JPH05205257A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH05205257A
JPH05205257A JP1267592A JP1267592A JPH05205257A JP H05205257 A JPH05205257 A JP H05205257A JP 1267592 A JP1267592 A JP 1267592A JP 1267592 A JP1267592 A JP 1267592A JP H05205257 A JPH05205257 A JP H05205257A
Authority
JP
Japan
Prior art keywords
magnetic
track
recording
magnetic layer
tracks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP1267592A
Other languages
Japanese (ja)
Inventor
Yoichiro Tanaka
陽一郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1267592A priority Critical patent/JPH05205257A/en
Publication of JPH05205257A publication Critical patent/JPH05205257A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/74Record carriers characterised by the form, e.g. sheet shaped to wrap around a drum
    • G11B5/743Patterned record carriers, wherein the magnetic recording layer is patterned into magnetic isolated data islands, e.g. discrete tracks

Abstract

PURPOSE:To improved durability and enhance track density in a magnetic recording medium which performs magnetic recording onto a plurality of recording tracks which are formed on a continuous magnetic layer on a non-magnetic substrate. CONSTITUTION:A recording track is formed by changing magnetic characteristics at a desired part of a continuous magnetic layer locally so that a saturated magnetization Ms of the magnetic layer of a recording track 5 is larger than the saturated magnetization Ms of the magnetic layer in a region 4 between tracks which are sandwiched by the recording tracks 5 and so that a coercive force Hc of the magnetic layer of the recording track 5 is smaller than the coercive force Hc of the magnetic layer of the region 5 between tracks. For example, ion is implanted or laser is applied externally to changing magnetic characteristics locally.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はたとえばハードディスク
などの磁気記録媒体に係わり、とくにトラック密度を高
くして信号の記録再生を行うに適した磁気記録媒体に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium such as a hard disk, and more particularly to a magnetic recording medium suitable for recording and reproducing a signal with a high track density.

【0002】[0002]

【従来の技術】近年、ハードディスク装置などの磁気記
録装置は、コンピータ分野においてランダムアクセスの
可能な大容量の外部記憶装置として利用が盛んである。
そして、利用の拡大に伴い、記録容量の大容量化および
高記録密度化に対する要求がますます高まっている。そ
こで、そのような要求に応えるべく多方面から開発研究
がなされている。
2. Description of the Related Art In recent years, magnetic recording devices such as hard disk devices have been widely used as large-capacity external storage devices that can be randomly accessed in the computer field.
Further, with the expansion of use, there is an increasing demand for a large recording capacity and a high recording density. Therefore, in order to meet such demands, research and development have been conducted from various fields.

【0003】一般にハードディスク装置としては、非磁
性基体上に磁性層を設けてなる磁気ディスクの複数枚が
一本の回転軸に積み重ねて取り付けられ、記録再生用の
ヘッドはアームに取り付けられて各ディスク面に配置さ
れ、アームはアクチュエータにより動かされてヘッドの
位置決めを行うようにした構造のものが知られている。
このような構造のハードディスク装置によって情報の記
録再生を行う際に、ヘッドは、高速で回転するディスク
面には直接接触せず、わずかに浮上した状態でディスク
面の所望の位置にアクセスするように配置されている。
そして、ディスク面の同心円状のトラックに対して、ヘ
ッドによって信号が記録され、あるいは再生される。
Generally, as a hard disk device, a plurality of magnetic disks each having a magnetic layer provided on a non-magnetic substrate are stacked and mounted on a single rotating shaft, and a recording / reproducing head is mounted on an arm and each disk is mounted. It is known that the arm is arranged on a surface and the arm is moved by an actuator to position the head.
When information is recorded / reproduced by the hard disk device having such a structure, the head does not directly contact the disk surface rotating at high speed, but is configured to access a desired position on the disk surface in a slightly floating state. It is arranged.
Then, a signal is recorded or reproduced by the head with respect to concentric tracks on the disk surface.

