JPH05220818A - Single-spindle extruder - Google Patents

Single-spindle extruder

Info

Publication number
JPH05220818A
JPH05220818A JP4067903A JP6790392A JPH05220818A JP H05220818 A JPH05220818 A JP H05220818A JP 4067903 A JP4067903 A JP 4067903A JP 6790392 A JP6790392 A JP 6790392A JP H05220818 A JPH05220818 A JP H05220818A
Authority
JP
Japan
Prior art keywords
screw
section
divided
rotating
compression section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4067903A
Other languages
Japanese (ja)
Inventor
Akitoki Chiba
昭時 千葉
Kazuhide Murata
和栄 村田
Yoshinobu Takino
孔延 滝野
Osamu Matsui
治 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsui Mfg Co Ltd
Original Assignee
Matsui Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsui Mfg Co Ltd filed Critical Matsui Mfg Co Ltd
Priority to JP4067903A priority Critical patent/JPH05220818A/en
Publication of JPH05220818A publication Critical patent/JPH05220818A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/80Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling at the plasticising zone, e.g. by heating cylinders
    • B29C48/83Heating or cooling the cylinders
    • B29C48/832Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/361Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die with the barrel or with a part thereof rotating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To improve the biting properties of a material, and to increase encroaching capacity by rotatably constituting the cylinder section of the supply compression section of a single-spindle extruder, dividing the rotary section into one or two or more and separately rotating the rotary sections. CONSTITUTION:A single-spindle extruder has a supply compression section, in which a resin material fed from a material charging port 2 is melted in a cylinder 1 and a molten resin is extruded to the front end side by the revolution of a screw 3, and the front end side of the supply compression section is provided with a compression melting section and a kneading weighing section. The cylinder section 1 of the supply compression section is organized rotatably and used as a rotary section 10 at that time, the rotary section 10 is divided into two split revolution bodies 11, 12, and the revolution of the revolution bodies can be controlled separately through worm wheels 23. Medium paths 31, 32 are formed to each rotary section 11, 12, and a medium such as water, oil, etc., is flowed through medium outlets 35, 36 from medium inlets 33, 34 respectively, thus separately controlling each rotary section 11, 12 at a fixed temperature.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、合成樹脂材料を押出
成形するにあたって、喰い込みの悪い材料でも高い押出
能力が得られ、かつ経時的に安定した製品が得られる単
軸押出機に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single-screw extruder which is capable of obtaining a high extrusion ability even when a synthetic resin material is extruded and having a poor bite, and which is stable with time.

【0002】[0002]

【発明の背景】合成樹脂材料を押出成形する場合、一般
的に、空隙率の大きい材料の如く見掛け比重が小さい材
料や、粉砕材料、再生材料等は、喰い込みが悪く、押出
量が低下し、かつ経時的に不安定な押出状況になり、良
好な製品を能率よく押出すことができなかった。
BACKGROUND OF THE INVENTION When a synthetic resin material is extrusion-molded, generally, a material having a small apparent specific gravity such as a material having a large porosity, a crushed material, a recycled material, etc. are not well bited and the extrusion amount is lowered. In addition, the extrusion condition became unstable over time, and a good product could not be extruded efficiently.

【0003】良好な製品を能率よく押出成形するべく、
樹脂温度やスクリューの回転数等の押出条件の改善、ス
クリュー自体の形状変更、原料の粒形の改善、見掛け比
重を大きくするための造粒化などの種々の試みがなされ
ているのが、現状である。
In order to efficiently extrude good products,
Various attempts have been made to improve extrusion conditions such as resin temperature and screw rotation speed, change the shape of the screw itself, improve the grain shape of the raw material, and granulate to increase the apparent specific gravity. Is.

【0004】しかし、上記の如き種々の試みによって
も、見掛け比重が大きい材料に対しても、押出効率は2
0〜40%位で生産されており、場合によっては押出量
がかなり不安定となることもあり、更に改善が望まれる
ところである。
However, even with various attempts as described above, the extrusion efficiency is 2 even for a material having a large apparent specific gravity.
It is produced at about 0 to 40%, and in some cases, the extrusion amount may be considerably unstable, and further improvement is desired.

【0005】一方、前述したように、見掛け比重の小さ
い材料などの如く喰い込みの悪い材料に対して、前述の
種々の改善策を採ってみても、喰い込みを良好にするこ
とはできず、スクリュー効率つまり押出量が低く、製品
の品質を向上することはできなかった。
On the other hand, as described above, even if the above-mentioned various improvement measures are taken for a material having a poor bite such as a material having a small apparent specific gravity, the bite cannot be made good, The screw efficiency, that is, the extrusion rate was low, and the product quality could not be improved.

【0006】前述の如き問題を解決するため、二軸押出
機によって、材料の喰い込みを改良した押出成形機が提
案されているが、スクリューの本数が多くなるとともに
構成が複雑になるなどの点で、高価な押出機となるほ
か、材料の品質特性を保持し得ない問題点があり、更な
る改善が望まれている。
[0006] In order to solve the above-mentioned problems, an extrusion molding machine is proposed in which the bite of the material is improved by the twin-screw extruder, but the number of screws increases and the structure becomes complicated. In addition to an expensive extruder, there is a problem that the quality characteristics of the material cannot be maintained, and further improvement is desired.

【0007】[0007]

【従来の技術】従来、成形材料の喰い込み向上を企図し
たこの種の単軸押出機として、(イ) 特公昭60−8
935号公報記載のもの、(ロ) 特公昭51−272
72号公報記載のもの、が知られている。
2. Description of the Related Art Conventionally, as a single-screw extruder of this type intended to improve the bite of the molding material, (a) Japanese Patent Publication No. 60-8.
Those described in Japanese Patent No. 935, (b) Japanese Patent Publication No. 51-272
The one described in Japanese Patent No. 72 is known.

【0008】上記従来例(イ)のものは、シリンダー供
給圧縮区間の内周面に軸方向に伸びる複数の溝を形成す
るとともに、供給圧縮区間及び圧縮溶融区間に亘るスク
リューには連続して多条のフライト(ねじ山)を形成
し、この多条フライトのスクリュー溝深さはスクリュー
外径の6〜12%としたものである。このような構造に
よれば、樹脂材料と供給圧縮区間のシリンダー内周面と
の摩擦力が増大して、該供給圧縮区間における材料の送
り能力が増大する利点がある。
In the conventional example (a), a plurality of grooves extending in the axial direction are formed on the inner peripheral surface of the cylinder supply compression section, and the screw extending over the supply compression section and the compression melting section is continuously increased. A flight of threads (thread) is formed, and the depth of the screw groove of this multi-flight flight is 6 to 12% of the outer diameter of the screw. According to such a structure, there is an advantage that the frictional force between the resin material and the inner peripheral surface of the cylinder of the supply compression section increases, and the material feeding ability in the supply compression section increases.

【0009】従来例(ロ)のものは、シリンダーの供給
圧縮区間の口径を大きくし圧縮溶融区間の口径を小さく
して、その間をテーパ状とするとともに、供給圧縮区間
のシリンダー内面にはスクリューのねじ山(フライト)
と逆向きの多条ねじ状の溝を形成し、前記スクリューの
ねじ山をノコ歯状ねじ型として、該スクリューのねじ山
(フライト)とシリンダー供給圧縮区間の内周面との間
に充分な間隙を形成してなるものである。このような構
造によれば、瓶類などの中空成形品や高発泡の熱可塑性
樹脂からなる大容器の材料(スクラップ類)を、前記充
分な間隙個所で喰い込ますことができ、また前記多条ね
じ山状溝とスクリューのノコ歯状ねじ山とが、該材料を
押出方向に充分に喰い込ませて溶融されながら前記テー
パ部に達し、該テーパ部の終端に至るまでには該材料は
分断されて下流に押し出されて行くものである。従っ
て、この従来例(ロ)のものでは、大容量の材料しか押
出成形できないものである。
In the conventional example (b), the diameter of the supply compression section of the cylinder is increased and the diameter of the compression-melting section is decreased to form a taper between them, and a screw is provided on the inner surface of the cylinder of the supply compression section. Screw thread (flight)
A multi-threaded groove in the opposite direction to that of the screw, and the screw thread of the screw is a saw-toothed screw type, and the screw thread (flight) of the screw and the inner peripheral surface of the cylinder supply compression section are sufficiently It is formed by forming a gap. With such a structure, materials (scraps) for hollow moldings such as bottles and large containers made of high-foaming thermoplastic resin can be eaten in the above-mentioned sufficient space, and The thread and groove of the screw and the tooth of the screw reach the tapered portion while being melted by sufficiently intruding the material in the extrusion direction, and the material reaches the end of the tapered portion. It is divided and pushed out downstream. Therefore, in the conventional example (b), only a large capacity material can be extruded.

