JPH05218429A - Polycrystal silicon thin film transistor - Google Patents

Polycrystal silicon thin film transistor

Info

Publication number
JPH05218429A
JPH05218429A JP1800792A JP1800792A JPH05218429A JP H05218429 A JPH05218429 A JP H05218429A JP 1800792 A JP1800792 A JP 1800792A JP 1800792 A JP1800792 A JP 1800792A JP H05218429 A JPH05218429 A JP H05218429A
Authority
JP
Japan
Prior art keywords
thin film
electrode
source
drain
insulating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1800792A
Other languages
Japanese (ja)
Inventor
Kenji Sera
賢二 世良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1800792A priority Critical patent/JPH05218429A/en
Publication of JPH05218429A publication Critical patent/JPH05218429A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To actually show the higher ON-OFF current ratio by a method wherein a source.drain electrode is formed to be overlapped with a gate electrode while offsetting against a contact hole thereby enabling a thin film to be formed. CONSTITUTION:Firstly, a doped polycrystal silicon thin film 201 to be a gate electrode is formed on a glass substrate 101. Next, after patterning into an electrode shape, a gate insulating film 301 is formed on the glass substrate 101 and the gate electrode 201 and then a polycrystal silicon 401 to be an active layer is formed on the gate insulating film 301. Later, another insulating film 501 is formed to make a contact hole 901. Furthermore, a source.drain electrode 601 is formed of double layer film comprising doped polycrystal silicon 601a and aluminum 601b for source.drain region. At this time, the source.drain electrode 601 is to be formed to be overlapped with the gate electrode 201 while offsetting against the contact hole 901.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、絶縁性基板上にリーク
電流の少ない多結晶シリコン薄膜トランジスタに関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a polycrystalline silicon thin film transistor having a small leak current on an insulating substrate.

【0002】[0002]

【従来の技術】近年ガラス基板上に薄膜能動デバイスを
つくりこむ技術は、大面積透過型液晶ディスプレイや密
着型イメージセンサ等を初めとする各所に応用がめざさ
れ、研究が活発化している。そのなかでも多結晶シリコ
ン薄膜トランジスタは周辺駆動回路も一体化した全薄膜
化デバイスを作製できる最も有望なデバイスとして注目
を集めている。しかし多結晶シリコンを用いた薄膜トラ
ンジスタでは通常のMOSFETやアモルファスシリコ
ンの薄膜トランジスタに比べてリーク電流が多いことが
問題となっている。リーク電流が多いことは液晶のスイ
ッチングデバイスとしても、駆動回路を製作する上でも
問題となる。特に液晶やEL等高電圧を必要とするデバ
イスを駆動する応用が多いため、高耐圧で低リーク電流
のデバイスが必要である。しかし通常のプレーナ型多結
晶薄膜トランジスタでは特に高電界印加時にリーク電流
が急激に増大するという問題点を持っている。通常のプ
レーナ構造の薄膜トランジスタではソース・ドレイン間
に電圧を加えたときにドレイン端に高電界が印加され、
バンドギャップ間の電界エミッション電流がリーク電流
の原因となる。結晶シリコンの場合このようなバンド間
のリーク電流は少ないため通常では問題とならない。し
かし多結晶シリコンではバンドギャップ中に多くの粒界
トラップが存在しこれを介してのバンド間のリーク電流
が流れやすい。このため高電圧印加時に急激なリーク電
流の増加が観測される。このようなリーク電流は多結晶
シリコンでは本質的に避けられないものである。しかし
この電流はドレイン端の空乏層間にかかる電界に依存し
ているのでドレイン端にかかる電界を弱めることでリー
ク電流の低減が実現できる。そこでこのドレイン端の電
界を弱めるさまざまな構造が考案されている。たとえば
ゲートとドレインをオフセットに形成するオフセットゲ
ート構造にするとドレインゲート間に加わる電界が低減
され、リーク電流を抑える事ができる。しかしこのオフ
セット領域が長くなると、同時にオン電流も制限され、
トランジスタ特性が劣化する。そこで図2に示すよう
に、このオフセット領域上に別に第2の電極801を設
け、電圧を印加しこのオフセット領域を弱反転させるこ
とにより、オン電流特性を劣化させることなく、リーク
電流を抑える事ができる。しかしこの方法では構造が複
雑化し、しかも電源線がさらに1層必要等、LCD等へ
の応用は非常に困難である。
2. Description of the Related Art In recent years, a technique for forming a thin film active device on a glass substrate has been aimed at application to various places such as a large area transmissive liquid crystal display and a contact image sensor, and research has been activated. Among them, the polycrystalline silicon thin film transistor has been attracting attention as the most promising device that can be manufactured into an all-thinned device in which peripheral driving circuits are integrated. However, there is a problem in that a thin film transistor using polycrystalline silicon has a larger leak current than a normal MOSFET or an amorphous silicon thin film transistor. A large amount of leak current is a problem not only as a liquid crystal switching device but also as a driver circuit. In particular, since there are many applications for driving devices that require high voltage such as liquid crystal and EL, devices with high breakdown voltage and low leak current are required. However, an ordinary planar type polycrystalline thin film transistor has a problem that a leak current sharply increases especially when a high electric field is applied. In a normal planar structure thin film transistor, when a voltage is applied between the source and drain, a high electric field is applied to the drain end,
The electric field emission current between the band gaps causes a leak current. In the case of crystalline silicon, such a leak current between bands is small, so that it does not usually cause a problem. However, in polycrystalline silicon, many grain boundary traps exist in the band gap, and leak current between the bands is likely to flow therethrough. Therefore, a sudden increase in leak current is observed when a high voltage is applied. Such leak current is essentially unavoidable in polycrystalline silicon. However, since this current depends on the electric field applied to the depletion layer at the drain end, the leak current can be reduced by weakening the electric field applied to the drain end. Therefore, various structures for weakening the electric field at the drain end have been devised. For example, when an offset gate structure is formed in which the gate and the drain are formed to be offset, the electric field applied between the drain and gate is reduced, and the leak current can be suppressed. However, if this offset region becomes long, the on-current will be limited at the same time,
The transistor characteristics deteriorate. Therefore, as shown in FIG. 2, a second electrode 801 is separately provided on this offset region, and a voltage is applied to weakly invert this offset region to suppress the leak current without degrading the on-current characteristics. You can However, this method complicates the structure and requires one more power supply line, so that it is very difficult to apply it to an LCD or the like.