【0004】上記したハードディスク装置において、記
録容量の大容量化の要求に応えるためには、たとえばデ
ィスクの線記録密度、すなわちトラック方向の密度、を
高めることにより記録密度を向上させたり、あるいはト
ラック密度を高めることにより記録密度を向上させよう
とする試みなどが、これまでにもなされている。
In order to meet the demand for larger recording capacity in the above-mentioned hard disk device, the recording density is improved by increasing the linear recording density of the disk, that is, the density in the track direction, or the track density is increased. Attempts have been made to increase the recording density by increasing the recording density.

【0005】線記録密度を高めるためには、ヘッド媒体
間のスペーシングをなるべく小さくし、ヘッドからの磁
界が広がらないようにして分離損失を減らすとともに、
媒体の保磁力Hc を大きくして媒体の磁化転移をシャー
プにするなどの方策がとられている。そのため小型ハー
ドディスク装置では、ヘッド浮上量が 0.15 μm を下回
るまでにヘッド媒体間のスペーシングが狭められ、媒体
の保磁力Hc も1,400Oe 程度に達するまでに高められ
ている。そして現在これらの方策により、記録密度はか
なりの程度まで向上されている。
In order to increase the linear recording density, the spacing between head media is made as small as possible so that the magnetic field from the head does not spread and the separation loss is reduced.
Measures such as increasing the coercive force Hc of the medium to sharpen the magnetization transition of the medium have been taken. Therefore, in the small hard disk drive, the spacing between the head media is narrowed by the time the head flying height falls below 0.15 μm, and the coercive force Hc of the media is also increased up to about 1,400 Oe. And now, by these measures, the recording density is improved to a considerable extent.

【0006】一方、トラック密度を高めるためには、ヘ
ッドのトラック幅を狭くする必要がある。そのため、ト
ラック密度を高めることにより記録密度の向上を図るた
めには、トラック幅の狭いヘッドであっても十分な再生
出力が維持されるように、ヘッドの再生感度の向上に開
発の力点がおかれてきた。
On the other hand, in order to increase the track density, it is necessary to narrow the track width of the head. Therefore, in order to improve the recording density by increasing the track density, the development focus is to improve the reproducing sensitivity of the head so that a sufficient reproducing output can be maintained even if the head has a narrow track width. I've been burned.

【0007】しかしながら、再生感度が十分良好なヘッ
ドが得られたとしても、磁気記録を行う場合に、ヘッド
のトラック端からの漏洩磁界により記録トラックが広が
ってしまうという現象を避けることは困難であった。そ
してこの現象は、トラック密度を高めるに際しての障害
となっていた。このような現象を防止するためにこれま
でにも、ヘッドコアのトラック端面をトラックの長さ方
向に平行に加工したり、あるいは上下のヘッドコアの幅
を等しくして、その位置ズレをなるべく小さくするなど
の解決方法がとられていた。
However, even if a head having a sufficiently good reproduction sensitivity is obtained, it is difficult to avoid the phenomenon that the recording track is widened by the leakage magnetic field from the track end of the head when performing magnetic recording. It was This phenomenon has been an obstacle in increasing the track density. In order to prevent such a phenomenon, the track end surface of the head core has been processed so as to be parallel to the track length direction, or the upper and lower head cores have the same width to minimize the positional deviation. The solution was taken.