【0010】[0010]

【発明が解決しようとする課題】しかるに、(a) 上
記従来例(イ)、(ロ)のいずれも、シリンダーの供給
圧縮区間等及びスクリューの形状などを、材料の喰い込
み性を考慮して前述の如く特殊な構造とし、材料の特性
に応じたスクリューの回転数と温度条件を選定すること
により、材料の喰い込みを適正に行い、供給圧縮区間に
おける材料の送り能力を増大するものである。従って、
同一材料であっても経時的に喰い込み性が変化し押出量
が変化する場合とか、喰い込み性の異なる異種材料の場
合の如く、材料の喰い込み性の調整は、前述の如く、ス
クリューの回転数を変えるか、温度を変えるしか方法が
なく、その回転数又は温度を変化する毎に成形作業を停
止し、再稼動することになり、成形品の押出量が少なく
生産能力を低下させる。換言すれば稼動時間が短くなる
欠点がある。
However, in both (a) the above-mentioned conventional examples (a) and (b), the feed compression section of the cylinder and the shape of the screw are taken into consideration in consideration of the biteability of the material. As described above, by adopting a special structure and selecting the screw rotation speed and temperature conditions according to the characteristics of the material, the material is properly bited and the material feeding capacity in the supply compression section is increased. .. Therefore,
Even when the same material is used, the biting property of the screw is adjusted as described above, such as when the biting property changes with time and the extrusion amount changes, or when different materials with different biting properties are used. There is no alternative but to change the rotation speed or the temperature. Every time the rotation speed or the temperature is changed, the molding operation is stopped and restarted, so that the extrusion amount of the molded product is small and the production capacity is lowered. In other words, there is a drawback that the operating time is shortened.

【0011】(b) 従来例(イ)及び(ロ)では、上
述の如く、スクリューの回転数及び温度を制御すること
によっても対応し難い場合、例えば喰い込み性の悪い材
料を高い押出効率で安定して生産するためには、スクリ
ューのピッチや溝深さなどの設計変更をしなければなら
ず煩わしい作業を必要とする。しかも、この場合には、
圧縮溶融区間及び混練計量区間においても、上記スクリ
ューのピッチ等の設計変更に応じた構造変更をしなけれ
ばならず、コストが高くなる。
(B) In the conventional examples (a) and (b), when it is difficult to cope with the problem by controlling the rotation speed and temperature of the screw as described above, for example, a material having a poor biting property can be obtained with a high extrusion efficiency. In order to produce stably, it is necessary to change the design of the pitch of the screw and the groove depth, which requires a troublesome work. And in this case,
Also in the compression-melting section and the kneading / measuring section, it is necessary to change the structure in accordance with the design change of the screw pitch and the like, and the cost becomes high.

【0012】(c) 従来例(イ)ては、供給圧縮区間
及び圧縮溶融区間に亘るスクリューには多条のフライト
を形成しているため、材料投入口から入る材料が少なく
なる。そのため、供給量を増加すべくスクリューの回転
数を多くすると、混練計量区間とのバランスが崩れるの
で、それに適合するスクリューの寸法に修正する必要が
ある。または、多条フライトの溝すなわちフライト高さ
を高くすればよいが、フライト高さには限度がある。従
って、押出量を安定して向上するには限界がある。
(C) In the conventional example (a), since the multiple threads are formed in the screw extending over the supply compression section and the compression-melting section, less material enters from the material input port. Therefore, if the number of rotations of the screw is increased to increase the supply amount, the balance with the kneading / measuring section is lost, and it is necessary to correct the screw size to match it. Alternatively, the groove of the multiple flight, that is, the flight height may be increased, but the flight height is limited. Therefore, there is a limit in stably improving the extrusion rate.

【0013】(d) 従来例(ロ)では、スクリューの
ねじ山(フライト)とシリンダー供給圧縮区間の内周面
との間に充分な間隙を形成しているため、前述した大容
量のスクラップ類等でない粉粒体状の材料の場合には、
前記間隙部分ではスクリューのフライトによる喰い込み
が悪くなり、押出能力が低下する問題点がある。
(D) In the conventional example (b), since a sufficient gap is formed between the screw thread (flight) of the screw and the inner peripheral surface of the cylinder supply compression section, the large-capacity scraps mentioned above are formed. In the case of granular materials that are not equal,
In the gap portion, there is a problem that the biting by the flight of the screw is deteriorated and the extrusion capability is lowered.

【0014】この発明は、上記従来例(イ)、(ロ)の
問題点に着目してなされたものであって、単軸押出機の
供給圧縮区間のシリンダー部を回転可能に構成すること
により、樹脂材料とシリンダー内周面との摩擦力を連続
的にコントロールして、材料の喰い込み性の向上を図
り、押出能力を向上しようとするもので、上記間題点を
ことごとく解消するものである。
The present invention has been made by paying attention to the problems of the above-mentioned conventional examples (a) and (b), and the cylinder portion of the supply compression section of the single-screw extruder is configured to be rotatable. By continuously controlling the frictional force between the resin material and the inner peripheral surface of the cylinder to improve the biteability of the material and improve the extrusion capacity, it is possible to eliminate all the above problems. is there.

【0015】[0015]

【課題を解決するための手段】上記課題を解決するた
め、この発明は、単軸押出機の供給圧縮区間のシリンダ
ー部を回転可能に形成するとともに、この回転部分は1
つまたは2つ以上に分割して個別に回転できるように構
成してあることを特徴とするものである。1つまたは2
つ以上に分割された回転部分は、スクリューの回転条件
等に最も見合った、それぞれ独立した回転数及び表面温
度で制御して、単軸押出機の供給圧縮区間における最適
条件を設定することができる。
In order to solve the above-mentioned problems, according to the present invention, a cylinder portion of a feed compression section of a single-screw extruder is rotatably formed, and the rotating portion is
It is characterized in that it is configured so that it can be rotated individually by dividing into one or two or more. One or two
The rotating parts divided into three or more can be controlled by independent rotating speed and surface temperature, which are most suitable for the rotating conditions of the screw, etc., to set the optimum conditions in the feed compression section of the single-screw extruder. ..

【0016】上記回転部分のエレメントは1つ以上であ
って、各エレメントの長さはスクリューの数ピッチ毎に
対応して形成できるとともに、各エレメントの長さは同
一であってもよいし異なってもよい。
The rotating part has one or more elements, and the length of each element can be formed corresponding to every several pitches of the screw, and the length of each element may be the same or different. Good.

【0017】回転部分は、スクリューの回転方向と同一
方向または逆方向に任意回転数で回転できるように構成
する。回転部分が2つ以上に分割してある場合には、各
分割回転体は相互に同一方向または逆方向のいずれかに
任意回転数で回転できるように構成する。すなわち、複
数の分割回転体のうち、全部が同一方向または逆方向に
回転できるだけでなく、正−逆−正−逆、正−逆−逆−
正・・・等の如く任意の組み合わせで回転できるほか、
そのうちの任意数を停止し例えば逆−停止−逆・・・の
如く回転でき、その他多数の組違いにより任意方向に回
転することができる。しかも、それらの各分割体の回転
数は任意に選定することができる。
The rotating portion is constructed so that it can rotate at an arbitrary number of rotations in the same direction as the screw rotating direction or in the opposite direction. When the rotating portion is divided into two or more parts, each divided rotating body is configured to be rotatable in either the same direction or the opposite direction at an arbitrary number of rotations. That is, not only all of the plurality of divided rotary bodies can rotate in the same direction or the opposite directions, but also normal-reverse-forward-reverse, forward-reverse-reverse-
In addition to being able to rotate in any combination such as ...
An arbitrary number of them can be stopped and rotated, for example, reverse-stop-reverse ..., and can be rotated in an arbitrary direction by many other combinations. Moreover, the rotation speed of each of these divided bodies can be arbitrarily selected.

