JPH05230623A - Majufacture of oxidation resistant protective film - Google Patents

Majufacture of oxidation resistant protective film

Info

Publication number
JPH05230623A
JPH05230623A JP3197692A JP3197692A JPH05230623A JP H05230623 A JPH05230623 A JP H05230623A JP 3197692 A JP3197692 A JP 3197692A JP 3197692 A JP3197692 A JP 3197692A JP H05230623 A JPH05230623 A JP H05230623A
Authority
JP
Japan
Prior art keywords
substrate
protective film
oxide
resistant protective
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3197692A
Other languages
Japanese (ja)
Inventor
Naoto Kuratani
直人 鞍谷
Kiyoshi Ogata
潔 緒方
Satoru Nishiyama
哲 西山
Akinori Ebe
明憲 江部
Taizo Okazaki
泰三 岡崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissin Electric Co Ltd
Original Assignee
Nissin Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissin Electric Co Ltd filed Critical Nissin Electric Co Ltd
Priority to JP3197692A priority Critical patent/JPH05230623A/en
Publication of JPH05230623A publication Critical patent/JPH05230623A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To provide the method for manufacturing an oxidation resistant protective film excellent in oxidation resistance, inexpensively manufacturable and, furthermore, easily removable. CONSTITUTION:This is the method for manufacturing an oxidation resistant protective film in which an oxidation resistant protective film is formed by vapor-depositing metal on the surface of a substrate 1, and at least either of the condition in which the oxide of the metal has value smaller than that of the oxide of the substrate in the absolute value of standard generating free energy at a room temp. and the condition in which the oxide of the metal has value higher than that of the oxide of the substrate 1 in decomposing energy at a room temp. is satisfied.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、耐酸化性保護膜の製
造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing an oxidation resistant protective film.

【0002】[0002]

【従来の技術】膜を形成する場合、たとえば化学的気相
法(CVD法)や物理的気相法(PVD法)がある。こ
れらの方法はそれぞれに特徴があり、一般にCVD法は
膜の堆積速度が速く、付き回りがよい反面、基体を加熱
しながら成膜を行うので基体の種類が限定され、また高
温にさらされたとき基体が損傷する。一方、PVD法の
一種である真空蒸着法は基体を高温にさらすことなく膜
を形成できるが、密着力はCVD法に比べて劣る。した
がって、これらの方法は基体の種類、付ける膜の目的等
に応じて使い分けられる。
2. Description of the Related Art When forming a film, there are, for example, a chemical vapor deposition method (CVD method) and a physical vapor deposition method (PVD method). Each of these methods has its own characteristics. In general, the CVD method has a high film deposition rate and good throwing power, but on the other hand, the type of the substrate is limited because the film is formed while heating the substrate, and it was exposed to high temperatures. Sometimes the substrate is damaged. On the other hand, the vacuum vapor deposition method, which is a type of PVD method, can form a film without exposing the substrate to high temperatures, but the adhesion is inferior to the CVD method. Therefore, these methods are properly used according to the type of the substrate, the purpose of the film to be attached, and the like.

【0003】このような成膜プロセスを組み合わせて多
層膜を形成するとき、複数の薄膜形成装置を使用しなけ
れらばならない場合がある。この際、先の工程を終え、
次の工程に移る際に試料を大気中に暴露しなければらな
い。このとき、基体の処理表面が大気中で酸化、汚染、
腐食され、処理表面およびその上に作成する膜の特性に
悪影響を及ぼす危険性がある。
When a multilayer film is formed by combining such film forming processes, it may be necessary to use a plurality of thin film forming apparatuses. At this time, finish the previous process,
The sample must be exposed to the atmosphere when moving to the next step. At this time, the treated surface of the substrate is oxidized, polluted in the air,
There is a risk of being corroded and adversely affecting the properties of the treated surface and of the film produced on it.