【0008】上記したように、従来は、主にヘッドに対
する改良というかたちでトラック密度向上のための研究
が進められていた。しかしながら、近年になり、高いト
ラック密度での記録に適した磁気記録媒体の開発が活発
に行われるようになってきている。たとえば1989年に
は、IBM社より、媒体表面のトラック領域にのみ磁性
層を形成したディスクリートトラック方式が提案(IE
EE Transactions OnMagnetics 、Vol.25 ,No.5 ,pp 3
381 〜 3383 ,1989 )された。この方式によれば、ディ
スク上のトラック領域以外には磁性層が形成されていな
いため、磁気ヘッドからの漏洩磁界の大小にかかわら
ず、記録トラック幅が一定に保たれる。また、ヘッドの
位置制御精度や隣接トラック間クロストーク量で決めら
れるぎりぎりのところまで、トラック間隔を狭めること
が可能になる。したがって、ヘッドのトラック幅を狭く
するための加工精度などに大きな影響を受けることな
く、トラック密度を高めることが可能になる。
As described above, conventionally, research for improving the track density has been conducted mainly by improving the head. However, in recent years, magnetic recording media suitable for recording with high track density have been actively developed. For example, in 1989, IBM proposed a discrete track system in which a magnetic layer was formed only in the track area of the medium surface (IE
EE Transactions OnMagnetics, Vol.25, No.5, pp 3
381-3383,1989). According to this method, since the magnetic layer is not formed in the area other than the track area on the disk, the recording track width is kept constant regardless of the magnitude of the leakage magnetic field from the magnetic head. Further, it becomes possible to narrow the track interval to the very limit determined by the head position control accuracy and the crosstalk amount between adjacent tracks. Therefore, it is possible to increase the track density without being significantly affected by the processing accuracy for narrowing the track width of the head.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、このデ
ィスクリートトラック方式による磁気記録媒体において
は、媒体表面のトラック領域と非トラック領域との間
に、磁性層の有無に起因する0.02〜0.05μm 程度の段差
が生じているため、ヘッドシーク時にヘッド媒体間干渉
が発生しやすいという難点があった。とくに、ヘッド浮
上量が 0.1μm 以下と小さい場合に、0.02〜0.05μm も
の高さの媒体表面の凹凸は、シーク耐久性を著しく低下
させるという問題を引き起こしていた。また、数μm 程
度の幅で磁性体が途切れている構造であるため、連続膜
に比べ膜端部での機械的強度が低下し、やはり耐久性の
点で問題となっていた。
However, in the magnetic recording medium of the discrete track system, there is a step difference of 0.02 to 0.05 μm between the track area and the non-track area on the surface of the medium due to the presence or absence of the magnetic layer. Therefore, there is a problem that interference between head media is likely to occur during head seek. Especially, when the flying height of the head is as small as 0.1 μm or less, the unevenness of the medium surface as high as 0.02 to 0.05 μm causes a problem that the seek durability is significantly lowered. In addition, since the magnetic material is discontinuous in a width of about several μm, the mechanical strength at the edge of the film is lower than that of the continuous film, which is also a problem in terms of durability.

【0010】そこで、上記した媒体表面の凹凸に起因す
る不都合を避けるため、媒体表面に凹凸を生じることな
くトラック幅を狭めようとする方法も、提案されてい
る。たとえば、基板上に形成した溝に磁性体を充填する
ことにより、トラックを形成するとともにトラック相互
を分離する方法など(特開平2−189715:磁気デ
ィスクとその製造方法及び記録装置、特開平2−201
730:磁気記録媒体)の提案である。これらの方法
は、上記した方式と異なり、媒体表面の凹凸はないの
で、シーク耐久性など対する悪影響はみられない。しか
しながら、異種材料からなる基体上に形成した溝内に磁
性体が析出され、かつ、トラック幅で磁性体が途切れる
構造のため、磁性体と溝を形成する材料との間の密着力
は依然として小さい。したがって、ヘッドの接触などに
より膜剥がれが生じやすく、耐久性の面における問題点
は解消されていない。
Therefore, in order to avoid the above-mentioned inconvenience caused by the unevenness of the medium surface, a method of narrowing the track width without causing unevenness on the medium surface has also been proposed. For example, a method of forming tracks and separating the tracks from each other by filling a groove formed on a substrate with a magnetic material (Japanese Patent Laid-Open No. 2-189715: Magnetic disk and its manufacturing method and recording device, Japanese Patent Laid-Open No. 2-189715). 201
730: magnetic recording medium). Unlike the above-mentioned methods, these methods have no unevenness on the surface of the medium, and thus have no adverse effect on seek durability and the like. However, since the magnetic substance is deposited in the groove formed on the substrate made of a different material and the magnetic substance is interrupted by the track width, the adhesive force between the magnetic substance and the material forming the groove is still small. .. Therefore, film peeling is likely to occur due to contact with the head, and the problem in terms of durability has not been solved.

【0011】そこで、本発明はこのような従来の問題点
を解消すべくなされたものであり、トラック密度を高め
るためトラック幅を狭めた構造であって、耐久性にもす
ぐれた磁気記録媒体を提供することを、その目的とす
る。
Therefore, the present invention has been made to solve such conventional problems, and provides a magnetic recording medium having a structure in which the track width is narrowed in order to increase the track density and which is excellent in durability. The purpose is to provide.