【0018】供給圧縮区間のシリンダー部の回転部分
は、誘導加熱や電気ヒータ、熱媒体、エアブロー等によ
る加熱手段や冷却手段からなる温調手段により、加熱ま
たは冷却することができる。上記温調手段により、供給
圧縮区間のシリンダー部の回転部分の内周面の温度を、
材料の特性を考慮して上昇又は降下させて、材料の摩擦
力(摩擦係数)を高め材料の喰い込みを向上させ押出量
の増大を図ることができる。
The rotating portion of the cylinder portion of the supply compression section can be heated or cooled by a temperature adjusting means comprising a heating means such as induction heating, an electric heater, a heat medium, air blow, or a cooling means. By the temperature adjusting means, the temperature of the inner peripheral surface of the rotating portion of the cylinder portion of the supply compression section,
By raising or lowering in consideration of the characteristics of the material, it is possible to increase the frictional force (friction coefficient) of the material, improve the biting of the material, and increase the extrusion amount.

【0019】供給圧縮区間のシリンダー部の内周面は、
平滑面でもよいし、公知のようにスクリューの軸方向又
は直交方向に複数の溝を形成してもよい。
The inner peripheral surface of the cylinder portion in the supply compression section is
A smooth surface may be used, or a plurality of grooves may be formed in the axial direction or the orthogonal direction of the screw as is well known.

【0020】供給圧縮区間のシリンダー部内周面には材
料に対する一定の摩擦係数を常に保持できるようにした
素材又は形状からなるライナーを設け、このライナーの
内周面とスクリュー外周面との間で材料を移送するよう
にする方が好適である。このようなライナーを設けた場
合には、摩擦係数の異なる素材又は形状からなる多数の
ライナーを用意しておき、押出成形すべき材料の特性に
応じて最適の摩擦係数を有するライナーを選定し、供給
圧縮区間のシリンダー部における回転部分(分割回転
体)とすることができるし、また異なる摩擦係数のライ
ナーと任意に取り替えることができ極めて便利である。
A liner made of a material or shape capable of always maintaining a constant coefficient of friction with respect to the material is provided on the inner peripheral surface of the cylinder portion of the supply compression section, and the material is formed between the inner peripheral surface of the liner and the outer peripheral surface of the screw. It is more preferable to transfer. When such a liner is provided, a large number of liners made of materials or shapes having different friction coefficients are prepared, and a liner having an optimum friction coefficient is selected according to the characteristics of the material to be extrusion-molded, It can be a rotating part (divided rotor) in the cylinder part of the supply compression section, and can be replaced with a liner having a different friction coefficient, which is extremely convenient.

【0021】[0021]

【実施例】この発明の一実施例を図1ないし図5に基づ
いて以下に説明する。図5は本発明に係る単軸押出機の
概略縦断面図であって、この単軸押出機は、基部に材料
投入口2を有するシリンダー1と、材料投入口2から供
給された樹脂材料をシリンダー1内で溶融して先端側へ
押出しするスクリュー3と、シリンダー1を加熱するヒ
ータ4と、スクリュー3を回転するためのモータ6や減
速ギア7等の駆動手段5と、溶融して押出しされた材料
に所定の形を与えるダイス8などからなっている。な
お、材料投入口2にはホッパー(図示せず)が取り付け
られ、該ホッパーより材料が供給される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 5 is a schematic vertical cross-sectional view of a single-screw extruder according to the present invention. This single-screw extruder has a cylinder 1 having a material input port 2 at its base and a resin material supplied from the material input port 2. A screw 3 that melts in the cylinder 1 and extrudes to the tip side, a heater 4 that heats the cylinder 1, a driving means 5 such as a motor 6 and a reduction gear 7 for rotating the screw 3, and melts and extrudes. The die 8 and the like give a predetermined shape to the material. A hopper (not shown) is attached to the material input port 2 and the material is supplied from the hopper.

【0022】スクリュー3は、任意ピッチのフライト
(ねじ山)3aを有する1条フライト型のスクリューが
形成されているが、その他任意のものを実施することが
できる。このスクリュー3は、材料投入口2より供給さ
れた粉粒体(固体)からなる樹脂材料を予熱しつつ圧縮
して前方へ移送する供給圧縮区間Aと、供給圧縮区間A
から移送されてくる材料を圧縮し可塑化溶融する圧縮溶
融区間Bと、圧縮溶融区間Bからの溶融材料を混練しつ
つ計量して押出する混練計量区間Cとから構成されてい
る。この実施例では3区間に仕切っているが、4区間以
上に仕切ることもできる。3sはスクリュー溝の表面で
ある。
The screw 3 is a single flight type screw having flights (threads) 3a with an arbitrary pitch, but any other screw can be used. The screw 3 includes a supply compression section A for compressing and transferring the resin material made of powdery or granular material (solid) supplied from the material input port 2 while preheating it, and a supply compression section A.
It comprises a compression and melting section B for compressing and plasticizing and melting the material transferred from, and a kneading and measuring section C for kneading and measuring and extruding the molten material from the compression and melting section B. In this embodiment, it is divided into three sections, but it is also possible to divide into four sections or more. 3s is the surface of the screw groove.

【0023】前記スクリュー3の供給圧縮区間Aに対応
するシリンダー部1aは回転可能に形成してあり、この
回転部分10は1つまたは2つ以上に分割して個別に回
転できるように構成してある。
The cylinder portion 1a corresponding to the supply compression section A of the screw 3 is rotatably formed, and the rotating portion 10 is constructed so that it can be individually rotated by dividing it into one or two or more parts. is there.

【0024】図2に示すように、回転部分10が2つ以
上に分割してある場合には、各分割回転体11、12…
は相互に同一方向または逆方向のいずれかに任意回転数
で回転できるようにしてある。すなわち、各分割回転体
11、12…の回転方向は、スクリュー3の回転方向に
対して、第1分割回転体11と第2分割回転体12…の
いずれも逆方向に回転できるし、同一方向、正逆別方
向、その他種々の組み合せ方向に回転することができ
る。また、各分割回転体11、12…の回転数は、スク
リュー3の回転に対して逆方向で該スクリュー3の回転
数に対して、第1分割回転体11は10〜20%、第2
分割回転体12は5〜15%程度で、かつ後者より前者
の回転比が大なる条件下で回転するのが好適であった。
この回転数は任意選定できるのは勿論である。
As shown in FIG. 2, when the rotating portion 10 is divided into two or more parts, the divided rotating bodies 11, 12 ...
Are capable of rotating in mutually the same direction or in opposite directions at an arbitrary rotation speed. That is, the rotation direction of each of the divided rotary bodies 11, 12, ... Can be reversed with respect to the rotational direction of the screw 3 and both the first divided rotary body 11 and the second divided rotary body 12 ... , Can be rotated in different directions such as forward and reverse directions, and various other combinations. The rotational speed of each of the divided rotary bodies 11, 12, ... Is in the opposite direction to the rotation of the screw 3, and the rotational speed of the first divided rotary body 11 is 10 to 20% of the rotational speed of the screw 3.
It was preferable that the divided rotary body 12 be rotated under the condition that the rotation ratio of the former is higher than that of the latter by about 5 to 15%.
Of course, this rotation speed can be arbitrarily selected.

