JPH05218104A - Charge transfer device - Google Patents

Charge transfer device

Info

Publication number
JPH05218104A
JPH05218104A JP2081692A JP2081692A JPH05218104A JP H05218104 A JPH05218104 A JP H05218104A JP 2081692 A JP2081692 A JP 2081692A JP 2081692 A JP2081692 A JP 2081692A JP H05218104 A JPH05218104 A JP H05218104A
Authority
JP
Japan
Prior art keywords
type
insulating film
charge transfer
diffusion layer
diffused layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2081692A
Other languages
Japanese (ja)
Inventor
Hiromasa Yamamoto
裕將 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2081692A priority Critical patent/JPH05218104A/en
Publication of JPH05218104A publication Critical patent/JPH05218104A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Abstract

PURPOSE:To reduce the capacity of a stray diffused layer and to improve a detecting sensitivity of a signal charge by forming a thicker insulating film than a gate insulating film on a surface of the layer. CONSTITUTION:A p-type impurity diffused layer 3 for isolating an element of an n-type impurity diffused layer 2 of a buried channel region, a thick oxide film 4a, a gate insulating film 5, and first, second gate electrodes 6, 8 made of polycrystalline silicon are formed on a p-type semiconductor substrate 1. Further, a potential barrier p-type diffused layer 9, an output gate electrode 10, an n-type stray diffused layer 11, an n-type drain 12 to be applied by a reset drain voltage, a reset gate electrode 13 and an output transistor 14 for detecting a potential change of the n-type stray diffused layer are formed, and a surface of the layer 11 is covered with a thick insulating film 4b for isolating an element. A capacity of the n-type stray diffused layer is largely reduced as compared with that of prior art, and a detecting sensitivity to be defined by an output voltage to a predetermined signal charge by the transistor 14 is raised.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電荷転送装置に関し、
特に出力部に転送電荷量を検出するための浮遊拡散層が
形成されている電荷転送装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a charge transfer device,
In particular, the present invention relates to a charge transfer device in which a floating diffusion layer for detecting the transfer charge amount is formed in the output section.

【0002】[0002]

【従来の技術】入射光や電気信号等の情報を電荷の形で
蓄積、転送しこれを電圧信号として取り出す電荷転送装
置は、撮像素子やメモリー素子等の用途に広く使われ
る。
2. Description of the Related Art A charge transfer device that stores and transfers information such as incident light and electric signals in the form of electric charges and takes out the electric charges as voltage signals is widely used for applications such as image pickup devices and memory devices.

【0003】図2は、従来の電荷転送装置の出力部付近
を示す断面図である。この従来例は、埋込みチャンネル
型で2相駆動型の電荷転送装置の例である。同図におい
て、1はp型半導体基板、2はその上に形成された埋め
込みチャンネル領域を構成するn型不純物拡散層、3は
素子分離用p型不純物拡散層、4は素子分離用p型不純
物拡散層上の厚い酸化膜、5はゲート絶縁膜、6は多結
晶シリコンからなる第1のゲート電極、7は第1のゲー
ト電極の表面に形成された絶縁膜、8は多結晶シリコン
からなる第2のゲート電極、9は第2のゲート電極8下
に形成された電位障壁用p型拡散層、10は固定の出力
ゲート電圧V2 が印加される出力ゲート電極、11は転
送電荷量を検出するための埋め込みチャンネル領域であ
るn型不純物拡散層2と同一工程で作られるn型浮遊拡
散層、12はリセットドレイン電圧V1 が印加されるn
型ドレイン拡散層、13は周期的にn型浮遊拡散層11
の電位をリセットドレイン電圧V1 にリセットするため
のリセットゲート電極、14はn型浮遊拡散層の電位変
化を検出するための出力トランジスタである。また電荷
転送部の各第1のゲート電極は、その左側の第2のゲー
ト電極と接続されており、この接続部に交互にφ1 ,φ
2 のクロックを印加することで転送電極を構成する。
FIG. 2 is a sectional view showing the vicinity of the output portion of a conventional charge transfer device. This conventional example is an example of a buried channel type two-phase drive type charge transfer device. In the figure, 1 is a p-type semiconductor substrate, 2 is an n-type impurity diffusion layer forming an embedded channel region formed thereon, 3 is a p-type impurity diffusion layer for element isolation, and 4 is a p-type impurity for element isolation. Thick oxide film on the diffusion layer, 5 is a gate insulating film, 6 is a first gate electrode made of polycrystalline silicon, 7 is an insulating film formed on the surface of the first gate electrode, and 8 is made of polycrystalline silicon. A second gate electrode, 9 is a p-type diffusion layer for potential barrier formed under the second gate electrode 8, 10 is an output gate electrode to which a fixed output gate voltage V 2 is applied, and 11 is a transfer charge amount. An n-type floating diffusion layer formed in the same process as the n-type impurity diffusion layer 2 which is a buried channel region for detection, and 12 is applied with a reset drain voltage V 1.
Type drain diffusion layer, 13 is an n-type floating diffusion layer 11 periodically
Is a reset gate electrode for resetting the potential of V to the reset drain voltage V 1 , and 14 is an output transistor for detecting a potential change of the n-type floating diffusion layer. Further, each first gate electrode of the charge transfer portion is connected to the second gate electrode on the left side thereof, and φ 1 and φ are alternately connected to this connection portion.
The transfer electrode is constructed by applying the clock of 2 .

