JPH05209874A - Method and apparatus for detecting microfine cracking of metal part having insulation coating - Google Patents

Method and apparatus for detecting microfine cracking of metal part having insulation coating

Info

Publication number
JPH05209874A
JPH05209874A JP3067629A JP6762991A JPH05209874A JP H05209874 A JPH05209874 A JP H05209874A JP 3067629 A JP3067629 A JP 3067629A JP 6762991 A JP6762991 A JP 6762991A JP H05209874 A JPH05209874 A JP H05209874A
Authority
JP
Japan
Prior art keywords
crack
detecting
roller
metal part
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3067629A
Other languages
Japanese (ja)
Inventor
Ryuta Hirayama
竜太 平山
Takuo Yamaguchi
拓郎 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP3067629A priority Critical patent/JPH05209874A/en
Publication of JPH05209874A publication Critical patent/JPH05209874A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a method and apparatus for detecting microfine cracking in a structure which is repetitively subjected to load including car components. CONSTITUTION:An insulating coating 1 is formed in advance on a metallic surface for the purpose of detecting microfine cracking caused on the metallic surface of a metallic part, and electrolytic solution 3 containing electrochromic substance is applied. The metal is made into a cathode and potential is applied between the cathode and an anode 5, whereby only a cracking portion 4 is colored to have the cracking detected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、絶縁性皮膜を有する
金属製部品の微小表面亀裂の検出方法、特に自動車用ア
ルミニウム部品および航空機の機体の疲労亀裂の検出方
法および検出装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting minute surface cracks in a metal part having an insulating film, and more particularly to a method and a device for detecting fatigue cracks in aluminum parts for automobiles and airframes of aircraft.

【0002】[0002]