【0012】[0012]

【課題を解決するための手段】本発明の磁気記録媒体
は、非磁性基体上の連続した磁性層に形成した複数の記
録トラックに磁気記録を行う磁気記録媒体において、前
記記録トラックの磁性層の飽和磁化Ms が、前記記録ト
ラックと前記記録トラックとに挟まれたトラック間領域
の磁性層の飽和磁化Ms より大きく、かつ、前記記録ト
ラックの磁性層の保磁力Hc が、前記トラック間領域の
磁性層の保磁力Hc より小さくなるように、前記連続し
た磁性層の所望の箇所の磁気的特性を局所的に変えて前
記記録トラックを形成するようにしたことを特徴とす
る。
The magnetic recording medium of the present invention is a magnetic recording medium for performing magnetic recording on a plurality of recording tracks formed on a continuous magnetic layer on a non-magnetic substrate. The saturation magnetization Ms is larger than the saturation magnetization Ms of the magnetic layer in the inter-track region sandwiched between the recording track and the recording track, and the coercive force Hc of the magnetic layer in the recording track is the magnetic property of the inter-track region. It is characterized in that the recording track is formed by locally changing the magnetic characteristics of a desired portion of the continuous magnetic layer so as to be smaller than the coercive force Hc of the layer.

【0013】上記のように構成した本発明の磁気記録媒
体を製造するにあたっては、非磁性基体上にたとえばス
パッタ法や蒸着法など、常法にしたがって連続膜である
磁性層を形成した後、トラック間領域となるべき箇所に
たとえば窒素イオンや酸素イオンなどのイオンを不純物
として外部からイオン注入法などによって注入すること
を行う。あるいは磁性層を連続膜として形成したのち、
トラック間領域となるべき箇所にレーザを照射し、磁性
層を熱処理するようにしてもよい。
In manufacturing the magnetic recording medium of the present invention configured as described above, a magnetic layer which is a continuous film is formed on a non-magnetic substrate by a conventional method such as a sputtering method or a vapor deposition method, and then a track is formed. Ions such as nitrogen ions and oxygen ions are implanted as impurities into the inter-regions from the outside by an ion implantation method or the like. Alternatively, after forming the magnetic layer as a continuous film,
The magnetic layer may be heat-treated by irradiating the portion to be the inter-track region with a laser.

【0014】[0014]

【作用】本発明の磁気記録媒体は、記録トラックと記録
トラックとの間に磁気特性の異なる磁性層を設けること
によって、媒体表面における記録トラックと、記録トラ
ック以外の部分の記録磁化の残留の状態が著しく異なる
ように構成されている。これにより、記録信号を記録ト
ラック部分にのみ正しく記録し、記録トラック以外の部
分の記録残留磁化を極端に小さくすることができる。
In the magnetic recording medium of the present invention, by providing a magnetic layer having different magnetic characteristics between the recording tracks, the recording tracks on the surface of the medium and the state of residual recording magnetization of the portions other than the recording tracks. Are configured to be significantly different. As a result, the recording signal can be correctly recorded only on the recording track portion, and the recording residual magnetization of the portion other than the recording track can be extremely reduced.

【0015】記録トラック部分の磁性層の飽和磁化Ms
を、記録トラックと記録トラックとに挟まれたトラック
間領域の磁性層の飽和磁化Ms より大きくする。このこ
とにより、記録トラックおよびトラック間領域に対して
同程度の記録磁界で信号記録された場合に、記録トラッ
クにおいては十分な記録磁化が残される一方、トラック
間領域においては飽和磁化そのものが小さいために、小
さな記録磁化しか残らないことになる。したがって、磁
気ヘッドからの漏洩磁界の大小にかかわらず、あるいは
信号記録の条件が異なった場合であっても、予め規定さ
れたトラック幅で信号を記録することができる。
Saturation magnetization Ms of the magnetic layer in the recording track portion
Is larger than the saturation magnetization Ms of the magnetic layer in the track-to-track region sandwiched between the recording tracks. As a result, when signals are recorded in the recording track and the inter-track area with the same recording magnetic field, a sufficient recording magnetization remains in the recording track, while the saturation magnetization itself is small in the inter-track area. In addition, only a small recording magnetization remains. Therefore, it is possible to record a signal with a predetermined track width regardless of the magnitude of the leakage magnetic field from the magnetic head or even when the signal recording conditions are different.