【0004】次に、この従来例の動作について説明す
る。まず、リセットパルスをリセットゲート電極13に
印加してn型浮遊拡散層11の電位をリセットドレイン
電圧V1 にリセットする。このとき、クロックφ1 が高
電位、クロックφ2 が低電位となっており、電荷はφ1
が印加された第1のゲート電極下に蓄えられている。次
に、クロックφ1 ,クロックφ2 の電位が逆転すると、
クロックφ1 が印加されている最終ゲート電極下の電荷
は、出力ゲート電極10下のチャンネルを通過してn型
浮遊拡散層11内へ流れ込む。
Next, the operation of this conventional example will be described. First, a reset pulse is applied to the reset gate electrode 13 to reset the potential of the n-type floating diffusion layer 11 to the reset drain voltage V 1 . At this time, the clock φ 1 has a high potential and the clock φ 2 has a low potential, and the charge is φ 1
Is stored under the first gate electrode to which is applied. Next, when the potentials of the clock φ 1 and the clock φ 2 are reversed,
The charges under the final gate electrode to which the clock φ 1 is applied pass through the channel under the output gate electrode 10 and flow into the n-type floating diffusion layer 11.

【0005】ここに転送されてきた信号電荷の電荷量を
Qとし、n型浮遊拡散層の容量をCとすれば電荷が流入
する前後のn型浮遊拡散層の電位変化△Vは、 △V=Q/C であらわすことができる。そして、この電位変化は出力
トランジスタ12を介してとり出される。
If the charge amount of the signal charges transferred here is Q and the capacitance of the n-type floating diffusion layer is C, the potential change ΔV of the n-type floating diffusion layer before and after the charge flows is ΔV. = Q / C. Then, this potential change is taken out through the output transistor 12.

【0006】[0006]

【発明が解決しようとする課題】上述した電荷転送装置
では、信号電荷に対する出力信号の大きさは、浮遊拡散
層の容量によって決まる。すなわち、浮遊拡散層の容量
が小さい程、一定信号電荷に対する出力電圧で定義され
る検出感度は高くなる。そこで、高感度な電荷転送装置
を実現するための手段として従来は浮遊拡散層の面積を
小さくすることが行われてきた。しかし、面積の縮小に
よる対処は現在ほぼ限界に達しており、これに替る新た
な対応策を講じることが求められている。
In the above charge transfer device, the magnitude of the output signal with respect to the signal charge is determined by the capacitance of the floating diffusion layer. That is, the smaller the capacitance of the floating diffusion layer, the higher the detection sensitivity defined by the output voltage for a constant signal charge. Therefore, the area of the floating diffusion layer has conventionally been reduced as a means for realizing a highly sensitive charge transfer device. However, the reduction of the area has almost reached the limit at present, and it is required to take new measures to replace it.

