JPH05219766A - Magnetic levitation method - Google Patents

Magnetic levitation method

Info

Publication number
JPH05219766A
JPH05219766A JP5622992A JP5622992A JPH05219766A JP H05219766 A JPH05219766 A JP H05219766A JP 5622992 A JP5622992 A JP 5622992A JP 5622992 A JP5622992 A JP 5622992A JP H05219766 A JPH05219766 A JP H05219766A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
magnetic field
superconductor
permanent magnet
electromagnet
effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5622992A
Other languages
Japanese (ja)
Inventor
Seiji Yasuhara
征治 安原
Original Assignee
Sumitomo Heavy Ind Ltd
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment or power systems integrating superconducting elements or equipment
    • Y02E40/64Superconducting transmission lines or power lines or cables or installations thereof
    • Y02E40/641Superconducting transmission lines or power lines or cables or installations thereof characterised by their form

Abstract

PURPOSE:To levitate an object stably and to make it possible to easily control the magnetic field by applying the outside magnetic field capable of controlling to a high temperature superconductor of divided pieces having a hollow or a high temperature superconductor divided into a superconductive state discontinuously to make levitation control and movement control of a permanent magnet inside the hollow. CONSTITUTION:When the magnetic field is applied by an electromagnet 2 placed to the outside of a divided cylindrical superconductor 1, the magnetic field mainly enters forcibly from a divided part of the superconductor 1 1:ecause supplement by a pin stopping effect is hard to have lay division. An inside permanent magnet 3 is subjected to axial levitation force by the magnetic field generated by the electromagnet 2 and entered forcibly from the divided part of the superconductor 1. The permanent magnet 3 is levitated at the strongest position of the magnetic field generated by the electromagnet 2 and is levitated with non-contact by the rebound-action caused by Meissner effect of the superconductor 1 and the pin stopping effect in the direction of the diameter. A position of the permanent magnet 3 can be easily controlled by varying the magnetic field applied to the superconductor 1.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は、筒状の高温超電導体を用いた磁気浮上方法に関する。 The present invention relates to a magnetic levitation method using a tubular high-temperature superconductor.

【0002】 [0002]

【従来の技術】磁気力を利用して物体を浮上させる方法として最も一般的なもので、マグネチックサスペンションという方法がある。 BACKGROUND ART In most common as a method of floating the object using a magnetic force, there is a method of magnetic suspension. 磁石の同極同士が反発しあって斥力を及ぼすことを利用して浮上させる方法である。 Same poles of the magnets are repel a method for floating by utilizing exerting a repulsive force. 浮上させた磁石を制御するために、周囲に多数の電磁石を配置し、電源の切り替え等により、電磁石の動作制御と磁場強度制御を行うものである。 To control the is floated magnet, a number of electromagnets placed around, by switching of the power supply or the like, and performs operation control and the magnetic field intensity control of the electromagnet.

【0003】超電導体の特性を利用して、超電導体内部に磁石を浮上させる方法として、マイスナー効果によるもの、サスペンション効果によるもの、ヤスハラ効果によるものなどがある。 [0003] Using the properties of the superconductor, as a method of floating the magnet within the superconductor, by Meissner effect, due to the suspension effect, and the like by Yasuhara effect. 超電導状態にある超電導体に外部磁場を印加すると、印加された磁場がある一定の強度以下の場合、超電導体内部に磁場は侵入することが出来ない。 When an external magnetic field is applied to the superconductor in the superconducting state, the case of below a certain intensity is applied magnetic field, the magnetic field inside the superconductor can not penetrate. 例えば、超電導状態にある環状の超電導体の内部に、永久磁石を投入すると、永久磁石は非接触で浮上する。 For example, the interior of the annular superconductor in the superconducting state, when turning on the permanent magnet, the permanent magnet floats in a non-contact manner. 永久磁石のもつ磁場が超電導体に侵入できずに排除されるマイスナー効果による浮上方法である。 Magnetic field having a permanent magnet is flying method according to Meissner effect to be eliminated can not penetrate into the superconductor.

【0004】サスペンション効果は、ある一定の強度を超える磁場が、超電導状態にある超電導体の内部に侵入し、固縛されてしまうものである。 [0004] The suspension effect, the magnetic field above a certain strength is, penetrates into the interior of the superconductor in the superconducting state, in which would be fastened. 超電導体に対し、磁石等が非接触で安定に浮上する。 To superconductor magnet or the like is stably levitated without contact.