【従来の技術】自動車用部品をはじめ、繰り返し負荷を
受ける構造部材においては、疲労に対する強度信頼性を
補償することが重要な課題である。そして自動車用部品
において求められる高い耐久信頼性を保証するために、
厳しい衝撃あるいは耐久試験が行われている。これらの
試験を通じて、亀裂などが生じないことが確認されるの
は当然であるが、部品設計形状の最適化及び材料開発の
点からは、これらの部品が、例えば許容値を越えるよう
な、過大負荷を受けたとき生じる亀裂の形態や位置、大
きさ等の情報が非常に有用であり、優れた亀裂検出方法
が求められている。従来、亀裂の検出を簡便に行う手法
として磁粉探傷や蛍光探傷が用いられてきたが、これら
によって検出できる表面亀裂の大きさはせいぜい2mm程
度であり、それが負荷によって新たに生じたものかどう
かも判定しにくいという欠点があった。この問題を解決
するため、また特に最近大幅に用途が拡大されつつある
アルミニウム部品の亀裂検出には、例えば図1に示すよ
うな電気化学的手法(SAE840122)が提案されている。図
示するように、絶縁性皮膜1を有する金属製部品2、例
えば化成処理を施したアルミニウム部品表面に負荷によ
る亀裂4が生じると、絶縁性皮膜1が破れ、亀裂4の位
置は導電性を有するようになる。そこで部品2の表面に
通電により発色する検出液であるゲル状溶液3、例えば
KIとでんぷんの混合溶液(通電すると濃紺色を示す)
等を塗布し、部品2を陰極側にして陽極のプローブ5を
走査すると、亀裂部位では 2I- →I2 +2e- となりヨウ素がでんぷんと反応することから亀裂部位が
濃紺に着色され、亀裂の存在を検知できる。この方法は
簡便な上、磁粉探傷や蛍光探傷といった従来の探傷法に
比べて感度が高く、化成処理後の亀裂のみを検出できる
という利点を有する。しかしながら上記電気化学的亀裂
検出法で1mm以下の微小亀裂を検出しようとすると、 (イ)亀裂部位は暗い紺色に着色されるため、黒いゲル
の影と識別するには不鮮明である。 (ロ)ヨウ素が過剰に析出するために、周辺が汚濁し、
輪郭とくに先端部分が不鮮明である。また検出液のゲル
状溶液3をガーゼ等に含ませて部品表面へ塗布したの
ち、むき出しのプローブ5を、塗布したゲル状溶液3に
つけていたため、 (ハ)ゲルは粘性が低いと流れてしまい、逆に高すぎる
と均一に塗布しづらいため、適温に保つ必要があるが、
従来の方法では、ゲルを適温に保ち、塗りむらをなくす
ことは難しい。 (ニ)むき出しの電極を用いているため、部品表面に電
極が接触すると、電極の焼き付きが生じたり、部品表面
を傷つけてしまう。逆に電極を部品から離しすぎると着
色反応が遅くなり作業効率が悪化する。電極と部品の間
隔を適正に保つ必要がある。一方近年、疲労現象を定量
的に理解する方法として、疲労亀裂の成長に注目した破
壊力学的手法が発達し、試験片のように形状、負荷など
の条件が単純な場合、かなり精度よく疲労破壊挙動が推
定できるようになっている。しかしその手法を形状の複
雑な部品に適用するには多くの課題があり、そのひとつ
に実部品での亀裂開閉口の測定が挙げられる。図5及び
図6(a), (b)は亀裂開閉口の説明図であり、図5は負荷
応力の時間変化、図6(a), (b)は亀裂の模式図を示して
いる。亀裂4は引張りの繰り返し応力(振幅Δσ1)を
受けていても必ずしも常に開いておらず(図6(a))、亀
裂閉口状態(σ<σOP) にあり、疲労亀裂の成長に寄与
するのは、亀裂全部が開口 (σOP) してから(図6(b)
、亀裂開口状態σ>σOP) の応力振幅Δσ2だけであ
る。亀裂成長挙動に影響を与える、残留応力や荷重変動
などの様々な要因が有効応力振幅を使えば整理できるた
め、金属製部品18の材料について、有効応力に対する亀
裂成長特性データを調べておき、部品18の亀裂開口応力
を測定すれば、精度よく亀裂の挙動を推定できる。従
来、亀裂開口応力を測定する方法としては、歪ゲージを
亀裂付近に張り付けて、亀裂開閉口に伴う歪の変化を検
出する方法や、超音波を使って亀裂開閉口に伴う反射波
の変化を検出する方法があるが、負荷入力変動が複雑で
雑音の多い実部品では感度が不十分であったり、装置及
び操作が大がかりとなってしまう。さらに大きさの異な
る複数の亀裂が存在する場合にはどちらの方法でも測定
が困難となるという欠点があるため、実部品では適当な
亀裂開閉口観察手法がなかった。
2. Description of the Related Art In structural members such as automobile parts that are subjected to repeated loading, it is an important subject to compensate the strength reliability against fatigue. And in order to guarantee the high durability and reliability required for automobile parts,
Strict shock or endurance test is done. It is natural that through these tests, it is confirmed that cracks do not occur, but from the viewpoint of optimizing the part design shape and material development, these parts are oversized, for example, exceeding the allowable value. Information such as the shape, position, and size of cracks generated when a load is applied is very useful, and an excellent crack detection method is required. Conventionally, magnetic powder flaw detection and fluorescent flaw detection have been used as a simple method for detecting cracks, but the size of surface cracks that can be detected by these is at most about 2 mm, and whether they are newly caused by load or not. However, there was a drawback that it was difficult to judge. In order to solve this problem, and particularly for crack detection of aluminum parts, which have recently been greatly expanded in use, an electrochemical method (SAE840122) as shown in FIG. 1 has been proposed. As shown in the figure, when a crack 4 occurs due to a load on the surface of a metal part 2 having an insulating film 1, for example, a surface of an aluminum part that has been subjected to chemical conversion treatment, the insulating film 1 is broken, and the position of the crack 4 has conductivity. Like Therefore, a gel-like solution 3 that is a detection liquid that develops color on the surface of the component 2 by means of energization, for example, a mixed solution of KI and starch (shows a dark blue color when energized)
When the probe 2 of the anode is scanned with the component 2 applied to the cathode side and the component 2 is on the cathode side, the crack site becomes 2I → I 2 + 2e , and iodine reacts with starch. Can be detected. This method has the advantages that it is simpler, has higher sensitivity than conventional flaw detection methods such as magnetic particle flaw detection and fluorescence flaw detection, and that only cracks after chemical conversion treatment can be detected. However, when it is attempted to detect a microcrack of 1 mm or less by the above-mentioned electrochemical crack detection method, (a) the crack site is colored dark navy blue, and it is unclear to distinguish it from the shadow of a black gel. (B) Due to excessive precipitation of iodine, the surrounding area becomes polluted,
The contour, especially the tip, is unclear. Moreover, after the gel solution 3 of the detection liquid was included in gauze or the like and applied to the surface of the component, the bare probe 5 was attached to the applied gel solution 3, so (c) the gel would flow if the viscosity was low. On the contrary, if it is too high, it is difficult to apply it uniformly, so it is necessary to keep it at an appropriate temperature.
In the conventional method, it is difficult to keep the gel at an appropriate temperature and eliminate uneven coating. (D) Since the exposed electrode is used, when the electrode comes into contact with the surface of the component, the electrode may be burned or the surface of the component may be damaged. On the contrary, if the electrode is too far away from the component, the coloring reaction is delayed and the working efficiency is deteriorated. It is necessary to keep a proper gap between the electrode and the component. On the other hand, in recent years, as a method to quantitatively understand the fatigue phenomenon, a fracture mechanics method focusing on the growth of fatigue cracks has been developed, and when the conditions such as shape and load are simple like a test piece, the fatigue fracture is fairly accurate. The behavior can be estimated. However, there are many problems in applying the method to parts with complicated shapes, and one of them is the measurement of crack opening and closing in actual parts. 5 and 6 (a) and 6 (b) are explanatory views of the crack opening / closing port, FIG. 5 is a time change of load stress, and FIGS. 6 (a) and 6 (b) are schematic diagrams of the crack. The crack 4 does not always open even when it is subjected to repeated tensile stress (amplitude Δσ1) (Fig. 6 (a)), is in a crack closed state (σ <σOP), and contributes to fatigue crack growth. , After all cracks have opened (σOP) (Fig. 6 (b)
, The stress amplitude Δσ2 of the crack opening state σ> σOP). Various factors that affect the crack growth behavior, such as residual stress and load fluctuation, can be sorted out by using the effective stress amplitude.Therefore, for the material of the metal part 18, the crack growth characteristic data for the effective stress should be investigated and The crack behavior can be accurately estimated by measuring the crack opening stress of 18. Conventionally, as a method for measuring the crack opening stress, a strain gauge is attached near the crack to detect a change in strain associated with the crack opening / closing, or a change in reflected wave associated with the crack opening / closing using ultrasonic waves. There is a detection method, but the sensitivity is insufficient for a real part that has a complicated load input fluctuation and is noisy, or the device and operation become large. Further, when there are a plurality of cracks of different sizes, it is difficult to measure with either method. Therefore, there is no suitable crack opening / closing observation method for actual parts.

【0003】[0003]

【課題を解決するための手段】本発明の第1の目的は上
記課題を解決し、亀裂部分、特に亀裂が開口した場合に
おける発色、消色を容易にコントロール出来る検出液を
用いた、金属製部品の微小表面亀裂検出方法を提供する
ことにある。本発明の第2の目的は上記課題を解決する
ため、微小亀裂の検出装置において検出液容器の電極と
部品の間隔及び検出液の粘性を適正に保つことにより、
電気化学的亀裂検出作業を効率よく行える微小亀裂の検
出装置を提供することにある。
The first object of the present invention is to solve the above-mentioned problems, and to use a detection liquid which can easily control the color development and decolorization of a crack portion, especially when the crack is opened, and which is made of metal. It is an object to provide a method for detecting minute surface cracks in a component. In order to solve the above problems, a second object of the present invention is to properly maintain the distance between the electrode of the detection liquid container and the component and the viscosity of the detection liquid in the microcrack detection device.
It is an object of the present invention to provide a microcrack detection device capable of efficiently performing an electrochemical crack detection operation.