【0007】[0007]

【課題を解決するための手段】本発明は、半導体基板の
表面領域に設けられた電荷転送領域および前記電荷転送
領域上に設けられた絶縁膜を介して形成された電荷転送
電極を有する電荷転送素子と、前記電荷転送素子の後段
に設けられ、前記電荷転送素子内を転送されてきた電荷
を受ける浮遊拡散層と、前記浮遊拡散層の電位を検出す
る出力トランジスタとを有する電荷転送装置において、
前記浮遊拡散層の少なくとも一部が、前記ゲート絶縁膜
より厚い絶縁膜下に設けられているというものである。
According to the present invention, there is provided a charge transfer having a charge transfer region provided in a surface region of a semiconductor substrate and a charge transfer electrode formed through an insulating film provided on the charge transfer region. In a charge transfer device having an element, a floating diffusion layer provided at a subsequent stage of the charge transfer element, for receiving charges transferred in the charge transfer element, and an output transistor for detecting a potential of the floating diffusion layer,
At least part of the floating diffusion layer is provided below the insulating film that is thicker than the gate insulating film.

【0008】[0008]

【実施例】次に本発明の実施例について、図面を参照し
て説明する。
Embodiments of the present invention will now be described with reference to the drawings.

【0009】図1は本発明の一実施例を示す断面図であ
る。同図において、図2の従来例の部分と対応する部分
には同一の参照番号が付されているので重複した説明は
省略する。
FIG. 1 is a sectional view showing an embodiment of the present invention. In the figure, parts corresponding to those of the conventional example of FIG. 2 are designated by the same reference numerals, and a duplicate description will be omitted.

【0010】本実施例が図2の従来例と相似する点は、
n型浮遊拡散層11の表面を素子分離用の厚い絶縁膜4
aと同一工程で形成された厚い絶縁膜4bで覆われてい
る点である。ここでn型浮遊拡散層11と出力トランジ
スタ14のゲート電極との接続は厚い酸化膜4bに穴を
あけること、あるいは前記接続部付近のみゲート絶縁膜
5を形成しその部分に穴をあけ接続することでも実現で
きる。
This embodiment is similar to the conventional example shown in FIG.
The surface of the n-type floating diffusion layer 11 is provided with a thick insulating film 4 for element isolation.
It is covered with a thick insulating film 4b formed in the same step as a. Here, the n-type floating diffusion layer 11 and the gate electrode of the output transistor 14 are connected by making a hole in the thick oxide film 4b, or by forming a gate insulating film 5 only near the connection portion and making a hole in that portion for connection. It can also be realized.

【0011】このようにして形成される本発明では、n
型浮遊拡散層11の容量は従来例に比べて大幅に小さく
なる。このことはn型浮遊拡散層の容量には、出力ゲー
ト電極10およびリセットゲート電極13との重なり容
量部があり、n型浮遊拡散層部を厚い絶縁膜の直下に作
ることで、この成分を減らすことができるからである。
例えば、出力用ゲート電極下のゲート絶縁膜5を厚さ1
00nmの酸化シリコン膜とし、厚い絶縁膜4a,4b
を厚さ800nmの酸化シリコン膜とすることでn型浮
遊拡散層の容量を40%減少させることができた。
In the present invention thus formed, n
The capacitance of the type floating diffusion layer 11 is significantly smaller than that of the conventional example. This means that the capacitance of the n-type floating diffusion layer has an overlapping capacitance portion with the output gate electrode 10 and the reset gate electrode 13, and this component can be obtained by forming the n-type floating diffusion layer portion directly under the thick insulating film. This is because it can be reduced.
For example, the thickness of the gate insulating film 5 below the output gate electrode is set to 1
00 nm silicon oxide film, thick insulating films 4a and 4b
By using a silicon oxide film having a thickness of 800 nm, the capacitance of the n-type floating diffusion layer could be reduced by 40%.

【0012】[0012]

【発明の効果】以上説明したように本発明は浮遊拡散層
の表面に、ゲート絶縁膜より厚い絶縁膜をつけること
で、浮遊拡散層の容量を減少させることができ、信号電
荷の検出感度を向上させることができる。
As described above, according to the present invention, the capacitance of the floating diffusion layer can be reduced by forming the insulating film thicker than the gate insulating film on the surface of the floating diffusion layer, and the detection sensitivity of the signal charge can be reduced. Can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す断面図である。FIG. 1 is a sectional view showing an embodiment of the present invention.

【図2】従来例を示す断面図である。FIG. 2 is a sectional view showing a conventional example.