【0005】一方、ピン止め力の大きい筒状の超電導体に外部磁場を印加して内部に侵入させると、磁場が超電導体に捕捉される。 On the other hand, when the intrusion therein an external magnetic field is applied to the large cylindrical superconductor pinning force, the magnetic field is captured superconductor. 環状の超電導体に磁場を形成させておき、内部に磁石を投入すると、磁場強度のいちばん大きいところで安定して浮上する。 Allowed to form a magnetic field in superconductors annular when turning on the magnet inside, stably floating at most of the magnetic field strength larger. このヤスハラ効果では、外部磁場を取り除いても磁場が残留し、残留磁場を利用して超電導体内部で磁石を非接触で浮上させることが出来る。 This Yasuhara effect, also the magnetic field remains to remove the external magnetic field, it is possible to float the magnet contactlessly internal superconductor using the residual magnetic field.

【0006】 [0006]

【発明が解決しようとする課題】マグネチックサスペンションの場合、斥力は磁石の磁力線の方向のみに作用するため、安定して浮上させるには、周囲に配置した電磁石に対して非常に精度よく強さと極性のバランス制御を行わなければならない。 For magnetic suspension [0005], repulsive force to act only in the direction of the magnetic field lines of the magnet, in order to stably levitated, and a very precisely strength against electromagnet disposed about It must be made to balance control of polarity. 斥力だけで安定浮上を得ることは困難である。 It is difficult to obtain only in a stable levitation repulsive force.

【0007】超電導体のマイスナー効果による浮上方法は、浮上作用が永久磁石の磁場を排除することによる斥力であるため、磁石の磁力線方向の拘束力のみである。 [0007] levitation method according to Meissner effect of superconductors, because floating action is repulsive by eliminating the magnetic field of the permanent magnet is only binding of the magnetic force line direction of the magnet.
マグネチックサスペンション同様、安定浮上を得ることが困難である。 Similar magnetic suspension, it is difficult to obtain a stable levitation.

【0008】サスペンション効果によるものは、磁場が固縛されることにより浮上しているため浮上は安定しているが移動制御が困難である。 [0008] due to the suspension effect, floating because they emerged by a magnetic field is fastened is stable is difficult to move the control.

【0009】ヤスハラ効果によるものも浮上は安定しているが、残留磁場が形成されるため、浮上を維持して物体を移動させるにはより大きい外部磁場を与える必要がある。 [0009] Also flying by Yasuhara effect is stable, because the residual magnetic field is formed, in order to move the object to maintain the levitation must provide greater external magnetic field. 物体の移動制御を行うことが難しくなっている。 It has become difficult to control the movement of the object.

【0010】本発明は、安定して物体を浮上させることが出来、かつ容易に移動制御できる磁気浮上方法を得ることを目的とする。 [0010] The present invention is stable it is possible to float the object, and an object of the present invention to provide a magnetic levitation method can easily move control.

【0011】 [0011]

【課題を解決するための手段】上記の課題を解決するために、本発明においては、物体を浮上させるために分割化されたループ状超電導体を利用する。 In order to solve the above problems BRIEF SUMMARY OF THE INVENTION In the present invention utilizes a loop superconductor divided into for floating the object. 本発明の磁気浮上方法に用いる超電導体の構成の一例を図1に示す。 An example of a configuration of a superconductor used in the magnetic levitation method of the present invention shown in FIG. 図中の記号は1−分割化円筒形超電導体、2−電磁石、3 The symbols in the figure 1 segmentation cylindrical superconductor, 2- electromagnet 3
−永久磁石である。 - it is a permanent magnet.