【0025】回転部分10は図示されていないが1つで
もよく、この場合も、スクリュー3の回転方向と同一方
向または逆方向に回転できるし、その回転数は前記第1
分割回転体11の場合と同様の回転比とすることができ
る。
Although the rotating portion 10 is not shown in the figure, it may be one, and in this case as well, it can rotate in the same direction as the rotating direction of the screw 3 or in the opposite direction, and the number of rotations is the same as that of the first rotating portion.
The rotation ratio can be the same as that of the divided rotary body 11.

【0026】回転部分10を回転するとは、該回転部分
10が1つまたは2つ以上のいずれかの場合でも、その
回転を停止した状態つまり回転数が0の場合も含む。
The rotation of the rotating portion 10 includes a state in which the rotation is stopped, that is, the number of rotations is 0, regardless of whether the rotating portion 10 is one or two or more.

【0027】回転部分(10、11、12…)の回転方
向は、スクリュー3の回転方向に対して、一般的には逆
方向に回転する方が好ましい。シリンダー部1a内周面
に対する材料の摩擦係数が大きくなって、材料の喰い込
みが向上するとともに、供給圧縮区間Aにおける輸送圧
も上昇され、材料の押出能力が向上されるからである。
シリンダー部1a内周面に対する材料の摩擦係数が増大
されるのであれば、上記回転部分(10、11、12
…)の回転方向は、スクリュー3の回転方向に対して同
一方向または正逆交互に回転するなど適宜方向に回転す
るとよい。
It is generally preferable that the rotating portions (10, 11, 12, ...) Rotate in the opposite direction to the rotating direction of the screw 3. This is because the coefficient of friction of the material with respect to the inner peripheral surface of the cylinder portion 1a is increased, the bite of the material is improved, the transport pressure in the supply compression section A is also increased, and the material extrusion capacity is improved.
If the coefficient of friction of the material with respect to the inner peripheral surface of the cylinder portion 1a is increased, the rotating portion (10, 11, 12)
The rotation direction of () is preferably the same direction as the rotation direction of the screw 3 or may be rotated in an appropriate direction such as alternating forward and reverse.

【0028】シリンダー部1aの回転部分10をなす分
割回転体11、12は、図2及び図3に示すように、い
ずれも筒状に形成してあり、この筒状体13、14の外
周にはベアリング15、16を介して外ケース17が被
蓋してある。17aは外ケース17の蓋である。
As shown in FIGS. 2 and 3, the divided rotating bodies 11 and 12 forming the rotating portion 10 of the cylinder portion 1a are both formed in a tubular shape, and the outer circumferences of the tubular bodies 13 and 14 are formed. An outer case 17 is covered via bearings 15 and 16. Reference numeral 17a is a lid of the outer case 17.

【0029】各分割回転体11、12の内周面は、スク
リュー3に直接に対面するように構成することもできる
が、この実施例ではライナー20、20を介在して間接
的に対面する構成とし、該ライナー20、20が分割回
転体11、12と同体的に回転されるようにしてある。
The inner peripheral surface of each of the divided rotary bodies 11 and 12 can be constructed so as to directly face the screw 3. However, in this embodiment, the inner circumferential surface faces indirectly through the liners 20, 20. The liners 20, 20 are rotated together with the divided rotary bodies 11, 12.

【0030】このライナー20は、成形材料に対する一
定の摩擦係数を常に保持できるようにした素材または形
状からなるものが好ましい。素材としては、例えばフッ
ソ樹脂等を含む焼結材などが良い。また、形状として
は、ライナー20の長手方向に図8〜図10に示す如き
溝21を複数個形成したものを採用することができる。
The liner 20 is preferably made of a material or a shape which can always maintain a constant friction coefficient with respect to the molding material. As the material, for example, a sintered material containing fluorine resin or the like is preferable. Further, as the shape, a liner 20 having a plurality of grooves 21 as shown in FIGS.

【0031】回転部分10(実施例では2つの分割回転
体11、12)を回転する回転手段としては、任意構成
を採り得るが、この実施例では図2及び図3に示されて
いる如きウオーム歯車装置を採用している。すなわち、
同図における回転手段22は、各分割回転体11、12
に固定されたウオームホイール23と、このウオームホ
イール23の歯23aに噛み合う歯24aを有するウオ
ーム24と、ウオーム24の軸25の端部に接続され、
軸25を回転して前記ウオームホイール23を回転する
駆動源26(分割回転体11側の駆動源は図示されてい
ない。)とからなっている。駆動源26の正・逆作動に
より前記ウオーム歯車装置を介して、各分割回転体1
1、12はそれぞれは独立して、スクリュー3の回転方
向と同一方向または逆方向に所望回転数で回転すること
ができる。図3で、27、28、29はベアリングであ
る。
The rotating means for rotating the rotating portion 10 (the two divided rotating bodies 11 and 12 in the embodiment) may have an arbitrary structure, but in this embodiment, the worm as shown in FIGS. 2 and 3 is used. It uses a gear unit. That is,
The rotating means 22 in FIG.
A worm wheel 23 fixed to the worm wheel 23, a worm 24 having a tooth 24a that meshes with a tooth 23a of the worm wheel 23, and an end of a shaft 25 of the worm 24,
The drive source 26 rotates the shaft 25 to rotate the worm wheel 23 (the drive source on the side of the divided rotating body 11 is not shown). By the forward and reverse operation of the drive source 26, each divided rotary body 1 is passed through the worm gear device.
Each of 1 and 12 can independently rotate in the same direction as the rotation direction of the screw 3 or in the opposite direction at a desired rotation speed. In FIG. 3, 27, 28 and 29 are bearings.

【0032】回転部分10つまり分割回転体11、12
は、図2及び図3に示されている如く、温調手段30に
より加熱または冷却するようにしてある。この温調手段
30として、この実施例では図2及び図3に示す如く熱
媒体により、回転部分10であるシリンダー部1aを冷
却または加熱する構成としている。すなわち分割回転体
11、12を構成する筒状体13、14の内部に媒体通
路31、32を形成して、この媒体通路31、32へ媒
体入口33、34から水や油などの媒体を導入し、該媒
体で回転部分10であるシリンダー部1aを冷却または
加熱してから、媒体出口35、36より系外の媒体槽
(図示せず)などへ戻すようにしている。上記熱媒体に
よる温調手段30に代えて、誘導加熱や電気ヒータ等の
加熱手段、又は冷却するためのブロワ等の冷却手段を用
いることもできる。
Rotating part 10, that is, divided rotating bodies 11 and 12
Is heated or cooled by the temperature control means 30 as shown in FIGS. As the temperature adjusting means 30, in this embodiment, as shown in FIGS. 2 and 3, the heat medium is used to cool or heat the cylinder portion 1a which is the rotating portion 10. That is, the medium passages 31 and 32 are formed inside the cylindrical bodies 13 and 14 that form the divided rotary bodies 11 and 12, and the medium such as water or oil is introduced into the medium passages 31 and 32 from the medium inlets 33 and 34. Then, the cylinder portion 1a which is the rotating portion 10 is cooled or heated by the medium and then returned to the medium tank (not shown) outside the system through the medium outlets 35 and 36. Instead of the temperature control means 30 using the heat medium, it is possible to use heating means such as induction heating or an electric heater, or cooling means such as a blower for cooling.

【0033】図6は、単軸押出機の供給圧縮区間Aのシ
リンダー部1aの他の変形例を示す。この図6のシリン
ダー部1aは回転可能にして、その回転部分10を2つ
の分割回転体11、12で形成してそれぞれ個別に独立
して回転できるようにしてある点では、前記実施例のも
のと共通する。
FIG. 6 shows another modification of the cylinder portion 1a of the supply compression section A of the single screw extruder. The cylinder portion 1a of FIG. 6 is rotatable, and the rotating portion 10 is formed of two divided rotating bodies 11 and 12 so that they can be rotated independently of each other. Common with.

