水素
酸或は前述したフロン系ガスを用いて除去し、更に下層
レジスト103を有機溶剤又は酸素プラズマにより除去
する(図1(d))。
Next, the unnecessary intermediate layer 104 is removed by using hydrofluoric acid or the above-mentioned fluorocarbon gas, and the lower layer resist 103 is removed by an organic solvent or oxygen plasma (FIG. 1 (d)). ..

【0014】最後に図1(e)に示すように、従来法と
同様に王水を用いた湿式エッチング或はアルゴン等のイ
オンビームを用いたスパッタリングにより、金配線10
6に被覆されていない領域の金薄膜102を除去して金
配線106を分離する。
Finally, as shown in FIG. 1E, the gold wiring 10 is formed by wet etching using aqua regia or sputtering using an ion beam such as argon as in the conventional method.
The gold thin film 102 in the region not covered by 6 is removed to separate the gold wiring 106.

【0015】以上述べたように、従来法ではフォトリソ
グラフィ工程で形成したフォトレジストパターンそのも
のを金メッキのマスクとして用いていた為に、フォトレ
ジストの膜厚を金配線の膜厚よりも厚くする必要があ
り、その結果、解像度と断面形状の劣化が生じ、微細な
パターンを形成することができなかったが、本発明の微
細金属めっき配線の形成方法によれば、このフォトレジ
ストパターンそのものではなく、2次的に形成したパタ
ーンを金めっきのマスクとして用いるので、フォトリソ
グラフィ工程でフォトレジストの膜厚を厚くする必要が
ない。従って解像度の良好な微細パターンを形成するこ
とができる。更に、この微細パターンを元にしてドライ
エッチング法により、膜厚が金配線よりも厚く、且つ、
矩形の断面形状を有する第2のフォトレジストパターン
を形成し、これを金めっきのマスクとするので矩形の微
細な金配線を形成することができる。
As described above, in the conventional method, since the photoresist pattern itself formed in the photolithography process is used as a mask for gold plating, it is necessary to make the thickness of the photoresist larger than that of the gold wiring. As a result, resolution and cross-sectional shape were deteriorated, and a fine pattern could not be formed. However, according to the method for forming a fine metal-plated wiring of the present invention, it is not the photoresist pattern itself but 2 Since the subsequently formed pattern is used as a gold plating mask, it is not necessary to increase the film thickness of the photoresist in the photolithography process. Therefore, a fine pattern with good resolution can be formed. Furthermore, by the dry etching method based on this fine pattern, the film thickness is thicker than the gold wiring, and
Since the second photoresist pattern having a rectangular cross-sectional shape is formed and used as a gold plating mask, rectangular fine gold wiring can be formed.

【0016】次に本発明の第2の実施例につき、図面を
参照して説明する。図2は本発明の第2の実施例の微細
金属めっき配線の形成方法を説明するための工程断面図
の一部である。
Next, a second embodiment of the present invention will be described with reference to the drawings. FIG. 2 is a part of a process cross-sectional view for explaining a method of forming a fine metal plated wiring according to a second embodiment of the present invention.

【0017】まず図2に示すように、第1の実施例と同
様の方法で素子領域を有する半導体基板201の上面に
順次、金薄膜202、下層フォトレジスト203を形成
後、約200℃、1時間程度の熱処理を施し、シリコン
層204を膜厚が100から200nm程度となるよう
にスパッタリング法を用いて被着する。以後、第1の実
施例と全く同様の製造方法に従い、上層レジストパター
ン205の形成、シリコン層204と下層レジスト20
3の選択的エッチング、金めっき、金薄膜202の部分
的除去工程を経て金配線パターンを形成する。但し、上
記工程の中で、不要となるシリコン層204を除去する
方法として、弗化水素酸の代りに硝酸弗化水素酸及び氷
酢酸の混合液を用いるところが前例と異る。
First, as shown in FIG. 2, a gold thin film 202 and a lower layer photoresist 203 are sequentially formed on the upper surface of a semiconductor substrate 201 having an element region by the same method as in the first embodiment, and then at about 200 ° C. Heat treatment is performed for about an hour, and the silicon layer 204 is deposited by a sputtering method so that the film thickness is about 100 to 200 nm. After that, the upper layer resist pattern 205 is formed, the silicon layer 204 and the lower layer resist 20 are formed according to the same manufacturing method as that of the first embodiment.
A gold wiring pattern is formed through the selective etching of 3, the gold plating, and the partial removal of the gold thin film 202. However, in the above steps, as a method of removing the unnecessary silicon layer 204, a mixed solution of nitric hydrofluoric acid and glacial acetic acid is used instead of hydrofluoric acid, which is different from the previous example.