【0004】このことを避けるために、複数の薄膜形成
装置を用いて多層膜を形成する場合、先の工程から次の
工程に移るとき、試料を大気中にさらしてもその処理表
面が酸化、汚染、腐食されないように保護膜を形成す
る。つまり、先の工程で処理を終えた基体の表面上に、
この基体を大気にらさすことなく、同一チャンバー内で
保護膜を形成する。その後、次工程を行う薄膜形成装置
内で次の工程を行う前に、保護膜を取り除き、この工程
にはいる。このような過程を経れば、試料を大気中にさ
らしても試料の処理表面は酸化、汚染、腐食されない。
In order to avoid this, when a multilayer film is formed by using a plurality of thin film forming apparatuses, the surface to be processed is oxidized even when the sample is exposed to the atmosphere when the process moves from the previous process to the next process. Form a protective film to prevent contamination and corrosion. In other words, on the surface of the substrate that has been treated in the previous step,
A protective film is formed in the same chamber without exposing this substrate to the atmosphere. After that, before performing the next step in the thin film forming apparatus for performing the next step, the protective film is removed and the process is started. Through such a process, even if the sample is exposed to the atmosphere, the treated surface of the sample is not oxidized, contaminated or corroded.

【0005】この耐酸化性保護膜は、従来イオンプレー
ティング法やCVD法で形成されていた。
This oxidation resistant protective film has been conventionally formed by an ion plating method or a CVD method.

【0006】[0006]

【発明が解決しようとする課題】しかし、イオンプレー
ティング法やCVD法では保護膜を形成するときにコス
トが高く、また形成した保護膜の密着性が高いために除
去が容易でなく、除去時に基体の表面にかなりの損傷を
与える。また、CVD法では膜中に水素が残り、その水
素がダングリングボンドをつくり、酸素を誘引して酸化
しやすいという欠点がある。
However, in the ion plating method or the CVD method, the cost is high when the protective film is formed, and the adhesion of the formed protective film is high, so that the removal is not easy and the removal is difficult. It causes considerable damage to the surface of the substrate. Further, the CVD method has a drawback that hydrogen remains in the film and the hydrogen forms a dangling bond, which attracts oxygen and is easily oxidized.

【0007】したがって、この発明の目的は、耐酸化性
に優れ、安価に製造でき、しかも除去が容易な耐酸化性
保護膜の製造方法を提供することである。
Therefore, an object of the present invention is to provide a method of manufacturing an oxidation resistant protective film which has excellent oxidation resistance, can be manufactured at low cost, and can be easily removed.

【0008】[0008]

【課題を解決するための手段】この発明の耐酸化性保護
膜の製造方法は、基体の表面に金属を蒸着することによ
り、前記基体の表面に耐酸化性保護膜を形成する耐酸化
性保護膜の製造方法であって、標準生成自由エネルギー
の絶対値において前記金属の酸化物が前記基体の酸化物
よりも小さい値をもつ条件、および、分解エネルギーに
おいて前記金属の酸化物が前記基体の酸化物よりも大き
い値をもつ条件の少なくともいずれか一方を満たすこと
を特徴とするものである。
The method for producing an oxidation-resistant protective film according to the present invention comprises depositing a metal on the surface of a substrate to form an oxidation-resistant protective film on the surface of the substrate. A method for producing a film, which comprises a condition that the oxide of the metal has a value smaller than that of the substrate in an absolute value of standard free energy of formation, and the oxide of the metal causes oxidation of the substrate at a decomposition energy. It is characterized in that at least one of the conditions having a value larger than that of the object is satisfied.

【0009】[0009]

【作用】この発明の耐酸化性保護膜の製造方法は、図1
に示す装置により行われる。すなわち、1は珪素(S
i)等の基体、2は蒸発源、3は蒸発材料である金属で
あり、これらは真空容器(図示せず)内に設けられる。
金属3を蒸発源2により蒸発させ、基体1の表面に飛来
させて、図2のように蒸着し耐酸化性保護膜4となす。
このようにして形成された耐酸化性保護膜4は、蒸着に
より形成されるので従来例と比較してコストを低くする
ことができる。また粒子エネルギーが小さいため基体1
の表面に与えるダメージも最小限に抑えられ、しかも密
着性が低いのでドライプロセスでもウエットプロセスで
も基体1を損傷せずに容易に除去することができる。
The method of manufacturing the oxidation resistant protective film according to the present invention will be described with reference to FIG.
The device shown in FIG. That is, 1 is silicon (S
A substrate such as i), 2 is an evaporation source, 3 is a metal as an evaporation material, and these are provided in a vacuum container (not shown).
The metal 3 is vaporized by the vaporization source 2, is made to fly to the surface of the substrate 1, and is vapor-deposited as shown in FIG.
Since the oxidation resistant protective film 4 thus formed is formed by vapor deposition, the cost can be reduced as compared with the conventional example. Further, since the particle energy is small, the substrate 1
Since the damage to the surface of the substrate is minimized and the adhesion is low, the substrate 1 can be easily removed in both the dry process and the wet process without damaging the substrate 1.