【0034】しかし、この図6の2つの分割回転体1
1、12は、前者のフライト3aが4ピッチ、後者のフ
ライト3aが3ピッチであって、軸方向の長さが異なる
とともに、両分割回転体11、12の回転手段22が駆
動源26で直接的に回転できるようにしてあり、さらに
両分割回転体11、12のシリンダー部1aには何ら温
調手段30を設けていない点で、前記図1〜図5のもの
と顕著に異なるものである。
However, the two divided rotary bodies 1 of FIG. 6 are
Nos. 1 and 12 have the former flight 3a having 4 pitches and the latter flight 3a having 3 pitches, and have different axial lengths, and the rotating means 22 of both of the divided rotary bodies 11 and 12 are directly driven by the drive source 26. 1 to FIG. 5 in that the temperature control means 30 is not provided in the cylinder portion 1a of both of the divided rotary bodies 11 and 12. ..

【0035】分割回転体11、12は実施例の如く2つ
に限らず3つ以上設けることができる。図1、図2及び
図6で40〜46はシール材である。
The number of divided rotating bodies 11 and 12 is not limited to two as in the embodiment, but three or more can be provided. In FIGS. 1, 2 and 6, reference numerals 40 to 46 are sealing materials.

【0036】なお、実施例の如くライナー20を介在し
ない場合の回転部分10(分割回転体11、12…)の
内周面は、摩擦係数が樹脂材料の付着により経時的に変
化しないように、表面処理した材質の方が好ましい。
In the inner peripheral surface of the rotating portion 10 (divided rotors 11, 12, ...) When the liner 20 is not interposed as in the embodiment, the friction coefficient does not change with time due to the adhesion of the resin material. A surface-treated material is preferable.

【0037】[0037]

【作用】前記実施例の作用を図1〜図5、図7に基づい
て以下に説明する。 成形すべき材料の投入時から成形品として取り出す
までの一連の流れを図5に沿って簡単に説明する。図5
において、モータ6を駆動してスクリュー3を時計方向
に所定回転数で回転すると、材料投入口2より供給され
た成形すべき材料は、前記スクリュー3の作用により供
給圧縮区間Aに圧縮されながら供給され圧縮溶融区間B
へ移送され、この圧縮溶融区間Bで完全に溶融されて混
練計量区間へ移送され、この混練計量区間Cで混練して
単位時間当たりの所定量を計量してからダイス8へ押出
され、このダイス8で所定の形にされてから冷却工程を
経て引取装置により成形品として取り出される。
The operation of the above embodiment will be described below with reference to FIGS. 1 to 5 and 7. A series of flow from the time of feeding the material to be molded to the time of taking it out as a molded product will be briefly described with reference to FIG. Figure 5
In, when the motor 6 is driven to rotate the screw 3 clockwise at a predetermined rotation speed, the material to be molded supplied from the material inlet 2 is supplied to the supply compression section A while being compressed by the action of the screw 3. Compressed and melted section B
Is transferred to the kneading and metering section C, and is kneaded in the kneading and metering section C to measure a predetermined amount per unit time and then extruded into the die 8. After being formed into a predetermined shape in 8, the product is taken out as a molded product by a take-up device through a cooling process.

【0038】 供給圧縮区間Aにおける分割回転体1
1、12の作用について、更に詳説する。この場合例え
ば、スクリュー3の回転と分割回転体11、12の回転
とは逆方向であって、回転数は例えば前者が20〜10
0rpm、後者が1〜10rpmとする。材料投入口2
より投入された材料は、分割回転体11の内周面との摩
擦係数はμbであり、スクリュー溝の表面3sの摩擦
係数はμsであるとき、もしμb≧μsの状態に
あれば、材料が分割回転体11のシリンダー内周面とス
クリュー3のスクリュー溝表面3sとの隙間を通過する
際に受ける材料のせん断速度γの大きさに対応した押
出圧力ΔPが発生し、前記材料は下流側へ圧縮されなが
ら移送される。つまり、材料投入口2よりスクリュー3
の溝に充填された材料は分割回転体11の軸方向長さに
亘り影響を与えられ、前記摩擦係数とせん断速度とを条
件として材料の供給量と圧縮量は決定されて定常状態と
なる。
Split rotary body 1 in the supply compression section A
The functions of 1 and 12 will be described in more detail. In this case, for example, the rotation of the screw 3 is opposite to the rotation of the divided rotary bodies 11 and 12, and the rotation speed is, for example, 20 to 10 in the former case.
0 rpm, the latter 1-10 rpm. Material input port 2
If the friction coefficient with the inner peripheral surface of the divided rotary body 11 is μb 1 and the friction coefficient of the surface 3s of the screw groove is μs 1 , the material charged more than that is in a state of μb 1 ≧ μs 1. For example, when the material passes through the gap between the inner peripheral surface of the cylinder of the divided rotary body 11 and the screw groove surface 3s of the screw 3, an extrusion pressure ΔP corresponding to the magnitude of the shear rate γ 1 of the material is generated, The material is transferred while being compressed downstream. That is, screw 3 from material input port 2
The material filled in the groove is affected over the axial length of the divided rotary body 11, and the supply amount and the compression amount of the material are determined on the condition of the friction coefficient and the shear rate, and the steady state is achieved.

【0039】 前述のように、分割回転体11をスク
リュー3と逆方向に回転して、分割回転体11の摩擦係
数がμb≧μsで材料のせん断速度γが一定値以
上の時には、本発明の分割回転体11の領域における材
料の圧力△pは、図7の実験に示すように、従来例に比
べて立ち上がり時から僅かではあるが少し高い圧力で上
昇している。この僅かな上昇圧力が、下流側における材
料の圧力を指数関数的に上げるための初期条件となるた
め、極めて重要な働きを有する。
As described above, when the divided rotary body 11 is rotated in the opposite direction to the screw 3 and the friction coefficient of the divided rotary body 11 is μb 1 ≧ μs 1 and the shear rate γ 1 of the material is a certain value or more, As shown in the experiment of FIG. 7, the pressure Δp of the material in the region of the divided rotary body 11 of the present invention rises at a slightly higher pressure than at the time of rising compared to the conventional example. This slight rising pressure has an extremely important function because it becomes an initial condition for exponentially increasing the pressure of the material on the downstream side.

【0040】 分割回転体11により昇圧された材料
は、次の分割回転体12においても、前記と同様に、
分割回転体11のシリンダー内周面の摩擦係数μb
スクリュー3のスクリュー溝表面3sの摩擦係数μs2
との大きさにμb≧μs2関係があり、且つ材料の分
割回転体12の内周面とスクリュー3のスクリュー溝表
面3sとの隙間を通過する際に受ける搬送のせん断速度
γが上記分割回転体11におけるせん断速度γより
小さいか等しいか(γ≦γ)の条件を満たすように
分割回転体11と分割回転体12の回転速度を調整する
ときに、前記材料は下流側へ圧縮されながら移送され
る。この分割回転体12の領域における材料の圧力Δp
は図7の実線に示すように、分割回転体12独自の作用
に加え上記で述べた分割回転体11の領域における初
期上昇圧にも影響されてさらに指数関数的に上昇され
る。この圧力上昇は図7の実線で示してあるように圧縮
溶融区間Bの初期(つまり最大昇圧点P(MAX))
まで見られ、それ以降は混練計量区間Cの終わりまでシ
リンダーが回転しない従来例の場合の圧力と同一の圧力
で移送される。
The material whose pressure is increased by the divided rotary body 11 is also applied to the next divided rotary body 12 in the same manner as described above.
Friction coefficient μb 2 of the inner peripheral surface of the cylinder of the divided rotary body 11 and friction coefficient μ s2 of the screw groove surface 3s of the screw 3
Has a relation of μb 2 ≧ μ s2 , and the shearing speed γ 2 of the transfer received when passing through the gap between the inner peripheral surface of the divided rotary body 12 of the material and the screw groove surface 3s of the screw 3 is When adjusting the rotation speeds of the divided rotary body 11 and the divided rotary body 12 so as to satisfy the condition of being smaller than or equal to the shear rate γ 1 in the divided rotary body 11 (γ 2 ≦ γ 1 ), the material is on the downstream side. Is transferred while being compressed. Material pressure Δp in the region of the divided rotating body 12
As shown by the solid line in FIG. 7, in addition to the action unique to the divided rotary body 12, it is further exponentially increased by being affected by the initial rising pressure in the region of the divided rotary body 11 described above. As shown by the solid line in FIG. 7, this pressure increase is in the initial stage of the compression-melting section B (that is, the maximum pressurizing point P F (MAX)).
The pressure is the same as that in the conventional example in which the cylinder does not rotate until the end of the kneading / measuring section C.