【0018】この例では中間層の材料としてシリコン層
を用いているが、下層レジストのエッチングを行う時に
使用される酸素プラズマに対して充分な耐性があるた
め、矩形の下層レジストパターン形成することができる
ので機能的に何ら問題はなく、前例と同様の効果があ
る。
In this example, a silicon layer is used as the material of the intermediate layer, but since it has sufficient resistance to the oxygen plasma used when etching the lower layer resist, it is possible to form a rectangular lower layer resist pattern. Since it can be done, there is no functional problem and the same effect as the previous example can be obtained.

【0019】[0019]

【発明の効果】以上説明したように本発明によれば、フ
ォトリソグラフィ工程で形成するフォトレジストパター
ンと金めっき工程でめっきのマスクとして用いるフォト
レジストパターンとを別々に形成するので、フォトリソ
グラフィ工程において、フォトレジストの膜厚を所定の
金配線膜厚よりも厚くする必要がない。従って、従来に
較べ、大幅に膜厚を薄くすることができ、その結果、解
像度が向上して微細なフォトレジストパターンを形成す
ることができる。更に金めっき工程において、上記の微
細なフォトレジストパターンを元にドライエッチングに
より形成された矩形の断面形状を有するフォトレジスト
パターンをめっきのマスクとして用いるので、金配線の
断面形状を従来と異り、矩形にすることが可能である。
As described above, according to the present invention, the photoresist pattern formed in the photolithography process and the photoresist pattern used as the plating mask in the gold plating process are separately formed. It is not necessary to make the photoresist film thickness thicker than a predetermined gold wiring film thickness. Therefore, the film thickness can be significantly reduced as compared with the conventional one, and as a result, the resolution can be improved and a fine photoresist pattern can be formed. Further, in the gold plating step, since a photoresist pattern having a rectangular cross-sectional shape formed by dry etching based on the above-mentioned fine photoresist pattern is used as a plating mask, the cross-sectional shape of the gold wiring is different from the conventional one. It can be rectangular.

【0020】従って、金配線の物理的衝撃に対する強度
が向上し、又、以降の配線層間絶縁膜形成工程におい
て、絶縁膜の段差被覆性が向上し、空隙を生ずることが
ない。従って、本発明は物理的衝撃に対して強固であ
り、且つ、配線層内に絶縁膜の空隙のない高信頼度の微
細なめっき配線の形成方法を提供できるという効果があ
る。
Therefore, the strength of the gold wiring against a physical impact is improved, and the step coverage of the insulating film is improved in the subsequent wiring interlayer insulating film forming step, so that no void is generated. Therefore, the present invention has an effect that it can provide a method of forming a highly reliable fine plated wiring that is strong against physical impact and has no void of an insulating film in the wiring layer.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の微細金属めっき配線の
形成方法を工程順に説明した断面図。
FIG. 1 is a cross-sectional view illustrating a method of forming a fine metal plated wiring according to a first embodiment of the present invention in the order of steps.

【図2】本発明の第2の実施例の一工程断面図。FIG. 2 is a process sectional view of a second embodiment of the present invention.

【図3】従来技術の製造方法を工程順に示した断面図。FIG. 3 is a cross-sectional view showing a manufacturing method of a conventional technique in the order of steps.