【0004】[0004]

【課題を解決するための手段】この発明の微小亀裂の検
出方法は、金属製部品の表面に生じる微小亀裂を検出す
る目的で金属表面に絶縁性の皮膜をあらかじめ形成して
おき、検出液としてエレクトロクロミック物質を含有す
る電解液を塗布し、該金属を陰極となし、陽極との間に
電位を印加することによって亀裂部位のみに発色させる
ことを特徴とする。この検出方法において、陰極と陽極
との間に印加する電位は、0.5 〜2.0V,1〜100Hz の矩
形波をかけるのが好ましく、この範囲の電位をかけるこ
とにより発色反応が生ずる。従って印加電位として0.5
V,1〜100Hz の矩形波をかけ、パルスに合わせて発色
と消色を繰り返し亀裂先端部分を強調して連続観察を行
うのがよい。この発明の亀裂検出方法は上述のように絶
縁性皮膜を有する金属表面に生じた亀裂を、エレクトロ
クロミック反応に基づく発色反応により鮮明に検出する
ものである。以下、この発明の方法を疲労試験用Al合金
製テストピースを疲労試験に供しながら亀裂を連続的に
観察する方法について述べる。テストピースは、成形後
表面に絶縁性の皮膜を付着させる。絶縁性皮膜を作製す
る方法としては、Al合金の場合陽極酸化によるのが最も
簡便で確実であるが、陽極酸化処理ができない、例えば
鉄系などの場合には蒸着あるいは塗装によってもよい。
電解液は次の仕様で作製する。まず支持電解質中にヘプ
チルビオロゲンブロマイドを溶解させる。電解液に粘性
を持たせるため、寒天末を適宜加えて、加熱してとか
す。次に作用を説明する。ビオロゲンは次式化1
The method for detecting microcracks according to the present invention is such that an insulative film is formed in advance on a metal surface for the purpose of detecting microcracks generated on the surface of a metal part, and is used as a detection liquid. The present invention is characterized in that an electrolytic solution containing an electrochromic substance is applied, the metal serves as a cathode, and a potential is applied between the metal and the anode so that only the cracked portion is colored. In this detection method, the potential applied between the cathode and the anode is preferably a rectangular wave of 0.5 to 2.0 V, 1 to 100 Hz, and a coloring reaction occurs by applying a potential in this range. Therefore, the applied potential is 0.5
It is advisable to apply a rectangular wave of V, 1 to 100 Hz, repeat coloring and erasing according to the pulse, and emphasize the crack tip to perform continuous observation. The crack detection method of the present invention is to clearly detect the crack generated on the metal surface having the insulating film as described above by the coloring reaction based on the electrochromic reaction. Hereinafter, a method of continuously observing cracks while subjecting the Al alloy test piece for fatigue test to a fatigue test will be described. The test piece has an insulating film adhered to the surface after molding. In the case of Al alloy, the most convenient and reliable method for producing the insulating film is by anodic oxidation. However, when anodic oxidation is not possible, for example, in the case of iron type, vapor deposition or coating may be used.
The electrolytic solution is prepared with the following specifications. First, heptyl viologen bromide is dissolved in a supporting electrolyte. In order to make the electrolyte viscous, add agar powder as appropriate and heat to melt. Next, the operation will be described. The viologen is represented by the following formula 1.

【化1】 (式中のRはアルキル基またはベンジル基等の電子吸引
基、X- はハロゲンイオンを示す)で表わされる。ビオ
ロゲンの発色機構について述べる。ビオロゲンは水溶液
中では、ジカチオンとハロゲンアニオンとに解離して存
在する。いま、発色させようとする電極をカソードとし
て図1に示すプローブ5との間に電位差を与えれば、ビ
オロゲンラジカルはカソード表面に引きつけられて1電
子を受け取り、次式化2
[Chemical 1] (In the formula, R represents an electron withdrawing group such as an alkyl group or a benzyl group, and X represents a halogen ion). The coloring mechanism of viologen will be described. Viologen is present in an aqueous solution by being dissociated into a dication and a halogen anion. Now, if a potential difference is applied between the electrode to be colored and the cathode as a cathode and the probe 5 shown in FIG. 1, the viologen radical is attracted to the surface of the cathode and receives one electron.