【0041】 前記最大昇圧点P(MAX)からダ
イス8に至るまでは、材料の圧縮状況に応じた、スクリ
ューの外周面の摩擦係数、シリンダー内周面の摩擦係
数、材料のせん断速度、スクリューフライト(ねじれ角
及びスクリュー溝の高さ)等によって決定される一般の
押出スクリュー理論によって、圧縮、昇圧、吐出され
る。
From the maximum pressurization point P F (MAX) to the die 8, the coefficient of friction of the outer peripheral surface of the screw, the coefficient of friction of the inner peripheral surface of the cylinder, the shear rate of the material, the screw depending on the compression state of the material Compression, pressurization, and discharge are performed by a general extrusion screw theory determined by flight (twist angle and screw groove height) and the like.

【0042】 上述したように、本発明において、ス
クリュー3を回転するとともに、分割回転体11、12
を回転する場合(図7の実線参照)に、スクリュー3し
か回転しない従来例の単軸押出機と比較してみると、前
述したように、分割回転体11、12のシリンダー内周
面の摩擦係数及び材料に加わるスクリュー溝内に作用す
るせん断速度を高めることにより、材料に対する輸送圧
力が急激に上昇されるため、少なくとも供給圧縮区間A
における材料の喰い込みが改善され供給量が安定して供
給できるとともに、次工程へ安定して移送することがで
きるのである。
As described above, in the present invention, the screw 3 is rotated, and at the same time, the divided rotors 11 and 12 are rotated.
When rotating (see the solid line in FIG. 7), as compared with the conventional single-screw extruder in which only the screw 3 rotates, as described above, the friction of the inner peripheral surface of the cylinder of the divided rotors 11 and 12 is By increasing the coefficient and the shear rate acting in the screw groove on the material, the transport pressure on the material is sharply increased, so that at least the feed compression section A
It is possible to improve the bite of the material in step (1) and to stably supply the material and to stably transfer the material to the next step.

【0043】すなわち、図7において、材料投入口2へ
の材料投入時から最大昇圧点P(MAX)までにおい
て、従来例では、ハの曲線で示されているように供給圧
縮区間Aにおいては傾斜の緩い圧力勾配を示している。
これに対し、本発明では、イの曲線で示されているよう
に供給圧縮区間Aにおいては前記分割回転体11、12
の作用により急激に昇圧されるため、従来例の圧力より
高くなるばかりか、その圧力勾配も傾斜のきつい曲線を
示していることから、上記の如く供給圧縮区間Aにおけ
る材料の喰い込みが改善され、供給量が安定し次工程へ
安定して移送されるのである。
That is, in FIG. 7, from the time when the material is charged into the material charging port 2 to the maximum pressure rising point P F (MAX), in the conventional example, in the supply compression section A as shown by the curve of C. It shows a gradual pressure gradient.
On the other hand, in the present invention, in the supply compression section A, as shown by the curve a, the divided rotary bodies 11 and 12 are divided.
Since the pressure is sharply increased by the action of, the pressure not only becomes higher than the pressure in the conventional example, but also the pressure gradient shows a steep curve, so that the bite of the material in the supply compression section A is improved as described above. Therefore, the supply amount is stable, and it is stably transferred to the next process.

【0044】分割回転体11、12を実線イの場合と同
一回転数で回転するとともに、スクリュー3の回転数を
実線イの場合より増加して行くと、この場合の材料の圧
力は図7に2点鎖線ロで示すように、最大昇圧点P`
(MAX)まで高めることができる。これを分岐点とし
て、それより上流側は急勾配の上昇圧力曲線を示し、そ
れより下流側は緩い勾配の降下圧力曲線を示している。
供給圧縮区間Aにおける最大昇圧点P`(MAX)が
上昇した分だけダイス部で圧力を昇圧しても安定な材料
の圧縮供給が約束されるため、押出能力を向上させ安定
した押出生産が保証される。スクリューの回転数は材料
樹脂の発熱昇温及び、ダイスで材料流速制限等によって
制限され、限界があるが、分割回転体11、12の回転
調整手段により安定した生産能力を向上させることが出
来、その効果は35〜85%の能力向上が認められてい
る。
When the divided rotors 11 and 12 are rotated at the same number of revolutions as in the case of the solid line a and the number of revolutions of the screw 3 is increased from that in the case of the solid line a, the pressure of the material in this case is as shown in FIG. as indicated by the two-dot chain line b, the maximum boost point P `F
(MAX) can be raised. With this as a branch point, the upstream side shows a steep rising pressure curve, and the downstream side shows a gentle falling pressure curve.
Even if the pressure in the die is increased by the amount corresponding to the increase in the maximum pressure increase point P FF (MAX) in the supply compression section A, stable compression supply of the material is promised, so the extrusion capacity is improved and stable extrusion production is achieved. Guaranteed. The number of revolutions of the screw is limited by the heat generation of the material resin and the material flow rate limitation in the die, but there is a limit, but the rotation adjusting means of the divided rotors 11 and 12 can improve the stable production capacity, The effect is recognized to be a capacity improvement of 35 to 85%.

【0045】分割回転体11、12の内周面の摩擦係数
及び回転方向並びに回転数は、形成すべき材料に合わせ
て決定される。しかも前記摩擦係数は当該分割回転体1
1、12の内周面の形状や材料又は温度等により増減調
整することができる。そして、この材料のせん断速度を
調整することにより、あたかもスクリュー3のねじれ角
を変化調整したことに相当し、材料のスクリュー溝に対
する移動角が変更される作用となる。それによってスク
リュー3のフライトの形状や溝深さを自由に変更した如
き働きを担う顕著な利点を有する。その効果を、3日〜
30日にわたって連続運転が要求される生産現場での実
用例を示して見る。一般に、押出機のスタート開始時か
らの押出量は、経時的にゆっくりその平均押出量が変化
し、例えば10日間の連続運転日数では運転開始時の押
出量の8〜16%程度その平均値が変化することが認め
られている。このような場合、材料の供給圧縮区間のシ
リンダーが回転しない従来の装置では、スクリューの回
転数と温度によりその押出量の調整を行っているが、製
品の品質低下を防止するために5日〜10日前後で稼動
を停止せざるを得なかった。そのため、生産稼動率が低
下し収率の低下を来し、改善が望まれていた。本発明
は、供給圧縮区間の分割回転体11、12の回転数の調
整手段により自動制御することが単純に可能となり、生
産性の向上を実現することが出来た。
The friction coefficient, the rotation direction, and the rotation speed of the inner peripheral surfaces of the divided rotary bodies 11 and 12 are determined according to the material to be formed. Moreover, the friction coefficient is the divided rotary body 1
It can be adjusted to increase or decrease depending on the shape of the inner peripheral surface of Nos. 1 and 12, material, temperature, or the like. Then, by adjusting the shear rate of this material, it is as if the twist angle of the screw 3 were changed and adjusted, and the movement angle of the material with respect to the screw groove is changed. As a result, there is a remarkable advantage that the screw 3 has the function of freely changing the flight shape and groove depth. The effect is 3 days ~
A practical example in a production site where continuous operation is required for 30 days is shown and viewed. In general, the average amount of extrusion from the start of the extruder changes slowly with time. For example, in 10 consecutive days of operation, the average amount of extrusion is about 8 to 16% of the amount of extrusion at the start of operation. It is accepted to change. In such a case, in the conventional apparatus in which the cylinder in the material supply compression section does not rotate, the extrusion amount is adjusted by the rotation speed and temperature of the screw, but in order to prevent deterioration of product quality I had to stop the operation around 10 days. Therefore, the production operation rate is lowered and the yield is lowered, and improvement is desired. According to the present invention, it is possible to automatically control the rotation speed of the divided rotary bodies 11 and 12 in the supply compression section automatically, and it is possible to improve the productivity.