【0016】さらに、記録トラック部分の磁性層の保磁
力Hc を、記録トラックと記録トラックとに挟まれたト
ラック間領域の磁性層のHc よりも小さくすることによ
り、記録トラック以外の部分の磁性体が磁化されにくい
ようにすることができる。したがって、磁気ヘッドから
の漏洩磁界の大小にかかわらず、あるいは信号記録の条
件が異なった場合であっても、予め規定されたトラック
幅で信号を記録することができる。
Further, by making the coercive force Hc of the magnetic layer in the recording track portion smaller than the Hc of the magnetic layer in the inter-track region sandwiched between the recording tracks, the magnetic material in the portion other than the recording track is formed. Can be made hard to be magnetized. Therefore, it is possible to record a signal with a predetermined track width regardless of the magnitude of the leakage magnetic field from the magnetic head or even when the signal recording conditions are different.

【0017】すなわち記録トラックとトラック間領域と
の間で、上記したように磁性層の磁気特性、飽和磁化M
s と保磁力Hc とを異ならせることにより、磁性層を切
断することなく、つまり連続膜の状態を保ったまま記録
トラックをあらかじめ規定された幅で分離した状態に形
成した場合と同様の効果が得られる。
That is, between the recording track and the track-to-track region, the magnetic characteristics of the magnetic layer and the saturation magnetization M are as described above.
By differentiating s from the coercive force Hc, the same effect can be obtained without cutting the magnetic layer, that is, when the recording tracks are separated with a predetermined width while maintaining the continuous film state. can get.

【0018】なお、記録トラックとトラック間領域の磁
気特性が異なるようにするためには、非磁性基体上に常
法にしたがって連続膜である磁性層を形成した後、トラ
ック間領域となるべき箇所にイオンを外部から注入する
ことを行う。磁性体内に注入されたイオンは、磁性体内
部の原子と結合、または磁性体原子間に入り込み、その
部分の磁気的な特性を変化させる。あるいは他の方法と
して、磁性層を連続膜として形成したのち、トラック間
領域となるべき箇所にレーザを照射して磁性層を熱処理
する。レーザ照射により、磁性体は結晶構造が変化し、
保磁力などの磁気特性が変化をうける。
In order to make the magnetic characteristics of the recording track and the inter-track region different, a magnetic layer which is a continuous film is formed on a non-magnetic substrate according to a conventional method, and then a portion to be the inter-track region is formed. Ions are implanted from the outside. The ions injected into the magnetic material bond with atoms inside the magnetic material or enter between the magnetic material atoms, and change the magnetic characteristics of that portion. Alternatively, as another method, after the magnetic layer is formed as a continuous film, the portion to be the inter-track region is irradiated with a laser to heat-treat the magnetic layer. The laser irradiation changes the crystal structure of the magnetic material,
The magnetic properties such as coercive force are changed.

【0019】上記した方法により、記録トラックとトラ
ック間領域との磁気特性が異なるようにした場合には、
ヘッドの位置制御精度や隣接トラック間クロストーク量
で決められるぎりぎりのところまで、トラック間隔を狭
め得る。したがって、ヘッドのトラック幅を狭くするた
めの加工精度などに大きな影響を受けることなく、トラ
ック密度を高めることが可能になる。
When the magnetic characteristics of the recording track and the inter-track area are made different by the above method,
The track interval can be narrowed to the very limit determined by the head position control accuracy and the crosstalk amount between adjacent tracks. Therefore, it is possible to increase the track density without being significantly affected by the processing accuracy for narrowing the track width of the head.