【0003】さらに、図3に示すように、この第2の電
極802をドレインと接続し同電位にしても同様の効果
が実現できることが知られている。ドレインに電圧が印
加されないオフ状態では、このトランジスタはオフセッ
トゲート構造と同じでリーク電流は抑えられる。一方、
トランジスタがオン状態のときドレインには電圧が印加
されているためオフセット領域には電圧が印加され弱反
転領域になる。この結果従来のトランジスタとほぼ同じ
作製工程で図2のトランジスタと同様な効果がえられ、
低リーク電流化が達成できる。
Further, as shown in FIG. 3, it is known that the same effect can be realized even if the second electrode 802 is connected to the drain to have the same potential. In the off state where no voltage is applied to the drain, this transistor has the same offset gate structure as the leak current. on the other hand,
Since a voltage is applied to the drain when the transistor is in the on state, a voltage is applied to the offset region to form a weak inversion region. As a result, the same effect as that of the transistor of FIG. 2 can be obtained in almost the same manufacturing process as that of the conventional transistor.
Low leakage current can be achieved.

【0004】[0004]

【発明が解決しようとする課題】しかしこの方法では、
オフセット領域にかかる電界はゲート絶縁膜301及び
層間絶縁膜701の2層を介してかけられる。さらに図
2の構造と異なり、第2の電極802の電位はドレイン
電圧と同電位を用いるため、低ドレイン電圧ではオフセ
ット領域に十分な電界がかからないため十分な効果が得
られないいう問題点があった。
However, in this method,
The electric field applied to the offset region is applied through the two layers of the gate insulating film 301 and the interlayer insulating film 701. Further, unlike the structure shown in FIG. 2, since the potential of the second electrode 802 is the same as the drain voltage, a sufficient electric field is not applied to the offset region at a low drain voltage, so that a sufficient effect cannot be obtained. It was

【0005】[0005]