【0046】[0046]

【発明の効果】この発明によれば、(1) 単軸押出機
の供給圧縮区間のシリンダー部を回転可能に形成すると
ともに、この回転部分は1つまたは2つ以上に分割して
個別に回転できるように構成してあるから、回転部分
(分割回転体)をスクリューの回転方向と同一または逆
方向に任意回転数で回転することにより、回転部分(分
割回転体)の内周面の摩擦係数及び材料のせん断速度が
高まり、材料の喰い込み能力が向上される結果、見掛け
比重の小さい材料等の喰い込みの悪い材料、又は経時的
に喰い込み性が変化し押出量が変化する材料でも、少な
くとも供給圧縮区間における材料の喰い込みが改善され
供給量が安定して供給されるとともに、押出能力を高め
ながら、成形品の品質を低下させることなく、長期に亘
り連続して押出成形作業が行える。従来例(イ)、
(ロ)では、材料の喰い込み性の調整はスクリューの回
転数を変えるか、シリンダーの温度を変えるしか方法が
なく、その回転数又は温度を変更する毎に成形作業を停
止し再稼動することになり、稼動時間が短く生産能力が
低下する。また材料の喰い込み性の調整のために、スク
リューの回転数かシリンダーの温度を変更する場合に、
成形材料の物性により成形品の品質を低下させるなどの
欠点があった。本発明は、スクリューの回転を変更する
ことなく、上記回転部分(分割回転体)の回転の向きと
大きさを調整するだけの簡単な操作で材料の押出量を制
御でき、上記諸欠点をことごとく解消することができ
る。
According to the present invention, (1) the cylinder portion of the feed compression section of the single-screw extruder is rotatably formed, and the rotating portion is divided into one or two or more and individually rotated. Since it is configured to rotate, the friction coefficient of the inner peripheral surface of the rotating portion (divided rotor) can be set by rotating the rotating portion (divided rotor) in the same or opposite direction as the screw rotation direction at an arbitrary number of revolutions. As a result, the shearing speed of the material is increased, and the biting ability of the material is improved.As a result, even if the material has poor biting such as a material having a small apparent specific gravity, or if the biting property changes over time and the extrusion rate changes, At least the feed of the material in the feed compression section is improved and the feed amount is supplied stably, and the extrusion performance is enhanced, and the extrusion molding process is continuously performed for a long time without lowering the quality of the molded product. You can work. Conventional example (a),
In (b), the only way to adjust the biting property of the material is to change the screw rotation speed or the cylinder temperature.Stop the molding operation and restart the operation every time the rotation speed or temperature is changed. Therefore, the operating time is short and the production capacity is reduced. Also, in order to adjust the biteability of material, when changing the rotation speed of the screw or the temperature of the cylinder,
There are drawbacks such as deterioration of the quality of the molded product due to the physical properties of the molding material. INDUSTRIAL APPLICABILITY The present invention can control the extrusion amount of a material by a simple operation of adjusting the direction and size of the rotation of the rotating portion (divided rotating body) without changing the rotation of the screw, and all of the above-mentioned drawbacks. It can be resolved.

【0047】(2) 請求項4記載の如く、供給圧縮区
間のシリンダー部の回転部分は、温調手段により加熱ま
たは冷却することにより、回転部分(分割回転体)の内
周面の摩擦係数を高め材料の喰い込み性を向上させ押出
量の増大を図ることができる。
(2) As described in claim 4, the rotating portion of the cylinder portion of the supply compression section is heated or cooled by the temperature adjusting means so that the friction coefficient of the inner peripheral surface of the rotating portion (divided rotor) is increased. It is possible to enhance the biteability of the material and increase the extrusion amount.

【0048】(3) 請求項5記載の如く、供給圧縮区
間のシリンダー部内周面には材料に対する一定の摩擦係
数を常に保持できるようにした素材又は形状からなるラ
イナーを設け、摩擦係数の異なるライナーを多数用意し
ておくことにより、ライナーを取り替えて最適の喰い込
み性を保持して最適の押出能力を維持することができ
る。
(3) As described in claim 5, the inner peripheral surface of the cylinder portion of the supply compression section is provided with a liner made of a material or a shape capable of always maintaining a constant friction coefficient with respect to the material, and liners having different friction coefficients are provided. By preparing a large number of, it is possible to replace the liner, maintain the optimum biteability, and maintain the optimum extrusion capacity.

【図面の簡単な説明】[Brief description of drawings]

【図1】図2の一部拡大縦断面図である。FIG. 1 is a partially enlarged vertical sectional view of FIG.

【図2】本発明の一実施例の要部縦断面図である。FIG. 2 is a longitudinal sectional view of an essential part of an embodiment of the present invention.

【図3】図2のIII−III線断面図である。3 is a sectional view taken along line III-III in FIG.

【図4】図2のIV−IV線断面図である。4 is a sectional view taken along line IV-IV in FIG.

【図5】本発明を適用した全体の概略縦断面図である。FIG. 5 is an overall schematic vertical sectional view to which the present invention is applied.

【図6】回転部分(分割回転体)の変形例を示す縦断面
図である。
FIG. 6 is a vertical cross-sectional view showing a modified example of a rotating portion (divided rotating body).

【図7】スクリューの各区間のおける材料の圧力を示す
線図である。
FIG. 7 is a diagram showing the pressure of the material in each section of the screw.

【図8】ライナーの第1変形例の一部断面図である。FIG. 8 is a partial cross-sectional view of a first modified example of the liner.

【図9】ライナーの第2変形例の一部断面図である。FIG. 9 is a partial cross-sectional view of a second modified example of the liner.

【図10】ライナーの第3変形例の一部断面図である。FIG. 10 is a partial cross-sectional view of a third modified example of the liner.

【符号の説明】[Explanation of symbols]

1 シリンダー 1a 供給圧縮区間のシリンダー部 2 スクリュー 8 ダイス 10 回転部分 11 分割回転体 12 分割回転体 20 ライナー 22 回転手段 30 温調手段 31 媒体通路 32 媒体通路 33 媒体入口 34 媒体入口 35 媒体出口 36 媒体出口 DESCRIPTION OF SYMBOLS 1 Cylinder 1a Cylinder part of a supply compression section 2 Screw 8 Dice 10 Rotating part 11 Dividing rotator 12 Dividing rotator 20 Liner 22 Rotating means 30 Temperature adjusting means 31 Medium passage 32 Medium passage 33 Medium inlet 34 Medium inlet 35 Medium outlet 36 Medium exit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松井 治 大阪府大阪市中央区谷町6丁目5番26号 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Osamu Matsui 6-526 Tanimachi, Chuo-ku, Osaka City, Osaka Prefecture

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 単軸押出機の供給圧縮区間Aのシリンダ
ー部1aを回転可能に形成するとともに、この回転部分
10は1つまたは2つ以上に分割して個別に回転できる
ように構成してあることを特徴とする単軸押出機。
1. A cylinder portion 1a of a feed compression section A of a single-screw extruder is rotatably formed, and this rotating portion 10 is constructed so that it can be individually rotated by dividing it into one or two or more parts. A single-screw extruder characterized by being present.
【請求項2】 回転部分10は、スクリュー3の回転方
向と同一方向または逆方向に任意回転数で回転できるよ
うに構成してある請求項1記載の単軸押出機。
2. The single-screw extruder according to claim 1, wherein the rotating portion 10 is configured to be rotatable at an arbitrary number of rotations in the same direction as the rotating direction of the screw 3 or in the opposite direction.
【請求項3】 回転部分10が2つ以上に分割してある
場合には、各分割回転体11、12・・・は相互に同一
方向または逆方向のいずれかに任意回転数で回転できる
ように構成してある請求項1記載の単軸押出機。
3. When the rotating portion 10 is divided into two or more parts, the divided rotating bodies 11, 12 ... Can rotate at the arbitrary number of revolutions either in the same direction or in opposite directions. The single-screw extruder according to claim 1, which is configured as follows.
【請求項4】 供給圧縮区間Aのシリンダー部の回転部
分1aは、温調手段30により加熱または冷却するよう
にしてある請求項1または2記載の単軸押出機。
4. The single screw extruder according to claim 1, wherein the rotating portion 1a of the cylinder portion of the supply compression section A is heated or cooled by the temperature adjusting means 30.
【請求項5】 供給圧縮区間Aのシリンダー部1a内周
面には材料に対する一定の摩擦係数を常に保持できるよ
うにした素材又は形状からなるライナー20が設けてあ
る請求項1ないし4のいずれかに記載の単軸押出機。
5. The liner 20 made of a material or shape capable of always maintaining a constant coefficient of friction with respect to a material is provided on the inner peripheral surface of the cylinder portion 1a of the supply compression section A. The single-screw extruder described in.
JP4067903A 1992-02-08 1992-02-08 Single-spindle extruder Pending JPH05220818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4067903A JPH05220818A (en) 1992-02-08 1992-02-08 Single-spindle extruder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4067903A JPH05220818A (en) 1992-02-08 1992-02-08 Single-spindle extruder