【0020】[0020]

【実施例】以下、図面を参照し本発明の実施例について
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0021】実施例1 図1は、本発明の一実施例の磁気記録媒体の断面構造の
一部分を示す模式図であり、記録トラックの長さ方向に
垂直な方向の縦断面を示している。図1に示されている
ように、 2.5インチ径の厚さ約0.64mmのガラス基体1の
上に、厚さ0.1μm のCrからなる非磁性下地層2を、ア
ルゴンガス雰囲気中でバイアススパッタ法により形成し
た。そしてさらにその上に、CoCrTaからなる厚さ0.03μ
m の磁性層3を酸素などの残留ガスの少ないアルゴンガ
ス雰囲気中で、DCマグネトロンスパッタ法により形成
した。磁性層3成膜ののち、トラック間領域4に磁性層
3上方より不純物として窒素イオンを、真空度10-4Pa以
下でイオン注入法により侵入させた。このとき侵入した
窒素イオンは、トラック間領域4の磁性体中のとくに表
層部のCo、Crなどと結合し、イオン注入を受けない記録
トラック部5の磁性体よりも小さな飽和磁化を有するよ
うになる。イオン注入処理後、磁性層3の上に酸化ケイ
素からなる厚さ0.01μm の保護膜6を形成した。
Example 1 FIG. 1 is a schematic view showing a part of the cross-sectional structure of a magnetic recording medium of one example of the present invention, showing a vertical section in a direction perpendicular to the length direction of a recording track. As shown in FIG. 1, a non-magnetic underlayer 2 made of Cr and having a thickness of 0.1 μm is formed on a glass substrate 1 having a diameter of 2.5 inches and a thickness of about 0.64 mm by a bias sputtering method in an argon gas atmosphere. Formed by. And on top of that, the thickness of CoCrTa is 0.03μ.
The m 3 magnetic layer 3 was formed by a DC magnetron sputtering method in an argon gas atmosphere with a small residual gas such as oxygen. After forming the magnetic layer 3, nitrogen ions as impurities were introduced into the inter-track region 4 from above the magnetic layer 3 by an ion implantation method at a vacuum degree of 10 −4 Pa or less. At this time, the invading nitrogen ions are bonded to Co, Cr, etc. in the magnetic material in the inter-track region 4, particularly in the surface layer portion, and have a smaller saturation magnetization than the magnetic material in the recording track portion 5 which is not subjected to ion implantation. Become. After the ion implantation process, a 0.01 μm thick protective film 6 made of silicon oxide was formed on the magnetic layer 3.

【0022】表1には、窒素イオンを注入したトラック
間領域4と窒素イオン注入を受けない記録トラック部5
の、飽和磁化Ms と保磁力Hc の比較を示す。
Table 1 shows an inter-track region 4 into which nitrogen ions are implanted and a recording track portion 5 which is not implanted with nitrogen ions.
The following is a comparison of the saturation magnetization Ms and the coercive force Hc.

【0023】[0023]

【表1】 表1から明らかなように、窒素イオン注入により、CoCr
Ta磁性体3の飽和磁化Ms が低下し、同時に保磁力Hc
が上昇した。
[Table 1] As is clear from Table 1, CoCr was formed by nitrogen ion implantation.
The saturation magnetization Ms of the Ta magnetic body 3 decreases, and at the same time, the coercive force Hc
Has risen.

【0024】実施例2 図2は、本発明の実施例2の磁気記録媒体の断面構造の
一部分を示す模式図であり、図1同様記録トラックの長
さ方向に垂直な方向の縦断面を示している。図2に示さ
れているように、 2.5インチ径の厚さ0.4 mmのセラミッ
ク基体7の上に、厚さ0.2 μm のFeNからなる軟磁性下
地層8を、窒素を10%含むアルゴンガス雰囲気中でRF
スパッタ法により形成した。そしてさらにその上に、Co
Ptからなる厚さ0.02μm の磁性層9をアルゴンガス圧力
0.8 PaでDCマグネトロンスパッタ法により形成した。
さらにその上に窒化ケイ素からなる厚さ 0.005μm の保
護膜10を形成した。保護膜10を成膜した後、媒体の
トラック間領域4にスポット径 1.0μm でレーザを照射
し、温度を局部的に数百度まで上昇させた。レーザ照射
により、CoPt磁性体9の結晶構造が変化し、レーザ被照
射の飽和磁化Ms が低下し保磁力Hc が大きくなった。
レーザ照射前後における飽和磁化Ms と保磁力Hc の変
化も表1に示してある。
Embodiment 2 FIG. 2 is a schematic view showing a part of the cross-sectional structure of a magnetic recording medium of Embodiment 2 of the present invention, and shows a vertical cross section in a direction perpendicular to the length direction of a recording track as in FIG. ing. As shown in FIG. 2, a soft magnetic underlayer 8 made of FeN having a thickness of 0.2 μm was formed on a ceramic substrate 7 having a diameter of 2.5 inches and a thickness of 0.4 mm in an argon gas atmosphere containing 10% nitrogen. At RF
It was formed by the sputtering method. And on top of that, Co
The magnetic layer 9 made of Pt and having a thickness of 0.02 μm is set in an argon gas pressure.
It was formed by DC magnetron sputtering at 0.8 Pa.
Further thereon, a protective film 10 made of silicon nitride and having a thickness of 0.005 μm was formed. After the protective film 10 was formed, a laser was applied to the inter-track region 4 of the medium with a spot diameter of 1.0 μm to locally raise the temperature to several hundreds of degrees. By the laser irradiation, the crystal structure of the CoPt magnetic substance 9 was changed, the saturation magnetization Ms of the laser irradiation was lowered, and the coercive force Hc was increased.
Table 1 also shows changes in saturation magnetization Ms and coercive force Hc before and after laser irradiation.