【符号の説明】[Explanation of symbols]

101,201,301 半導体基板 102,202,302 金薄膜 103,203 下層レジスト 104 中間層 105,205 上層レジストパターン 106,304 金配線 204 シリコン層 303 フォトレジストパターン 101, 201, 301 Semiconductor substrate 102, 202, 302 Gold thin film 103, 203 Lower layer resist 104 Intermediate layer 105, 205 Upper layer resist pattern 106, 304 Gold wiring 204 Silicon layer 303 Photoresist pattern

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 素子領域を含む半導体基板上に電気めっ
きの電流経路となる金属導電膜を形成する工程と、該金
属導電膜上に有機膜を塗布して形成する工程と、該有機
膜上に無機材料より成る中間層を形成する工程と、該中
間層上にフォトレジスト膜を塗布したのちにフォトレジ
ストパターンを形成する工程と、該フォトレジストパタ
ーンをマスクとして前記中間層をドライエッチングによ
り選択的に除去する工程と、前記フォトレジストパター
ンと前記中間層とをマスクとして前記有機膜をドライエ
ッチングにより選択的に除去する工程と、少なくとも前
記有機膜をマスクとして電解めっきにより金属めっき膜
を形成する工程とを含むことを特徴とする半導体装置の
製造方法。
1. A step of forming a metal conductive film serving as a current path for electroplating on a semiconductor substrate including an element region, a step of applying an organic film on the metal conductive film, and forming the metal conductive film on the organic film. A step of forming an intermediate layer made of an inorganic material, a step of applying a photoresist film on the intermediate layer and then forming a photoresist pattern, and selecting the intermediate layer by dry etching using the photoresist pattern as a mask. Removing step, a step of selectively removing the organic film by dry etching using the photoresist pattern and the intermediate layer as a mask, and a metal plating film is formed by electrolytic plating using at least the organic film as a mask And a step of manufacturing the semiconductor device.
JP4270092A 1992-02-28 1992-02-28 Manufacture of semiconductor device Withdrawn JPH05243217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4270092A JPH05243217A (en) 1992-02-28 1992-02-28 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4270092A JPH05243217A (en) 1992-02-28 1992-02-28 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH05243217A true JPH05243217A (en) 1993-09-21

Family

ID=12643332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4270092A Withdrawn JPH05243217A (en) 1992-02-28 1992-02-28 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH05243217A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007189114A (en) * 2006-01-16 2007-07-26 Sumitomo Metal Mining Package Materials Co Ltd Semiconductor mounting substrate and method of manufacturing same
USRE40748E1 (en) * 1999-03-15 2009-06-16 Sony Corporation Process for producing semiconductor device
JP2015207895A (en) * 2014-04-21 2015-11-19 セイコーエプソン株式会社 Method for dry etching substrate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE40748E1 (en) * 1999-03-15 2009-06-16 Sony Corporation Process for producing semiconductor device
JP2007189114A (en) * 2006-01-16 2007-07-26 Sumitomo Metal Mining Package Materials Co Ltd Semiconductor mounting substrate and method of manufacturing same
JP2015207895A (en) * 2014-04-21 2015-11-19 セイコーエプソン株式会社 Method for dry etching substrate

Similar Documents

Publication Publication Date Title
EP0046525B1 (en) Planar multi-level metal-insulator structure comprising a substrate, a conductive interconnection pattern and a superposed conductive structure and a method to form such a structure
JP3630777B2 (en) Multi-chip module manufacturing method
EP0146038A2 (en) Planarization of multi-level interconnected metallization system
JPH04229627A (en) Electric relay section structure and formation method
US4447824A (en) Planar multi-level metal process with built-in etch stop
JPH0160940B2 (en)
US4089766A (en) Method of passivating and planarizing a metallization pattern
JP2003068856A (en) Fuse element, and semiconductor device and manufacturing method therefor
JPH05243217A (en) Manufacture of semiconductor device
JPS59205735A (en) Manufacture of semiconductor device
JPH10223759A (en) Method for formation of multilayer interconnection in semiconductor device
JPH0485829A (en) Semiconductor device and manufacture thereof
JPS63271958A (en) Formation of multilayer interconnection
JP3166912B2 (en) Method for manufacturing semiconductor device
JPH04307737A (en) Manufacture of semiconductor device
JPS59208747A (en) Manufacture of semiconductor device
JP3049872B2 (en) Method for manufacturing semiconductor device
JPS6193629A (en) Manufacture of semiconductor device
JPH0794490A (en) Etching method
JP2699498B2 (en) Method for manufacturing semiconductor device
JPH0228324A (en) Manufacture of semiconductor device
JP2914043B2 (en) Method for manufacturing semiconductor device
JPH04174522A (en) Manufacture of bump formation plating of semiconductor device
JPS628030B2 (en)
JPS60227440A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518