【化2】 で表わさるようにブルーのカチオンラジカルとなり、こ
れは、さらにハロゲンイオンと反応しカソード表面に析
出して赤紫色を示す。この反応を起こすための電圧は0.
6 〜1.0Vで良い。また、電位差を矩形波として与えれば
発色、消色を連続的に繰り返す。この応答は100Hz まで
可能なことが実験より判明している。ビオロゲンに限ら
ず、エレクトロクロミズムを示す物質であれば、例え
ば、フタロシアニンなどが利用できる。実用的には、発
色電圧が低く色があざやかで消色が容易に起こるものの
中から選ばれる。上述の微小亀裂の検出方法の実施は、
亀裂を検出しようとする、絶縁性皮膜を有する金属製部
品上に亀裂検出液容器を備えた微小亀裂の検出装置をセ
ットして行うと、亀裂検出作業を従来に比べてはるかに
精度良くかつ効率的に行うことができる。従ってこの発
明は、また上記微小亀裂の検出方法に用いる微小亀裂の
検出装置に関するものである。かかる微小亀裂の検出方
法に用いる装置は、(1) 亀裂検出液容器の下方部に表面
が金属製部品の絶縁性皮膜と接する絶縁体で被覆された
複数のローラーを有し、ローラー間にローラーにより形
成された検出液吐出部を備え、(2) 更に各ローラー間に
はローラー軸と平行にローラー軸長とほぼ同じ長さを有
し電源を介して金属製部品と接続される電極を備え、
(3) 上記ローラーの回転軸及び亀裂検出液吐出部近傍に
発熱体を有することを特徴とする。次に図面により微小
亀裂の検出装置を説明する。図2は、この発明の一例の
微小亀裂の検出装置を示す図で、6は検出液容器である
ゲル容器であって、供給口7より供給された検出液のゲ
ル8を内部に貯蔵する。9はゲン容器6に取り付けられ
たローラーであって、表面部は吸湿性の絶縁体からな
る。11はローラー9とともに回転する回転軸であって電
源10につながれて発熱するようになっている。ローラー
12はローラー9と同一の構造を有しており、ローラー9
と並行に配されている。ゲル8はローラー9とローラー
12の間からのみ吐出されるようになっており、ローラー
9とローラー12及び金属製部品18の間にゲルだまり14が
できる。13は発熱体であって、電源10につながれてお
り、2つのローラー近傍に配されてゲルの粘性を適度に
保つ。15は電極であってローラー軸長にそって均等に
通電できるよう、ローラー軸長とほぼ同じ長さとなって
おり、ゲルだまり14の中でローラー軸と並行に配され
る。また電極15は電極移動機構17を矢印の方向に動かす
ことで部品との距離が変えられるようになっている。16
はポテンシオスタットであって、陰極、陽極は部品13と
電極15につながれる。上記装置を用いて微小亀裂を検出
するには、図示する如く、ゲル容器6を金属製部品18の
絶縁性皮膜上にセントし、ローラー9 および12を所定温
度に保ち、発熱体13を作動させて容器内に貯蔵された検
出液のゲル8の粘度を適度に保ち、ゲルだまり14を形成
し、電極15の位置を電極移動機構17により位置決めした
後、ポテンシオスタットによりパルス電流を流して装置
を金属製部品の絶縁性皮膜上に押し付けながら動かす。
装置が亀裂部に達するとエレクトロクロミック物質の発
色により鮮明に着色し、亀裂を検出することができる。
上記装置においては、回転軸11を発熱体とすることで、
最も重要な出口付近のゲル粘度が最適となり、ローラー
を動かしてもゲルがローラーにこびりつくことはない。
さらにローラー表面を絶縁体としたため電極とふれても
焼き付かず、ローラー回転軸である発熱体11と電極15が
ショートすることもない。ローラーは金属製部品と電極
の間隔を一定に保つ働きをし、本装置を金属製部品に押
し付けながら動かしても、摩擦が小さく、金属製部品の
表面を傷つける心配がない。図4にこの発明の他の例の
亀裂検出装置を示す。図示する装置は、図2に示す装置
の構成に加え、発熱体13及び発熱体である回転軸11の温
度制御機構24を設けたことを特徴とする。ゲルの粘度
は、広い水平な領域の亀裂検出を行うときは低めに、傾
斜の厳しい部位では、ゲルが流れ落ちないよう、やや高
い方が望ましい。温度制御機構24によりゲルの粘度を金
属製部品の状況に応じて最適に制御できるようになる。
[Chemical 2] As shown by the formula (3), it becomes a blue cation radical, which further reacts with a halogen ion and is deposited on the cathode surface to exhibit a reddish purple color. The voltage to cause this reaction is 0.
6 to 1.0V is good. Further, if the potential difference is given as a rectangular wave, coloring and decoloring are continuously repeated. Experiments have shown that this response is possible up to 100Hz. Not limited to viologen, phthalocyanine or the like can be used as long as it is a substance exhibiting electrochromism. Practically, it is selected from those having a low coloring voltage and a vivid color and easily decoloring. Implementation of the above-described method for detecting microcracks
When a small crack detection device equipped with a crack detection liquid container is set on a metal part with an insulating film to detect cracks, the crack detection work is much more accurate and efficient than before. Can be done on a regular basis. Therefore, the present invention also relates to a microcrack detecting device used in the above-described microcrack detecting method. The device used for such a method for detecting microcracks has (1) a plurality of rollers covered with an insulator whose surface is in contact with the insulating coating of a metal part in the lower portion of the crack detection liquid container, and the rollers between the rollers. (2) Further, between each roller, electrodes having a length substantially equal to the roller axis length, which is parallel to the roller axis and connected to a metal part through a power source, are provided. ,
(3) It is characterized by having a heating element in the vicinity of the rotation axis of the roller and the crack detection liquid discharge portion. Next, a microcrack detecting device will be described with reference to the drawings. FIG. 2 is a diagram showing a microcrack detecting apparatus according to an example of the present invention. Reference numeral 6 denotes a gel container which is a detecting liquid container, and stores a gel 8 of the detecting liquid supplied from a supply port 7 therein. Reference numeral 9 denotes a roller attached to the gen container 6, the surface portion of which is made of a hygroscopic insulator. Reference numeral 11 denotes a rotary shaft that rotates together with the roller 9 and is connected to a power source 10 to generate heat. roller
The roller 12 has the same structure as the roller 9,
It is arranged in parallel with. Gel 8 is roller 9 and roller
It is designed to be discharged only from between 12, and a gel pool 14 is formed between the roller 9 and the roller 12 and the metal part 18. Reference numeral 13 is a heating element, which is connected to the power source 10 and is arranged in the vicinity of the two rollers to keep the viscosity of the gel moderate. Reference numeral 15 denotes an electrode, which has substantially the same length as the roller shaft length so that electricity can be uniformly applied along the roller shaft length, and is arranged in the gel pool 14 in parallel with the roller shaft. Further, the electrode 15 can change the distance to the component by moving the electrode moving mechanism 17 in the direction of the arrow. 16
Is a potentiostat, and the cathode and the anode are connected to the component 13 and the electrode 15. In order to detect microcracks using the above device, as shown in the figure, the gel container 6 is placed on the insulating film of the metal part 18, the rollers 9 and 12 are kept at a predetermined temperature, and the heating element 13 is operated. After the viscosity of the gel 8 of the detection liquid stored in the container is maintained at an appropriate level, the gel pool 14 is formed, the electrode 15 is positioned by the electrode moving mechanism 17, and then a pulse current is passed by a potentiostat to cause the device to flow. Move while pressing on the insulating film of the metal part.
When the device reaches the crack portion, the electrochromic substance is colored vividly and the crack can be detected.
In the above device, by using the rotating shaft 11 as a heating element,
The gel viscosity near the most important exit is optimized and the gel does not stick to the roller when the roller is moved.
Further, since the roller surface is made of an insulator, it does not burn even if it touches the electrode, and the heating element 11 which is the roller rotating shaft and the electrode 15 are not short-circuited. The roller functions to keep the distance between the metal part and the electrode constant, and even if the device is moved while being pressed against the metal part, the friction is small and there is no fear of damaging the surface of the metal part. FIG. 4 shows a crack detecting device according to another example of the present invention. The illustrated apparatus is characterized in that, in addition to the configuration of the apparatus shown in FIG. 2, a heating element 13 and a temperature control mechanism 24 for the rotating shaft 11, which is the heating element, are provided. It is desirable that the viscosity of the gel be low when detecting cracks in a wide horizontal area, and slightly higher so that the gel does not flow down at a portion where the inclination is severe. The temperature control mechanism 24 allows the viscosity of the gel to be optimally controlled according to the condition of the metal part.