【0010】一方金属は大気中にさらすと表面が酸化さ
れ、材料によっては酸素が金属膜中を拡散して基体1の
表面にまで達する。しかしながら、金属の種類は、たと
えば室温においてその金属の酸化物の標準生成自由エネ
ルギーが基体(Si)のそれよりも絶対値が小さい条
件、またはその金属の酸化物の分解エネルギーが室温に
おいて基体1のそれよりも大きい値をもつ条件、の少な
くともいずれか一方、すなわちいずれか一方またはその
両方の条件、を満たすものを適用することにより、基体
1の酸化を防止することができ耐酸化性を向上できる。
On the other hand, the surface of a metal is oxidized when exposed to the atmosphere, and depending on the material, oxygen diffuses in the metal film and reaches the surface of the substrate 1. However, the type of metal is, for example, a condition that the standard free energy of formation of the oxide of the metal is smaller in absolute value than that of the substrate (Si) at room temperature, or the decomposition energy of the oxide of the metal is at room temperature. By applying conditions satisfying at least one of the conditions having a larger value, that is, one or both of the conditions, it is possible to prevent oxidation of the substrate 1 and improve the oxidation resistance. ..

【0011】すなわち、まず標準生成自由エネルギーの
絶対値において基体1よりも小さい値をもつことを条件
とするのは、標準生成自由エネルギーが大きいほどすな
わち絶対値が小さいほど基体1よりも金属が酸化物を形
成しにくいからである。したがって、この条件を満たす
金属の酸化物が耐酸化性保護膜4として、基体1の耐酸
化性に優れたものとなる。
That is, first, the absolute value of the standard free energy of formation is smaller than that of the substrate 1. The larger the standard free energy of formation, that is, the smaller the absolute value, the more the metal is oxidized than the substrate 1. This is because it is difficult to form things. Therefore, an oxide of a metal satisfying this condition serves as the oxidation resistant protective film 4, which makes the substrate 1 excellent in oxidation resistance.

【0012】また分解エネルギーにおいて基体1よりも
大きい値をもつことを条件とするのは、基体1よりも分
解エネルギーが大きいほど、形成された酸化物が化学的
に安定なためその酸化層がバリヤ層の役割を果たし表層
からの酸素の侵入を抑える作用をするからである。した
がって、この条件を満たす金属も基体1の耐酸化性に優
れたものとなる。
The condition that the decomposition energy has a value larger than that of the substrate 1 is that the larger the decomposition energy than the substrate 1, the more chemically stable the oxide formed, so that the oxide layer is a barrier. This is because it plays the role of a layer and suppresses the invasion of oxygen from the surface layer. Therefore, a metal satisfying this condition also has excellent oxidation resistance of the substrate 1.

【0013】[0013]

【実施例】SiウエハをHFリンスによって前処理し、
さらにArイオンで表面を清浄状態にした後、Cu膜,
Si膜,Ti膜,Al膜を真空蒸着法によって形成し、
それぞれについて3種類の厚さすなわち300Å、50
0Å、1000Åの金属膜の基体1を形成した。同様の
方法によって、300Åおよび500Åの厚さのNi膜
およびFe膜の基体1を形成した。
EXAMPLE A Si wafer is pretreated by HF rinse,
After cleaning the surface with Ar ions, a Cu film,
A Si film, a Ti film, and an Al film are formed by a vacuum deposition method,
3 different thicknesses for each: 300Å, 50
A substrate 1 having a metal film of 0Å and 1000Å was formed. By the same method, a substrate 1 of Ni film and Fe film having a thickness of 300Å and 500Å was formed.