【0012】超電導状態を呈する温度以下に冷却することにより、超電導体は超電導状態となる。 [0012] By cooling to a temperature below which exhibits superconducting state, the superconductor becomes a superconducting state. 超電導体の外側に配置した電磁石により磁場を印加すると、分割によりピン止め効果による捕捉が起こりにくいため、磁場はおもに超電導体の分割部分から侵入してくる。 The application of a magnetic field by an electromagnet arranged outside the superconductor, since the pinning effect capture unlikely by the division, the magnetic field come to mainly entering from the split portion of the superconductor. 内部の永久磁石は、電磁石により発生し、超電導体の分割部分から侵入した磁場によって軸方向に浮上する力を受ける。 Internal permanent magnet is generated by the electromagnet, subjected to a force to float axially by the magnetic field entering from the divided portions of the superconductor.
永久磁石は、電磁石により発生する磁場の最も強い位置で浮上する。 Permanent magnet floats in the strongest position of the magnetic field generated by an electromagnet. 直径方向には物体は、超電導体のマイスナー効果及びピン止め効果による反発作用を受けて非接触で浮上する。 The diametrically object floats receives repulsion by Meissner effect and the pinning effect of the superconductor in a non-contact manner.

【0013】超電導体に印加する磁場を変化させることにより、永久磁石の位置制御を容易に行うことが出来る。 [0013] By varying the magnetic field applied to the superconductor, it can control the position of the permanent magnets easily. 例えば、超電導体の外側に電磁石を多数配置し、電磁石のスイッチを順次切り換えていくことにより、永久磁石は各電磁石の発生する磁場に引き寄せられて移動する。 For example, many places the electromagnet outside the superconductor, by sequentially switching the switch of the electromagnet, the permanent magnet is moved are attracted to the magnetic field generated by the electromagnets. 電磁石の配置、発生させる磁場の強度の制御を行って、内部永久磁石の浮上位置、移動速度の制御が可能となる。 Arrangement of the electromagnet, by performing a control of the intensity of magnetic field generated, floating position inside the permanent magnet, it is possible to control the movement speed. また、電磁石を移動させて外部磁場の印加を変化させてもよい。 It is also possible to move the electromagnet by changing the application of an external magnetic field.

【0014】分割化超電導体の作製方法については分割化した超電導体を円筒体に成形する方法、または、均質一体型の超電導体を鋸、砥石等で切断加工するか、あるいは、幅の狭い熱源により部分的に加熱して非超電導体にし、分割化と同様の効果を与えてもよい。 [0014] The method for manufacturing method for forming the partitioning was superconductor cylindrical body partitioning the superconductor, or saw the superconductor homogeneous integral, or cutting with grinding stone or the like, or narrow heat source Suppresses superconductor partially heated by, it may be given the same effect as segmentation. いずれの方法も、外部から磁場が侵入しやすく、マイスナー効果及びピン止め効果を保持することが目的である。 Both methods, easy external magnetic field is penetrated, it is an object that holds the Meissner effect and pinning effect. 超電導材料としては径方向の浮上の安定性から、ピン止め効果の大きいものが望ましい。 From the stability of floating of the radial as superconductive material, having a large pinning effect is desired.

【0015】超電導体の断面形状は円に限らず、多角形など、永久磁石等の浮上、移動が出来るものであればよい。 The cross-sectional shape of the superconductor is not limited to a circle, such as polygon, floating of such permanent magnets, it is sufficient that the mobile can. 外部から磁場が充分に侵入しやすく、マイスナー効果及びピン止め効果を維持できる範囲であれば、分割の大きさや形状は問わない。 Magnetic field is sufficiently easily enters from the outside, as long as it can maintain the Meissner effect and the pinning effect, the division of size and shape does not matter. 作製した分割化超電導体に外部磁場印加用の電磁石を配置するが、永久磁石等の移動制御が可能であれば、超電導体の内外いずれにも設置することが出来る。 Disposing an electromagnet for external magnetic field applied to the partitioning superconductor fabricated but can move control such as a permanent magnet is possible, placed in any out of the superconductor. 本発明では、通常の磁石同士の斥力、 In the present invention, the repulsive force between the normal magnet,
超電導体のマイスナー効果、ピン止め効果の複合した作用により、物体を安定して浮上させ、自在な移動制御を可能とするものである。 Meissner effect of the superconductor, the composite of action of the pinning effect, the object stably by flying, and makes it possible to freely move control.