【0005】[0005]

【作用】この発明の亀裂検出装置は、上述した発熱体が
吐出されるゲルの粘性を適正に保ち、また複数のローラ
ーによって、ゲル吐出量及び電極と部品の間隔を一定と
できるため、亀裂検出の精度を向上し、作業効率を大幅
に改善することができる。
In the crack detecting device of the present invention, the viscosity of the gel from which the above-mentioned heating element is discharged can be properly maintained, and the gel discharge amount and the distance between the electrode and the component can be made constant by a plurality of rollers. The accuracy of can be improved and the work efficiency can be greatly improved.

【0006】[0006]

【実施例】この発明を実施例及び比較例により説明す
る。実施例1 まず、疲労試験用テストピースを成形後表面に絶縁性の
皮膜を以下の手順で作製した。すなわち、1mol/l 水酸
化ナトリウム溶液でエッチング→水洗→1mol/l 希硝酸
で中和→水洗の過程を経た後、70℃の30%リン酸溶液中
で20A/dm2 の電流密度で30秒陽極酸化を行なった。その
後、水洗して乾燥した。上述の試験片を10Hz、応力比0.
1 の条件で疲労試験に供した。切り欠き部の周辺にメチ
ルビオロゲン5mg、塩化カリウム(KCl)2重量%を含む
水溶液に寒天を加えて生成した電解液を塗布し、図1ま
たは図2に示すプローブを当てて0.8Vの電圧を間にかけ
た。亀裂が生じ同時に絶縁膜も破壊した場所において前
述した機構により電子が授与され発色した。それを光学
的移動式顕微鏡で観察することによって亀裂の進行を観
察した。電圧を切ることによって消色させることができ
るので、従来法のように亀裂の周辺が汚濁することがな
い。また、亀裂の先端部分は電気化学的な活性が高いた
めに、発色が集中して起こることを利用して亀裂の先端
部分を詳細に観察することができた。実施例2 実施例1において、0.8Vで1Hzの矩形波を印加して連続
して発色と消色を行なわせ、連続写真あるいはビデオカ
メラによって亀裂の進行を先端部分を強調して詳細に観
察することができた。比較例1 実施例1で用いた電解液の代りに、KIとでんぷんの混
合溶液を塗布し、部品を陰極側にして陽極のプローブを
走査すると、発色反応が非可逆であるため黒褐色の沈澱
物が亀裂の周辺に蓄積して先端部分の成長を観測するこ
とができなかった。実施例3 図2に示す検出装置において、ローラー9およびローラ
ー12のサイズを直径3mm×軸長5mmとし、ゲル8はメチ
ルビオロゲン5mg、KCl 2重量%を含む水溶液に寒天を
加えたものを用いた。また回転軸11の温度は40℃、ロー
ラー近傍の発熱体は35℃とした。金属製部品18はJIS A2
618 を14×14、R4の半円切り欠き付き曲げ試験片に化成
処理を施したものである。この試験片に繰り返し負荷を
加え、光学式顕微鏡にて切り欠き底に長さ1mmの表面亀
裂を認めた後、ポテンシオスタット16の陰極側につない
だ。電極15は陽極側につなぎ、ポテンシオスタット16よ
り、10V 、50msのパルス電流を流した。しかる後、検出
装置を試験片の亀裂発生位置に押し付けた。発熱体13に
より、ゲル8は過不足なくゲルだまり14へ供給された。
さらに回転軸11は発熱体としたことで、最も重要な出口
付近のゲル粘度が最適となり、亀裂部を鮮明に着色する
ことができた。図3(a) および(b) は従来の亀裂検出装
置と実施例品との亀裂検出結果を模式的に表したもので
ある。図3(a) は試験片の表面にゲル状KIとでんぷん
の混合溶液を塗布し試験片を陰極側にして陽極のプロー
ブを走査する従来法の結果である。電極によってひっか
き傷20ができたり、電極を試験片に近づけすぎて、焼き
付きや過剰反応21を起こして亀裂形状が不明である。ま
たゲルの粘度が高すぎて凹凸が生じると、陰影22ができ
て、亀裂と誤認する恐れがある。図3(b) は本実施例の
結果であるが上記の問題点は現れず、亀裂部23を鮮明に
着色することが容易にでき、かつ亀裂検出精度を向上さ
せることができた。実施例4 疲労試験用テストピースを成形した後、その表面に絶縁
性の皮膜を以下の手順で作成した。すなわち、1mol/l
水酸化ナトリウム溶液でエッチング→水洗→1mol/l 希
硝酸で中和→水洗の過程を経た後、30%リン酸溶液、70
℃中で20A/dm2の電流密度で30秒陽極酸化を行った。そ
の後、水洗して乾燥させた。上述のテストピースを10H
z、応力比0.1 の条件で疲労試験に供した。切り欠き部
の周辺に該電解液を塗布し、図2に示すプローブを当て
て0.8Vの電圧を間にかけた。亀裂が生じると同時に絶縁
膜も破壊するが、亀裂開口応力が付与されるまでは亀裂
が閉じているため、反応は生じなかった。試験片へ負荷
を加えていくとやがて亀裂が開き、同時に電気伝導性を
有する金属面が露出するため、前述した機構により電子
が授与され発色した。発色が認められた時点での応力を
亀裂近傍に貼付けた3軸歪ゲージ(図示せず)より求め
れば開口応力がわかる。本例のようにして、大きさの異
なる複数の亀裂が存在する場合でも、上記の応力がそれ
ぞれの亀裂について起こるため、任意の亀裂の開閉口が
観察できる。また、亀裂の位置が特に明確でなくともよ
い。実施例5 実施例4の手順にて試験片を作成し、負荷速度1Hzにて
疲労負荷を加えた。負荷応力か最小になんたとき消色す
るよう、負荷サイクルと同期させて0.8Vで1Hzの矩形波
を印加して、連続して発色と消色を行なわせた。連続写
真あるいはビデオカメラによって、疲労過程中の亀裂開
閉口挙動を連続的に観察することができる。
EXAMPLES The present invention will be described with reference to Examples and Comparative Examples. Example 1 First, after forming a fatigue test piece, an insulating film was formed on the surface by the following procedure. That is, after the process of etching with a 1 mol / l sodium hydroxide solution → washing with water → neutralization with 1 mol / l dilute nitric acid → washing with water, a current density of 20 A / dm 2 was applied for 30 seconds in a 30% phosphoric acid solution at 70 ° C. Anodization was performed. Then, it was washed with water and dried. The above test piece is 10Hz, stress ratio 0.
A fatigue test was performed under the condition of 1. Around the cutout area, apply agar to an aqueous solution containing 5 mg of methylviologen and 2% by weight of potassium chloride (KCl), apply the solution, and apply a probe shown in Fig. 1 or 2 to apply a voltage of 0.8V. I put it in between. Electrons were donated by the mechanism described above at the location where cracks occurred and the insulating film was destroyed at the same time, resulting in color development. The crack progress was observed by observing it with an optical moving microscope. Since the color can be erased by turning off the voltage, there is no contamination around the crack as in the conventional method. Further, since the tip portion of the crack has high electrochemical activity, it was possible to observe the tip portion of the crack in detail by utilizing the fact that the color development is concentrated. Example 2 In Example 1, a rectangular wave of 0.8 Hz and 1 Hz was applied to cause continuous color development and decolorization, and the progress of cracks was observed in detail by a continuous photograph or video camera with the tip portion emphasized. I was able to do it. COMPARATIVE