【0014】これらの試料を大気中で約4週間放置した
後、オージェ電子分光分析法によって表層からの酸素の
侵入深さを求めた。この酸素の侵入深さと、室温(29
8K)におけるこれらの酸化物(2CuO,2Cu2O,2NiO,2Fe
O,2/3Fe2O3,1/2Fe3O4,SiO2,TiO2,2TiO,2/3Al2O3)の標
準生成自由エネルギーΔGfの関係を図3に示し、室温
(298K)における酸素の侵入深さと酸化物の分解エ
ネルギーとの関係を図4に示す。図中、○印は膜厚30
0Å、△印は膜厚500Å、四角形の印は膜厚1000
Åの金属膜を示す。
After leaving these samples in the atmosphere for about 4 weeks, the depth of oxygen penetration from the surface layer was determined by Auger electron spectroscopy. This oxygen penetration depth and room temperature (29
These oxides (2CuO, 2Cu 2 O, 2NiO, 2Fe at 8K)
O, 2 / 3Fe 2 O 3 , 1 / 2Fe 3 O 4 , SiO 2 , TiO 2 , 2TiO, 2 / 3Al 2 O 3 ) standard free energy of formation ΔGf is shown in FIG. 3 at room temperature (298K). FIG. 4 shows the relationship between the penetration depth of oxygen and the decomposition energy of oxides. In the figure, ○ indicates a film thickness of 30.
0Å, △ mark is film thickness 500Å, square mark is film thickness 1000
The metal film of Å is shown.

【0015】図3から明らかなように、Cu,Ni,F
eの酸化物(2CuO,2Cu2O,2NiO,2FeO,2/3Fe2O3,1/2Fe
3O4)の標準生成自由エネルギーは基体1の酸化物(Si
O2)のそれよりも大きくて表層からの酸素の侵入深さが
小さくなっており、これは金属が基体1よりも酸化物を
形成しにくいという特性によって表層からの酸素の侵入
深さが小さくなったものであり、耐酸化性保護膜として
優れていることがわかる。
As is clear from FIG. 3, Cu, Ni, F
e oxide (2CuO, 2Cu 2 O, 2NiO, 2FeO, 2 / 3Fe 2 O 3 , 1 / 2Fe
3 O 4 ) standard free energy of formation is the oxide (Si
The penetration depth of oxygen from the surface layer is smaller than that of O 2 ), which means that the penetration depth of oxygen from the surface layer is small due to the property that the metal is less likely to form an oxide than the substrate 1. It can be seen that it is excellent as an oxidation resistant protective film.

【0016】また図4から明らかなように、Ti,Al
の酸化物(TiO2,2TiO,2/3Al2O3)の分解エネルギーは基
体1の酸化物(SiO2)のそれよりも大きくて表層からの酸
素の侵入深さが小さくなっており、これは形成された酸
化物が化学的に安定なため、その酸化層がバリヤ層の役
割を果たし表層からの酸素の侵入が抑えているからであ
り、耐酸化性保護膜として優れていることがわかる。
As is apparent from FIG. 4, Ti, Al
The decomposition energy of the oxide (TiO 2 , 2TiO, 2 / 3Al 2 O 3 ) is larger than that of the oxide (SiO 2 ) of the substrate 1, and the penetration depth of oxygen from the surface layer is small. This is because the formed oxide is chemically stable, and the oxide layer plays the role of a barrier layer and suppresses the invasion of oxygen from the surface layer, indicating that it is excellent as an oxidation resistant protective film. ..

【0017】[0017]

【発明の効果】この発明の耐酸化性保護膜の製造方法
は、室温での標準生成自由エネルギーの絶対値において
前記金属の酸化物が前記基体の酸化物よりも小さい値を
もつ条件、および、室温での分解エネルギーにおいて前
記金属の酸化物が前記基体の酸化物よりも大きい値をも
つ条件の少なくともいずれか一方を満たす前記金属を選
択したため、耐酸化性に優れ、安価に製造でき、しかも
除去が容易な耐酸化性保護膜を形成することができると
いう効果がある。
The method for producing an oxidation resistant protective film according to the present invention has a condition that the oxide of the metal has a smaller value than the oxide of the substrate in the absolute value of standard free energy of formation at room temperature, and Since the metal is selected which satisfies at least one of the conditions that the oxide of the metal has a larger value than the oxide of the substrate in the decomposition energy at room temperature, it has excellent oxidation resistance, can be manufactured at low cost, and can be removed. The effect is that an oxidation resistant protective film can be easily formed.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の耐酸化性保護膜の製造方法を実施す
る薄膜形成装置の説明図である。
FIG. 1 is an explanatory view of a thin film forming apparatus for carrying out a method of manufacturing an oxidation resistant protective film according to the present invention.

【図2】基体の概略側面図である。FIG. 2 is a schematic side view of a substrate.

【図3】酸化物の標準生成エネルギーに対する表層から
の酸素の侵入深さのグラフである。
FIG. 3 is a graph of the penetration depth of oxygen from the surface layer with respect to the standard energy of formation of oxide.