【課題を解決するための手段】この発明の要旨とすると
ころは、絶縁性基板上に設けられたゲート電極層と、そ
の上部に形成された絶縁膜層と、前記絶縁層上に形成さ
れた薄膜半導体活性層と、前記半導体薄膜活性層を覆う
ように形成された絶縁膜層と、前記半導体活性層上の絶
縁膜上に前記半導体薄膜活性層とのコンタクトホールを
介して形成されたソース・ドレイン電極より構成される
スタガ型薄膜トランジスタにおいて、前記ゲート電極
と、前記ソース・ドレイン電極がオーバラップして形成
され、かつ前記薄膜半導体活性層は、ソース・ドレイン
電極と絶縁されており、ゲート・ドレインオーバラップ
領域外でコンタクトホールを介して接続していることを
特徴とする多結晶シリコン薄膜トランジスタである。
The gist of the present invention is to provide a gate electrode layer provided on an insulating substrate, an insulating film layer formed on the gate electrode layer, and an insulating film layer formed on the insulating layer. A thin film semiconductor active layer, an insulating film layer formed so as to cover the semiconductor thin film active layer, and a source formed on the insulating film on the semiconductor active layer through a contact hole with the semiconductor thin film active layer. In a staggered thin film transistor including a drain electrode, the gate electrode and the source / drain electrode are formed to overlap each other, and the thin film semiconductor active layer is insulated from the source / drain electrode. The polycrystalline silicon thin film transistor is characterized in that it is connected through a contact hole outside the overlap region.

【0006】[0006]

【作用】従来技術でも述べたようにリーク電流の原因は
ドレイン端にかかる電圧に依存するため、このドレイン
端にかかる電圧を軽減する構造がリーク電流低減に効果
がある。図2のトランジスタのように、第2の電極80
1を用いることによりドレイン端の空乏層にかかる電界
を軽減し、低リーク電流化を達成している。さらに図3
に示すように、この第2の電極をドレインと接続し同電
位にしても同様の効果が実現できることが知られてい
る。そこでこの第2の電極を半導体層の下部にしても同
様の効果は実現できる。スタガ構造の場合半導体層の下
部にソース・ドレイン電極を形成する。このソース・ド
レインをゲートの端領域のみ活性層と層間分離する事に
より、この電極層を用いて第2の電極を同時に形成し、
簡単に図3に示す構造と同様の効果を有するトランジス
タを実現させる事ができる。
Since the cause of the leak current depends on the voltage applied to the drain end as described in the prior art, the structure for reducing the voltage applied to the drain end is effective for reducing the leak current. Like the transistor of FIG. 2, the second electrode 80
By using 1, the electric field applied to the depletion layer at the drain end is reduced, and a low leak current is achieved. Furthermore, FIG.
It is known that the same effect can be realized even if the second electrode is connected to the drain to have the same potential as shown in FIG. Therefore, the same effect can be realized by using the second electrode below the semiconductor layer. In the case of the stagger structure, source / drain electrodes are formed below the semiconductor layer. By separating the source / drain from the active layer only in the end region of the gate, a second electrode is simultaneously formed by using this electrode layer,
It is possible to easily realize a transistor having the same effect as that of the structure shown in FIG.

【0007】オフセット領域に印加される電圧はオフ状
態では低く、またオン状態では高いほど両方の特性は改
善され、オンオフ電流比の大きいトランジスタが実現で
きる。従来の構造(図2,図3)ではオフセット領域と
電極間に介在する絶縁膜はゲート絶縁膜と層間絶縁膜の
2層となるため、あまり薄くする事は困難であるが、本
発明の構造に構造に置いてはこの絶縁膜圧は独立に制御
でき、薄膜化が可能である。このためオン状態でのオフ
セット領域に印加される電界をより大きくする事が可能
であり、よりオンオフ電流比の大きいトランジスタが実
現可能である。
As the voltage applied to the offset region is low in the off state and high in the on state, both characteristics are improved, and a transistor having a large on / off current ratio can be realized. In the conventional structure (FIGS. 2 and 3), the insulating film interposed between the offset region and the electrode has two layers of the gate insulating film and the interlayer insulating film, so it is difficult to make it too thin. However, the structure of the present invention In this structure, the insulating film pressure can be controlled independently, and the film thickness can be reduced. Therefore, it is possible to increase the electric field applied to the offset region in the ON state, and it is possible to realize a transistor having a larger ON / OFF current ratio.