Publications (1)

Publication Number Publication Date
JPH05220818A true JPH05220818A (en) 1993-08-31

Family

ID=13358325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4067903A Pending JPH05220818A (en) 1992-02-08 1992-02-08 Single-spindle extruder

Country Status (1)

Country Link
JP (1) JPH05220818A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016175082A1 (en) * 2015-04-28 2016-11-03 東芝機械株式会社 Extruder screw, extruder, and extrusion method
WO2016175081A1 (en) * 2015-04-28 2016-11-03 東芝機械株式会社 Extruder screw, extruder, and extrusion method
WO2018072935A1 (en) * 2016-10-18 2018-04-26 Kraussmaffei Technologies Gmbh Cylinder for a plastics-processing machine and method for operating an extruder
US10967554B2 (en) 2014-05-08 2021-04-06 Toshiba Kikai Kabushiki Kaisha Extruder screw having paths within the screw, extruder, and extrusion method
US11110638B2 (en) 2014-05-08 2021-09-07 Shibaura Machine Co., Ltd. Extruder screw having paths within the screw, extruder, and extrusion method
US11220022B2 (en) 2014-04-24 2022-01-11 Shibaura Machine Co., Ltd. Extruder screw having paths within the screw, extruder, and extrusion method
US11224991B2 (en) 2014-04-24 2022-01-18 Shibaura Machine Co., Ltd. Extruder screw having paths within the screw, extruder, and extrusion method
US11565440B2 (en) 2014-05-08 2023-01-31 Shibaura Machine Co., Ltd. Kneading apparatus with first and second extruders

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11224991B2 (en) 2014-04-24 2022-01-18 Shibaura Machine Co., Ltd. Extruder screw having paths within the screw, extruder, and extrusion method
US11220022B2 (en) 2014-04-24 2022-01-11 Shibaura Machine Co., Ltd. Extruder screw having paths within the screw, extruder, and extrusion method
US10967554B2 (en) 2014-05-08 2021-04-06 Toshiba Kikai Kabushiki Kaisha Extruder screw having paths within the screw, extruder, and extrusion method
US11813785B2 (en) 2014-05-08 2023-11-14 Shibaura Machine Co., Ltd. Extruder screw having paths within the screw, extruder, and extrusion method
US11752682B2 (en) 2014-05-08 2023-09-12 Shibaura Machine Co., Ltd. Extruder screw having paths within the screw, extruder, and extrusion method
US11565440B2 (en) 2014-05-08 2023-01-31 Shibaura Machine Co., Ltd. Kneading apparatus with first and second extruders
US11110638B2 (en) 2014-05-08 2021-09-07 Shibaura Machine Co., Ltd. Extruder screw having paths within the screw, extruder, and extrusion method
CN107530940A (en) * 2015-04-28 2018-01-02 东芝机械株式会社 Screw for extruder, extruder and extrusion method
US11230033B2 (en) 2015-04-28 2022-01-25 Shibaura Machine Co., Ltd. Extruder screw including conveyance portions and paths within the conveyance portions, extruder, and extrusion method
WO2016175081A1 (en) * 2015-04-28 2016-11-03 東芝機械株式会社 Extruder screw, extruder, and extrusion method
TWI633002B (en) * 2015-04-28 2018-08-21 東芝機械股份有限公司 Extruder screw and extruder and extrusion method
TWI636864B (en) * 2015-04-28 2018-10-01 東芝機械股份有限公司 Extruder screw and extruder and extrusion method
JP2016203576A (en) * 2015-04-28 2016-12-08 東芝機械株式会社 Extruder screw, extruder and extrusion method
CN107530940B (en) * 2015-04-28 2019-09-20 东芝机械株式会社 Screw for extruder, extruder and extrusion method
CN107530941B (en) * 2015-04-28 2020-02-07 东芝机械株式会社 Screw for extruder, and extrusion method
US20180093233A1 (en) * 2015-04-28 2018-04-05 Toshiba Kikai Kabushiki Kaisha Extruder screw, extruder, and extrusion method
WO2016175082A1 (en) * 2015-04-28 2016-11-03 東芝機械株式会社 Extruder screw, extruder, and extrusion method
CN107530941A (en) * 2015-04-28 2018-01-02 东芝机械株式会社 Screw for extruder, extruder and extrusion method
KR20170130552A (en) * 2015-04-28 2017-11-28 도시바 기카이 가부시키가이샤 Extruder Screw and Extruder and Extrusion Method
US11229889B2 (en) 2015-04-28 2022-01-25 Shibaura Machine Co., Ltd. Extruder screw with alternately-arranged conveyance portions and extruders and extrusion methods using the extruder screw
US20180093234A1 (en) * 2015-04-28 2018-04-05 Toshiba Kikai Kabushiki Kaisha Extruder screw, extruder, and extrusion method
JP2016203578A (en) * 2015-04-28 2016-12-08 東芝機械株式会社 Extruder screw, extruder and extrusion method
CN109803806A (en) * 2016-10-18 2019-05-24 克劳斯马菲技术有限公司 Method for the cylinder of plastics processing machines and for running extruder
WO2018072935A1 (en) * 2016-10-18 2018-04-26 Kraussmaffei Technologies Gmbh Cylinder for a plastics-processing machine and method for operating an extruder

Similar Documents

Publication Publication Date Title
US4408888A (en) Double-worm extrusion press
US3652064A (en) Apparatus for conveying plastic material
JP4402841B2 (en) Method and apparatus for extruding low bulk density polycarbonate material
US11597118B2 (en) Device and method for the extrusion of thermo-mechanically deformable materials in bulk form, and compact screw extruder
US3431599A (en) Extrusion method and apparatus
US3924842A (en) Apparatus for preparing a plasticated material
US3867079A (en) Apparatus for extruding polymeric material
US4639143A (en) Extrusion screw
US5000900A (en) Twin screw extruder
US5358327A (en) Apparatus for plasticizing particulate plastic material
EP3107707B1 (en) Apparatus for extruding plastic materials
JPS60242034A (en) Method and device for extruding thermoplastic material
US4461734A (en) Process for plasticization and pumping of low bulk density plastics
US4053144A (en) Delta rotor through feed mixer
US4139309A (en) Apparatus and method
JP2011500392A (en) Polymer material processing apparatus and method
CN106956416A (en) A kind of film-extruding apparatus
CN105142876A (en) Single-screw plasticator and set of a series; method for plasticating a starting material
EA000540B1 (en) METHOD AND DEVICE FOR THE MANUFACTURE OF THE EXTRUDED PRODUCT FROM PLASTIC AND THE PRODUCT FROM PLASTIC
US4309114A (en) Method for attaining maximum production effectiveness in a plasticating extruder
JPH05220818A (en) Single-spindle extruder
CN206614777U (en) A kind of film-extruding apparatus
CN102228818A (en) Continuous mixing unit with three tapered rotors in triangular arrangement
US5823668A (en) Extruder and extrusion screw therefor
JP2816356B2 (en) Extrusion molding equipment