【図4】分解エネルギーに対する表層からの酸素の侵入
深さのグラフである。
FIG. 4 is a graph of penetration depth of oxygen from the surface layer with respect to decomposition energy.

【符号の説明】[Explanation of symbols]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 江部 明憲 京都市右京区梅津高畝町47番地 日新電機 株式会社内 (72)発明者 岡崎 泰三 京都市右京区梅津高畝町47番地 日新電機 株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Akinori Ebe, 47 Umezu Takaune-cho, Ukyo-ku, Kyoto City, Nissin Electric Co., Ltd. (72) Inventor Taizo Okazaki, 47 Umezu-Takaune-cho, Ukyo-ku, Kyoto City, Nissin Electric Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 基体の表面に金属を蒸着することによ
り、前記基体の表面に耐酸化性保護膜を形成する耐酸化
性保護膜の製造方法であって、標準生成自由エネルギー
の絶対値において前記金属の酸化物が前記基体の酸化物
よりも小さい値をもつ条件、および、分解エネルギーに
おいて前記金属の酸化物が前記基体の酸化物よりも大き
い値をもつ条件の少なくともいずれか一方を満たすこと
を特徴とする耐酸化性保護膜の製造方法。
1. A method for producing an oxidation resistant protective film, which comprises forming an oxidation resistant protective film on the surface of a substrate by vapor-depositing a metal on the surface of the substrate, wherein the standard free energy of formation is the absolute value. Satisfying at least one of a condition that the metal oxide has a value smaller than that of the base oxide and a condition that the metal oxide has a larger value in decomposition energy than the base oxide. A method for producing an oxidation-resistant protective film, which is characterized.
JP3197692A 1992-02-19 1992-02-19 Majufacture of oxidation resistant protective film Pending JPH05230623A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3197692A JPH05230623A (en) 1992-02-19 1992-02-19 Majufacture of oxidation resistant protective film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3197692A JPH05230623A (en) 1992-02-19 1992-02-19 Majufacture of oxidation resistant protective film

Publications (1)

Publication Number Publication Date
JPH05230623A true JPH05230623A (en) 1993-09-07

Family

ID=12345985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3197692A Pending JPH05230623A (en) 1992-02-19 1992-02-19 Majufacture of oxidation resistant protective film

Country Status (1)

Country Link
JP (1) JPH05230623A (en)

Similar Documents

Publication Publication Date Title
JP2001107272A (en) Method and device for treating sample and method for fabricating magnetic head
JP5145225B2 (en) Manufacturing method of semiconductor device
JP2000036628A (en) Magnetic tunnel joint element and manufacture of it
US6491832B2 (en) Method for processing specimens
WO1993007306A1 (en) Adherent metal coating for aluminum nitride surfaces
US6693040B2 (en) Method for cleaning the contact area of a metal line
TWI753574B (en) Corrosion Resistant Components
US5290733A (en) Method of manufacturing semiconductor devices including depositing aluminum on aluminum leads
JP4325095B2 (en) Manufacturing method of SiC element
JPH05230623A (en) Majufacture of oxidation resistant protective film
JP3156886B2 (en) Method for manufacturing semiconductor device
JP2009141230A (en) Method of manufacturing semiconductor device and sputtering apparatus for manufacturing semiconductor device
JPH04100221A (en) Manufacture of semiconductor device
US6224942B1 (en) Method of forming an aluminum comprising line having a titanium nitride comprising layer thereon
JP2004525257A (en) Method for obtaining low temperature alpha tantalum thin film using wafer bias
JP2004269951A (en) Coated member with resistant film to halogen gas, and manufacturing method therefor
JP3287042B2 (en) Method for manufacturing semiconductor device
JPH0992649A (en) Wiring structure for semiconductor device and manufacture of the same
JPH0547720A (en) Removing method of natural oxide film
WO2024171917A1 (en) Corrosion-resistant member
JP3908291B2 (en) Coating film excellent in halogen-based gas corrosion resistance and halogen-based plasma corrosion resistance, and laminated structure provided with the coating film
JPH05209262A (en) Manufacture of film coating
KR20220113507A (en) Methods and apparatus for forming integrated cobalt disilicide
JPS58175834A (en) Manufacture of semiconductor device
JP2531440B2 (en) Al electrode wiring structure of semiconductor device