【0008】[0008]

【実施例】以下添付の図面により本発明の詳細を説明す
る。図1は本発明のトランジスタの構造図および製造方
法である。まず、ガラス基板101上にゲート電極とな
るドープド多結晶シリコン薄膜201を形成した。電極
形状にパタン化した後、ガラス基板101及びゲート電
極上にゲート絶縁膜301を形成し、この上部に活性層
となる多結晶シリコン401を形成した(図1
(a))。この後絶縁膜501を形成し、コンタクトホ
ール901を形成した(図1(b))。このときコンタ
クトホールはゲート電極に対して重ならないように形成
する事が必要である。この後ソース、ドレイン領域用ド
ープド多結晶シリコン601a、及びアルミニウム60
1bからなる2層膜によりソース・ドレイン電極601
を形成した(図1(c))。このときソース・ドレイン
電極601はゲート電極201とオーバラップするよう
に形成しかつコンタクトポールとはオフセットになるよ
うに形成した。この場合、多結晶シリコン薄膜(活性
層)401のゲート電極201とコンタクトホール90
1との間の領域100はオフセット領域となりかつ絶縁
膜をはさんで上部にあるドレイン電極によって弱反転さ
れた領域となる。このようにして通常のスタガ構造トラ
ンジスタの作製工程に比べてほとんど同等の工程で低リ
ーク電流化構造トランジスタを作製する事が可能となっ
た。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below with reference to the accompanying drawings. 1A and 1B are a structural view and a manufacturing method of a transistor of the present invention. First, a doped polycrystalline silicon thin film 201 serving as a gate electrode was formed on the glass substrate 101. After patterning into an electrode shape, a gate insulating film 301 was formed on the glass substrate 101 and the gate electrode, and polycrystalline silicon 401 to be an active layer was formed on the gate insulating film 301 (FIG. 1).
(A)). After that, an insulating film 501 was formed and a contact hole 901 was formed (FIG. 1B). At this time, it is necessary to form the contact hole so as not to overlap the gate electrode. After that, the doped polycrystalline silicon 601a for the source and drain regions and the aluminum 60
The source / drain electrode 601 is made of a two-layer film made of 1b.
Was formed (FIG. 1 (c)). At this time, the source / drain electrode 601 was formed so as to overlap with the gate electrode 201 and offset from the contact pole. In this case, the gate electrode 201 of the polycrystalline silicon thin film (active layer) 401 and the contact hole 90
The region 100 between 1 and 1 is an offset region and is a region that is weakly inverted by the drain electrode on the upper side of the insulating film. In this way, it becomes possible to fabricate a low leakage current structure transistor in almost the same process as a normal stagger structure transistor fabrication process.

【0009】[0009]

【発明の効果】以上詳述したように、本発明により低リ
ーク電流の多結晶シリコン薄膜トランジスタが簡単な製
造工程で再現性よく製作できた。本構造でドレイン電極
よりオフセット領域にかかる電界は従来の図3に示す構
造に比べ少なくとも倍以上になり、この結果、従来に比
べオンオフ電流比の構造が得られた。
As described in detail above, according to the present invention, a low leakage current polycrystalline silicon thin film transistor can be manufactured with good reproducibility by a simple manufacturing process. In this structure, the electric field applied to the offset region from the drain electrode is at least twice as high as that of the conventional structure shown in FIG. 3, and as a result, a structure having an on / off current ratio as compared with the conventional structure was obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す構造及び製造方法を示す
図。
FIG. 1 is a diagram showing a structure and a manufacturing method showing an embodiment of the present invention.

【図2】従来の多結晶薄膜トランジスタの構造を示す
図。
FIG. 2 is a diagram showing a structure of a conventional polycrystalline thin film transistor.

【図3】従来の多結晶薄膜トランジスタの断面図。FIG. 3 is a cross-sectional view of a conventional polycrystalline thin film transistor.

【符号の説明】[Explanation of symbols]