【0016】 [0016]

【実施例】本発明の実施例を図面と共に説明する。 Examples of EXAMPLES The invention will be described with reference to the drawings. 図2 Figure 2
は本発明の磁気浮上方法に使用する超電導体の一例として分割化円筒形超電導体内部の磁気シールド特性を示す実施例図面である。 Is an example view showing a magnetic shield property of partitioning the cylindrical superconductor unit as an example of the superconductor used in the magnetic levitation method of the present invention. 比較例として図3には均質一体型の超電導体内部の磁気シールド特性を示す。 The Figure 3 as a comparative example showing the magnetic shielding properties of the superconductor portion of the homogeneous integral. それぞれ横軸に外部磁場、縦軸に超電導体内部での測定磁場をとった。 An external magnetic field on the horizontal axis, respectively, were taken measured magnetic field inside the superconductor on the vertical axis.

【0017】図2の分割化円筒形超電導体の場合、外部磁場を印加すると、内部には簡単に磁場が侵入し、外部磁場を取り去っても内部に残留磁場はほとんど形成されない。 [0017] For segmentation cylindrical superconductor of FIG. 2, when an external magnetic field is applied, easily magnetic field penetrates the interior, the residual magnetic field in the internal be removing the external magnetic field is hardly formed. 分割化によって磁気シールド効果が薄れ、間隙から磁場が侵入している。 Faded magnetic shielding effect by the division of the magnetic field is penetrated through the gap. つまり、本発明の磁気浮上方法は、超電導体内部の磁場を容易に制御出来るため、浮上させる物体の移動制御を簡単に安定して行うことが出来る。 That is, magnetic levitation method of the present invention, since it easily controlled magnetic field of the superconducting body portion, easily and stably, it is possible to carry out by the movement control of the object to be floated. 磁気シールド効果はないもののマイスナー効果及びピン止め効果は保持され、超電導体径方向の安定浮上が保たれる。 Although the magnetic shield effect is not Meissner effect and pinning effect is maintained, stable levitation can be maintained in the superconductor radially.

【0018】一方、比較例とした均質一体型の超電導体の場合、外部磁場を印加しても、ある一定の強さの磁場に至らないとき(図中A−B間で示す)は超電導体内部に侵入できない。 Meanwhile, in the case of the superconductor homogeneous integral to the comparative example, even if an external magnetic field is applied to, (shown between figure A-B) when no lead to a certain strength of the magnetic field in the superconductor You can not enter the interior. A−B間では円筒形超電導体の磁気シールド効果により外部磁場の侵入が起こらないためである。 Between A-B because the penetration of external magnetic field does not occur by the magnetic shielding effect of the cylindrical superconductor. 印加する外部磁場の強さがBを超えると外部磁場の侵入が起こり、円筒形超電導体の内部に磁場が形成される。 When the strength of the applied external magnetic field exceeds B occur intrusion of external magnetic field, the magnetic field is formed inside the cylindrical superconductor.

【0019】次に印加する外部磁場を減少させていくと、内部に形成された磁場も漸次減少していくが、外部磁場をすべて取り除いても、図中A−Cで示す残留磁場が存在する。 [0019] Referring now gradually reducing the external magnetic field applied, but decreases gradually even magnetic field formed therein, be removed all the external magnetic field, there is a residual magnetic field shown in the figure A-C . これは磁気シールド効果を破って侵入する程の強い磁場が印加された場合、ピン止め効果によって磁場は超電導体内部に捕捉され、固縛される効果を有するためである。 If this is the strong magnetic field of enough to penetrate beating magnetic shielding effect is applied, the magnetic field by the pinning effect is trapped inside the superconductor is because an effect to be lashed.

【0020】 [0020]

【発明の効果】以上のように、本発明の磁気浮上方法によれば、円筒形超電導体を分割化したことにより、外部の磁場が内部に侵入出来るため、内部磁石の移動を確実に制御することが出来る。 As is evident from the foregoing description, according to the magnetic levitation method of the present invention, by obtained by dividing the cylindrical superconductor, external magnetic fields because it can enter the interior, to reliably control the movement of the internal magnet it can be. 分割化は残留磁場が形成されにくくなるため、外部の磁場の変化に応じて内部磁石の浮上位置、移動速度を容易に制御することが出来る。 Partitioning because residual magnetic field is less likely to be formed, floating position of the internal magnet in accordance with a change in the external magnetic field can be easily controlled moving speed. 磁石のマグネチックサスペンション、高温超電導体のピン止め効果とマイスナー効果の複合作用による浮上であるため、安定した浮上を得られる上、移動制御も容易になるといった効果がある。 Since magnetic suspension magnets, due to the combined action of the pinning effect and Meissner effect of the high temperature superconductor is a floating, on the resulting stable levitation, movement control also has the effect that it becomes easier.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の磁気浮上方法に使用する超電導体の構成の一例を示す図面である。 1 is a diagram showing an example of the configuration of the superconductor used in the magnetic levitation method of the present invention.