EXAMPLE 1 Instead of the electrolytic solution used in Example 1, a mixed solution of KI and starch was applied, and when the probe of the anode was scanned with the component on the cathode side, the color reaction was irreversible. However, it was not possible to observe the growth of the tip part by accumulating around the crack. Example 3 In the detection device shown in FIG. 2, the size of the roller 9 and the roller 12 was 3 mm in diameter × 5 mm in axial length, and the gel 8 was an aqueous solution containing 5 mg of methylviologen and 2% by weight of KCl and agar added thereto. .. The temperature of the rotating shaft 11 was 40 ° C, and the temperature of the heating element near the roller was 35 ° C. Metal parts 18 are JIS A2
618 is a 14 × 14, R4 semicircular notched bending test piece that has been subjected to chemical conversion treatment. After repeatedly applying a load to this test piece and observing a surface crack having a length of 1 mm at the notch bottom with an optical microscope, the test piece was connected to the cathode side of the potentiostat 16. The electrode 15 was connected to the anode side, and a pulse current of 10 V and 50 ms was supplied from the potentiostat 16. After that, the detection device was pressed against the crack generation position of the test piece. By the heating element 13, the gel 8 was supplied to the gel pool 14 without excess or deficiency.
Further, since the rotating shaft 11 is a heating element, the gel viscosity near the most important outlet is optimized, and the cracked portion can be colored sharply. 3 (a) and 3 (b) schematically show the crack detection results of the conventional crack detection device and the example product. FIG. 3 (a) shows the result of a conventional method in which a mixed solution of gel KI and starch was applied to the surface of a test piece and the test piece was placed on the cathode side and the probe of the anode was scanned. The electrode causes a scratch 20 or the electrode is too close to the test piece, causing seizure or excessive reaction 21 and the crack shape is unknown. Further, if the viscosity of the gel is too high and unevenness is generated, a shadow 22 is formed, which may be mistaken for a crack. FIG. 3 (b) shows the results of this embodiment, but the above problems did not appear, and it was possible to easily color the crack portion 23 clearly and to improve the crack detection accuracy. Example 4 After molding a test piece for fatigue test, an insulating film was formed on the surface by the following procedure. That is, 1 mol / l
After etching with sodium hydroxide solution → washing with water → neutralization with 1 mol / l dilute nitric acid → washing with water, 30% phosphoric acid solution, 70
Anodization was performed for 30 seconds at a current density of 20 A / dm 2 at ℃. Then, it was washed with water and dried. 10H for the above test piece
A fatigue test was conducted under the conditions of z and stress ratio of 0.1. The electrolytic solution was applied around the notch, and the probe shown in FIG. 2 was applied to apply a voltage of 0.8 V between them. At the same time as the crack was generated, the insulating film was also destroyed, but the reaction did not occur because the crack was closed until the crack opening stress was applied. When a load was applied to the test piece, a crack eventually opened, and at the same time, a metal surface having electrical conductivity was exposed, so that electrons were donated by the mechanism described above to develop color. The opening stress can be found by obtaining the stress at the time when color development is recognized from a triaxial strain gauge (not shown) attached near the crack. Even when a plurality of cracks having different sizes are present as in this example, the above-mentioned stress occurs for each crack, so that the opening / closing port of any crack can be observed. Further, the position of the crack may not be particularly clear. Example 5 A test piece was prepared according to the procedure of Example 4, and a fatigue load was applied at a load speed of 1 Hz. A rectangular wave of 0.8 Hz and 1 Hz was applied in synchronism with the load cycle so that the color was erased when the load stress was at a minimum, and the color was continuously developed and erased. The behavior of crack opening and closing during the fatigue process can be continuously observed by continuous photographs or video cameras.