【符号の説明】[Explanation of symbols]

1 p型半導体基板 2 n型不純物拡散層 3 p型不純物拡散層 4a,4b 厚い絶縁膜 5 ゲート絶縁膜 6 第1のゲート電極 7 絶縁膜 8 第2のゲート電極 9 p型障壁拡散層 10 出力ゲート電極 11 n型浮遊拡散層 12 n型ドレイン拡散層 13 リセットゲート電極 14 出力トランジスタ 1 p-type semiconductor substrate 2 n-type impurity diffusion layer 3 p-type impurity diffusion layer 4a, 4b thick insulating film 5 gate insulating film 6 first gate electrode 7 insulating film 8 second gate electrode 9 p-type barrier diffusion layer 10 output Gate electrode 11 n-type floating diffusion layer 12 n-type drain diffusion layer 13 reset gate electrode 14 output transistor

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板の表面領域に設けられた電荷
転送領域および前記電荷転送領域上に設けられたゲート
絶縁膜を介して形成された電荷転送電極を有する電荷転
送素子と、前記電荷転送素子の後段に設けられ、前記電
荷転送素子内を転送されてきた電荷を受ける浮遊拡散層
と、前記浮遊拡散層の電位を検出する出力トランジスタ
とを有する電荷転送装置において、前記浮遊拡散層の少
なくとも一部が前記ゲート絶縁膜より厚い絶縁膜下に設
けられていることを特徴とする電荷転送装置。
1. A charge transfer device having a charge transfer region provided in a surface region of a semiconductor substrate and a charge transfer electrode formed via a gate insulating film provided on the charge transfer region, and the charge transfer device. At least one of the floating diffusion layers is provided in a charge transfer device that is provided in a subsequent stage and has a floating diffusion layer that receives charges transferred in the charge transfer element and an output transistor that detects a potential of the floating diffusion layer. The charge transfer device, wherein the portion is provided below the insulating film that is thicker than the gate insulating film.
JP2081692A 1992-02-06 1992-02-06 Charge transfer device Withdrawn JPH05218104A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2081692A JPH05218104A (en) 1992-02-06 1992-02-06 Charge transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2081692A JPH05218104A (en) 1992-02-06 1992-02-06 Charge transfer device

Publications (1)

Publication Number Publication Date
JPH05218104A true JPH05218104A (en) 1993-08-27

Family

ID=12037561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2081692A Withdrawn JPH05218104A (en) 1992-02-06 1992-02-06 Charge transfer device

Country Status (1)

Country Link
JP (1) JPH05218104A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001063676A1 (en) * 2000-02-24 2001-08-30 Koninklijke Philips Electronics N.V. Charge-coupled device as well as a solid-state image pick-up device comprising a charge-coupled device
US6333525B1 (en) 1999-04-20 2001-12-25 Nec Corporation Charge transfer apparatus and manufacture method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6333525B1 (en) 1999-04-20 2001-12-25 Nec Corporation Charge transfer apparatus and manufacture method thereof
WO2001063676A1 (en) * 2000-02-24 2001-08-30 Koninklijke Philips Electronics N.V. Charge-coupled device as well as a solid-state image pick-up device comprising a charge-coupled device

Similar Documents

Publication Publication Date Title
JP2967126B2 (en) Semiconductor integrated circuit device for flat light valve substrate
US4984045A (en) Output sensor of charge transfer device
US5536678A (en) Method of manufacturing a wiring arrangement for a semiconductor device using insulating and etch stop layers
US5477070A (en) Drive transistor for CCD-type image sensor
JPH05218104A (en) Charge transfer device
JP2875132B2 (en) Charge transfer device
JPH04373136A (en) Charge coupled device
JP2864553B2 (en) CCD delay device
JP3060649B2 (en) Semiconductor device and driving method thereof
JP2877183B2 (en) Charge transfer device
JP2993112B2 (en) Charge transfer device
JPH05315587A (en) Semiconductor device
JP3055635B2 (en) Charge-coupled device
JP3152920B2 (en) Charge transfer device and method of manufacturing the same
US6191440B1 (en) Charge transfer device with improved charge detection sensitivity
JP2982258B2 (en) Charge coupled device
JPH04196139A (en) Charge transfer device
JPH0263299B2 (en)
JP2923898B2 (en) Charge-coupled device
JP2859483B2 (en) Apparatus and method for evaluating pn junction leakage current
JP3089885B2 (en) Semiconductor device
JP3024183B2 (en) Method for manufacturing charge-coupled device
JPH0461239A (en) Charge-transfer device
JPH01283870A (en) Charge transfer device
JPH04332167A (en) Semiconductor integrated circuit

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990518