【図2】分割化円筒形超電導体の磁気シールド特性を示す実施例図面である。 Figure 2 is an example diagram showing a magnetic shielding property of partitioning the cylindrical superconductor.

【図3】均質一体型の超電導体の磁気シールド特性を示す比較例図面である。 3 is a comparative example illustrates the magnetic shielding properties of a homogeneous unitary superconductor.

【符号の説明】 DESCRIPTION OF SYMBOLS

1 分割化円筒形超電導体 2 電磁石 3 永久磁石 1 split of the cylindrical superconductor body 2 electromagnet 3 a permanent magnet

Claims (1)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 少なくとも筒状の高温超電導体および制御可能な外部磁場を用いて前記筒状の高温超電導体の空洞内で浮上および移動を行う磁気浮上方法において、前記筒状の高温超電導体が分割された超電導体状態にあることを特徴とする磁気浮上方法。 1. A magnetic levitation method of performing floating and moving in the cavity of the tubular high-temperature superconductor with at least a cylindrical high-temperature superconductor and controllable external magnetic field, the cylindrical high-temperature superconductors magnetic levitation method characterized by in divided superconductor state.
JP5622992A 1992-02-06 1992-02-06 Magnetic levitation method Pending JPH05219766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5622992A JPH05219766A (en) 1992-02-06 1992-02-06 Magnetic levitation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5622992A JPH05219766A (en) 1992-02-06 1992-02-06 Magnetic levitation method

Publications (1)

Publication Number Publication Date
JPH05219766A true true JPH05219766A (en) 1993-08-27

Family

ID=13021274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5622992A Pending JPH05219766A (en) 1992-02-06 1992-02-06 Magnetic levitation method

Country Status (1)

Country Link
JP (1) JPH05219766A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10082408B2 (en) 2016-04-18 2018-09-25 International Business Machines Corporation Voltage-tunable 1D electro-magnet potential and probe system with parallel dipole line trap

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10082408B2 (en) 2016-04-18 2018-09-25 International Business Machines Corporation Voltage-tunable 1D electro-magnet potential and probe system with parallel dipole line trap

Similar Documents

Publication Publication Date Title
US6727617B2 (en) Method and apparatus for providing three axis magnetic bearing having permanent magnets mounted on radial pole stack
US6231011B1 (en) Satellite angular momentum control system using magnet-superconductor flywheels
US5847480A (en) Passive magnetic bearing element with minimal power losses
US5747426A (en) High performance magnetic bearing systems using high temperature superconductors
US5831362A (en) Magnet-superconductor flywheel and levitation systems
Winterberg Magnetic acceleration of a superconducting solenoid to hypervelocities
US6703735B1 (en) Active magnetic thrust bearing
US3378315A (en) Hybrid lubrication system and bearing
US3958842A (en) Radial magnetic bearing
US5894181A (en) Passive magnetic bearing system
US6657344B2 (en) Passive magnetic bearing for a horizontal shaft
US5126317A (en) Bearing system employing a superconductor element
US5757098A (en) Non-contact magnetic suspension apparatus using distortion of pinned superconductor field
US6169352B1 (en) Trapped field internal dipole superconducting motor generator
US5220232A (en) Stacked magnet superconducting bearing
Hull et al. Applications of bulk high-temperature superconductors
US5763971A (en) Superconducting bearing device
US5747907A (en) Backup bearings for positive re-centering of magnetic bearings
US5196748A (en) Laminated magnetic structure for superconducting bearings
US5710469A (en) Magnetic bearing element for a rotor shaft using high-TC superconducting materials
US5542506A (en) Magnet-superconductor systems for controlling and influencing relative motion
US5330967A (en) Superconducting bearing device stabilized by trapped flux
US5126611A (en) Composite superconductor disc bearing
US5270601A (en) Superconducting composite magnetic bearings
US20020074882A1 (en) Centrifuge with a magnetically stabilized rotor for centrifugal goods