【0007】[0007]

【発明の効果】以上の実施例で示したように、この発明
の亀裂検出方法は絶縁性皮膜を有する金属表面に生じた
亀裂を、エレクトロクロミック反応に基づく発色反応に
より鮮明に観察できるようにしたため、亀裂の成長過程
を詳細に観察することができるようになり、またこれま
で適当な方法のなかった実部品における表面亀裂の開閉
口挙動を容易に観察できるようになった。さらにこれら
の実施例には以上述べた効果のほかに、試験片が陰分極
で発色することとしたために従来法では部品側を陽極と
するため、破れた絶縁性皮膜が再生してしまい亀裂検出
感度が低下するという欠点が防止でき、一方では亀裂が
着色されるために、亀裂成長挙動もきわめて容易に観察
でき、測定された有効応力と亀裂成長挙動の関係を知る
ことができるという効果が得られる。またこの発明の微
小亀裂の検出装置では亀裂検出液吐出部先端に、表面部
が吸湿性の絶縁体である複数のローラーを有し、各ロー
ラー間にはローラー軸と並行にローラー軸長とほぼ同じ
長さの電極を備え、上記ローラーの回転軸及び亀裂検出
液吐出部近傍に発熱体を有するものとしたため、亀裂検
出作業を従来に比べてはるかに精度良くかつ作業効率を
大幅に改善することができるという効果が得られる。
As shown in the above embodiments, the crack detection method of the present invention makes it possible to clearly observe a crack generated on the surface of a metal having an insulating film by a coloring reaction based on an electrochromic reaction. Now, it becomes possible to observe the crack growth process in detail, and it is now possible to easily observe the opening / closing behavior of surface cracks in actual parts, which had no suitable method until now. Furthermore, in addition to the effects described above in these examples, since the test piece is colored by negative polarization, the conventional method uses the component side as the anode, so the broken insulating film is regenerated and crack detection is performed. The disadvantage of reduced sensitivity can be prevented, while the cracks are colored so that the crack growth behavior can be observed very easily and the relationship between the measured effective stress and the crack growth behavior can be known. Be done. Further, in the microcrack detection device of the present invention, at the tip of the crack detection liquid discharge portion, the surface portion has a plurality of rollers that are hygroscopic insulators, and between each roller is approximately the roller axis length in parallel with the roller axis. Equipped with electrodes of the same length and having a heating element in the vicinity of the rotation axis of the roller and the crack detection liquid discharge part, the crack detection work should be much more accurate and the work efficiency should be greatly improved. The effect of being able to do is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】絶縁性皮膜を揺する金属製部品の亀裂検出法の
説明図である。
FIG. 1 is an explanatory diagram of a crack detection method for a metal component that shakes an insulating film.

【図2】この発明の一例の微小亀裂の検出装置の断面図
である。
FIG. 2 is a cross-sectional view of a microcrack detection device according to an example of the present invention.

【図3】(a) は従来の検出方法による検出結果を模式的
に示す図であり、(b) はこの発明の検出方法による検出
結果を模式的に示す図である。
FIG. 3A is a diagram schematically showing a detection result by a conventional detection method, and FIG. 3B is a diagram schematically showing a detection result by the detection method of the present invention.

【図4】この発明の他の例の微小亀裂の検出装置の断面
図である。
FIG. 4 is a cross-sectional view of a microcrack detecting device of another example of the present invention.

【図5】微小亀裂を検出する金属製部品の負荷応力の時
間変化を示すグラフである。
FIG. 5 is a graph showing a time change of a load stress of a metal part for detecting a microcrack.

【図6】(a) は金属製部品が引張りの繰返し応力を受け
て生じた亀裂の閉じた状態を示し、(b) は金属製部品が
引張りの繰返し応力を受けて生じた亀裂の開口した状態
を示す。
FIG. 6 (a) shows a closed state of a crack generated when a metal part is subjected to repeated tensile stress, and (b) is an opening of a crack generated when the metal part is subjected to repeated tensile stress. Indicates the state.

【符号の説明】[Explanation of symbols]

1 絶縁性皮膜 2 金属製部品 3 検出液または電解液 4 亀裂 5 陽極またはプローブ 6 亀裂検出液容器まはゲル容器 7 検出液供給口 8 ゲル 9 ローラー 10 電源 11 ローラー 12 ローラー 13 発熱体 14 ゲルだまり 15 電極 16 ポテンシオスタット 17 電極の移動方向 18 金属製部品 19 任意波形発生装置 20 ひっかき傷 21 焼き付きまたは過剰反応 22 陰影 23 亀裂部 24 温度制御機構 1 Insulating film 2 Metal parts 3 Detection liquid or electrolyte 4 Crack 5 Anode or probe 6 Crack detection liquid container or gel container 7 Detection liquid supply port 8 Gel 9 Roller 10 Power supply 11 Roller 12 Roller 13 Heating element 14 Gel accumulation 15 Electrode 16 Potentiostat 17 Electrode moving direction 18 Metal part 19 Arbitrary waveform generator 20 Scratch 21 Burn or overreaction 22 Shade 23 Crack 24 Temperature control mechanism

【手続補正書】[Procedure amendment]

【提出日】平成5年2月16日[Submission date] February 16, 1993

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】全図[Correction target item name] All drawings

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図1】 [Figure 1]

【図2】 [Fig. 2]

【図3】 [Figure 3]

【図4】 [Figure 4]

【図5】 [Figure 5]

【図6】 [Figure 6]