101 ガラス基板 201 ドープド多結晶シリコン薄膜(ゲート電極) 301 ゲート絶縁膜 401 多結晶シリコン薄膜(活性層) 501 絶縁膜 601 ソース・ドレイン電極(Al/ドープドシリ
コン層) 701 層間絶縁膜層 801 第2の電極 802 第2の電極
101 glass substrate 201 doped polycrystalline silicon thin film (gate electrode) 301 gate insulating film 401 polycrystalline silicon thin film (active layer) 501 insulating film 601 source / drain electrode (Al / doped silicon layer) 701 interlayer insulating film layer 801 second Electrode 802 Second electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 絶縁性基板上に設けられたゲート電極層
と、その上部に形成された絶縁膜層と、前記絶縁層上に
形成された薄膜半導体活性層と、前記半導体薄膜活性層
を覆うように形成された絶縁膜層と、前記半導体活性層
上の絶縁膜上に前記半導体薄膜活性層とのコンタクトホ
ールを介して形成されたソース・ドレイン電極とより構
成されるスタガ型薄膜トランジスタにおいて、前記ゲー
ト電極と、前記ソース・ドレイン電極がオーバラップし
て形成され、かつ前記薄膜半導体活性層は、ソース・ド
レイン電極と絶縁されており、ゲート・ドレインオーバ
ラップ領域外でコンタクトホールを介して接続している
ことを特徴とする多結晶シリコン薄膜トランジスタ。
1. A gate electrode layer provided on an insulating substrate, an insulating film layer formed on the gate electrode layer, a thin film semiconductor active layer formed on the insulating layer, and the semiconductor thin film active layer. In the staggered thin film transistor comprising an insulating film layer thus formed and a source / drain electrode formed through a contact hole with the semiconductor thin film active layer on the insulating film on the semiconductor active layer, The gate electrode and the source / drain electrode are formed to overlap each other, and the thin film semiconductor active layer is insulated from the source / drain electrode, and is connected through a contact hole outside the gate / drain overlap region. And a polycrystalline silicon thin film transistor.
JP1800792A 1992-02-04 1992-02-04 Polycrystal silicon thin film transistor Withdrawn JPH05218429A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1800792A JPH05218429A (en) 1992-02-04 1992-02-04 Polycrystal silicon thin film transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1800792A JPH05218429A (en) 1992-02-04 1992-02-04 Polycrystal silicon thin film transistor

Publications (1)

Publication Number Publication Date
JPH05218429A true JPH05218429A (en) 1993-08-27

Family

ID=11959626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1800792A Withdrawn JPH05218429A (en) 1992-02-04 1992-02-04 Polycrystal silicon thin film transistor

Country Status (1)

Country Link
JP (1) JPH05218429A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6166785A (en) * 1998-10-02 2000-12-26 Lg. Philips Lcd Co., Ltd. Thin film transistor and fabricating method thereof having patterned active layer
US7206009B2 (en) 2004-02-18 2007-04-17 Hideo Taniguchi Heating head for erasing a printed image on re-writable media
KR100861628B1 (en) * 2006-01-25 2008-10-07 엡슨 이미징 디바이스 가부시키가이샤 Semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6166785A (en) * 1998-10-02 2000-12-26 Lg. Philips Lcd Co., Ltd. Thin film transistor and fabricating method thereof having patterned active layer
US7206009B2 (en) 2004-02-18 2007-04-17 Hideo Taniguchi Heating head for erasing a printed image on re-writable media
KR100861628B1 (en) * 2006-01-25 2008-10-07 엡슨 이미징 디바이스 가부시키가이샤 Semiconductor device

Similar Documents

Publication Publication Date Title
US5338959A (en) Thin film transistor with three dimensional multichannel structure
JPH05129608A (en) Semiconductor device
KR940010289A (en) Semiconductor device and light valve device
KR930017218A (en) Thin Film Field Effect Transistors and Manufacturing Method Thereof
JPH0752776B2 (en) Thin film transistor and manufacturing method thereof
JP3548237B2 (en) Thin film transistor
JP2722890B2 (en) Thin film transistor and method of manufacturing the same
KR100272272B1 (en) Thin film transistor and method of manufacturing the same
JPH1126768A (en) Thin film transistor for liquid, crystal display
JPH02206173A (en) Polycrystalline thin-film transistor
JPH10268254A (en) Liquid crystal display device
JPH05218429A (en) Polycrystal silicon thin film transistor
JP2690067B2 (en) Active matrix substrate
JP2005311037A (en) Semiconductor device and manufacturing method thereof
JPH03201538A (en) Manufacture of thin film transistor
JP2007157986A (en) Device with transistor
JPH11233786A (en) High-withstand voltage thin film transistor and its manufacture
JPH1197698A (en) Thin-film transistor
KR0179066B1 (en) Thin film transistor and manufacturing method of the same
JPH0690001A (en) Thin-film transistor for liquid-crystal display device
JPH05232506A (en) Liquid crystal display device
JPH1187721A (en) Thin-film transistor and liquid crystal display device comprising the same, and manufacture of tft array substrate
JPH01302768A (en) Inverse stagger type si-thin film transistor
JP2847745B2 (en) Thin film transistor
JPH04125970A (en) Double-gate high-breakdown strength thin film transistor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518