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 金属製部品の金属表面に生じる微小亀裂
を検出する目的で金属表面に絶縁性の皮膜をあらかじめ
形成しておき、エレクトロクロミック物質を含有する電
解液を塗布し該金属を陰極となし陽極との間に電位を印
加することによって亀裂部位のみに発色させることを特
徴とする絶縁性皮膜を有する金属製部品の微小亀裂の検
出方法。
1. An insulating film is previously formed on a metal surface for the purpose of detecting microcracks generated on the metal surface of a metal component, and an electrolytic solution containing an electrochromic substance is applied to the metal as a cathode. None A method for detecting microcracks in a metal part having an insulating film, wherein a color is developed only in the cracked portion by applying a potential between the anode and the anode.
【請求項2】 請求項1記載の絶縁性皮膜を有する金属
製部品の微小亀裂の検出方法に用いる装置であって、
(1) 亀裂検出液容器の下方部に表面が金属製部品の絶縁
性皮膜と接する絶縁体で被覆された複数のローラーを有
し、ローラー間にローラーにより形成された検出液吐出
部を備え、(2) 更に各ローラー間にはローラー軸と並列
にローラー軸長とほぼ同じ長さを有し電源を介して金属
製部品と接続される電極を備え、(3) 上記ローラーの回
転軸及び亀裂検出液吐出部近傍に発熱体を有することを
特徴とする微小亀裂の検出装置。
2. An apparatus used for the method for detecting microcracks in a metal part having an insulating film according to claim 1,
(1) The crack detection liquid container has a plurality of rollers whose surface is covered with an insulating material in contact with the insulating film of the metal part in the lower portion, and is provided with a detection liquid discharge unit formed by the rollers between the rollers. (2) Further, between each roller, an electrode having a length substantially equal to the roller shaft length in parallel with the roller shaft and connected to a metal part through a power source is provided, (3) the rotation shaft of the roller and cracks. A device for detecting a microcrack, which has a heating element in the vicinity of a detection liquid discharge part.
JP3067629A 1991-03-08 1991-03-08 Method and apparatus for detecting microfine cracking of metal part having insulation coating Pending JPH05209874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3067629A JPH05209874A (en) 1991-03-08 1991-03-08 Method and apparatus for detecting microfine cracking of metal part having insulation coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3067629A JPH05209874A (en) 1991-03-08 1991-03-08 Method and apparatus for detecting microfine cracking of metal part having insulation coating

Publications (1)

Publication Number Publication Date
JPH05209874A true JPH05209874A (en) 1993-08-20

Family

ID=13350469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3067629A Pending JPH05209874A (en) 1991-03-08 1991-03-08 Method and apparatus for detecting microfine cracking of metal part having insulation coating

Country Status (1)

Country Link
JP (1) JPH05209874A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6433915B2 (en) * 1999-12-20 2002-08-13 Valeo Climatisation Preconditioning of the passenger compartment of a vehicle while stationary
WO2004063742A1 (en) * 2003-01-10 2004-07-29 University Of Southampton Method for the testing of multiple materials for electrochemical uses
KR20150107712A (en) * 2012-10-19 2015-09-23 프리에토 배터리, 인크. Detection of defects in solid-polymer coatings
US11796416B1 (en) * 2019-11-27 2023-10-24 Matergenics, Inc. Electrochemical crack detector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6433915B2 (en) * 1999-12-20 2002-08-13 Valeo Climatisation Preconditioning of the passenger compartment of a vehicle while stationary
WO2004063742A1 (en) * 2003-01-10 2004-07-29 University Of Southampton Method for the testing of multiple materials for electrochemical uses
KR20150107712A (en) * 2012-10-19 2015-09-23 프리에토 배터리, 인크. Detection of defects in solid-polymer coatings
US11796416B1 (en) * 2019-11-27 2023-10-24 Matergenics, Inc. Electrochemical crack detector

Similar Documents

Publication Publication Date Title
Braithwaite et al. Corrosion of lithium‐ion battery current collectors
EP0496731B1 (en) Method and apparatus for conducting electrochemiluminescent measurements
US5296191A (en) Method and apparatus for conducting electrochemiluminescent measurements
JP2759322B2 (en) Control method of electroless plating bath
da Silva et al. On the local corrosion behavior of coupled welded zones of the 2098-T351 Al-Cu-Li alloy produced by Friction Stir Welding (FSW): An amperometric and potentiometric microelectrochemical investigation
Souto et al. On the use of mercury-coated tips in scanning electrochemical microscopy to investigate galvanic corrosion processes involving zinc and iron
JPH05209874A (en) Method and apparatus for detecting microfine cracking of metal part having insulation coating
Cristoforetti et al. In-situ measurement of electrochemical activity related to filiform corrosion in organic coated steel by scanning vibrating electrode technique and scanning micropotentiometry
Sugawara et al. Detection of hydrogen distribution in pure iron using WO3 thin film
US4455212A (en) Gel electrode for early detection of metal fatigue
Ruhlig et al. Spatial imaging of Cu2+‐ion release by combining alternating current and underpotential stripping mode Scanning Electrochemical Microscopy
Sequeira et al. Polarization measurements on solid platinum—molten sodium sulphate—sodium chloride interfaces
US20220091064A1 (en) Silver-silver sulfide reference electrode
Shimizu et al. Electrochemical behavior of sulfide at the silver rotating disc electrode: Part I. Polarization behavior of silver sulfide films
Duruz et al. On the role of the electrode material during cathodic deposition of Na and Al from molten fluorides
JP6309826B2 (en) Fracture stress estimation method and fracture stress estimation device for oxide film fracture
CN107941874B (en) Using lead film as middle layer, lead silicate is the silicate electrode and preparation method thereof of sensitive membrane
JPH05232072A (en) Method and device for evaluating anticorrosion of plating
Baxter Gel electrode imaging of metal fatigue: Part ii. deformation in 1100 Aluminum
US3242722A (en) Ultra-sonic testing of metal bodies
US4445999A (en) Method of manufacturing gel electrode for early detection of metal fatigue
KR970001327Y1 (en) Electro-chemical pitting measuring method
Morgan et al. THE QUINHYDRONE ELECTRODE. I.
JPH10227754A (en) High temperature damage evaluation method for temper martensite stainless steel
JP2735148B2 (en) Micro-crack detection method by coloring indication