【0025】比較例 本発明の効果を知るために、比較例として、トラック間
領域の磁気特性を変える処理を行わない他は実施例1と
同様にして磁気記録媒体を作製した。
Comparative Example In order to know the effect of the present invention, as a comparative example, a magnetic recording medium was manufactured in the same manner as in Example 1 except that the process of changing the magnetic characteristics of the inter-track region was not performed.

【0026】次いで、上記のようにして得られた実施例
1、実施例2、および比較例の磁気記録媒体のオフトラ
ック特性の評価を行った。オフトラック特性は、 2.5イ
ンチハードディスク状に形成した媒体に、薄膜磁気ヘッ
ドを用いて信号を記録し、その後、ヘッド位置をトラッ
ク幅方向にずらしながら再生出力を測定することにより
評価した。図3に、実施例1と比較例の媒体の測定結果
を示す。
Then, the off-track characteristics of the magnetic recording media of Examples 1, 2 and Comparative Examples obtained as described above were evaluated. The off-track characteristics were evaluated by recording a signal on a medium formed into a 2.5-inch hard disk using a thin-film magnetic head, and then measuring the reproduction output while shifting the head position in the track width direction. FIG. 3 shows the measurement results of the media of Example 1 and the comparative example.

【0027】図3から明らかなように、トラック間領域
の磁気特性を変えた実施例1では未処理の比較例と比べ
て、オフトラック量/トラック幅の値が±0.5 を超すあ
たりから再生出力が急激に減少し、トラックの切れが鋭
くなっていることを示している。したがって、実施例1
は、トラック密度のより高い状態で用いることが可能で
ある。実施例2の媒体に対しても実施例1と同様にオフ
トラック特性の測定を行ったところ、実施例1と同様の
測定結果が得られた。
As is apparent from FIG. 3, in Example 1 in which the magnetic characteristics of the inter-track region were changed, compared with the untreated Comparative Example, the reproduction output was started when the off-track amount / track width value exceeded ± 0.5. Indicates that the track is sharply cut and sharply cut. Therefore, Example 1
Can be used in a higher track density state. When the off-track characteristics of the medium of Example 2 were measured in the same manner as in Example 1, the same measurement results as in Example 1 were obtained.

【0028】また、実施例1、実施例2、および比較例
の媒体について、それぞれヘッドをシークさせた状態で
の耐久性を調べた。その結果、比較例の媒体が20万回の
シークで磁性膜の剥がれが発生したのに対し、実施例
1、2の媒体では 500万回のシーク後でも磁性膜の剥が
れなどが生じることがなく、すぐれた耐久性を示した。
Further, with respect to the media of Examples 1, 2 and Comparative Example, the durability in the seek state of the head was examined. As a result, in the medium of Comparative Example, peeling of the magnetic film occurred after 200,000 seeks, whereas in the media of Examples 1 and 2, peeling of the magnetic film did not occur even after 5 million seeks. Showed excellent durability.

【0029】[0029]

【発明の効果】以上説明したように本発明によれば、磁
気ヘッドのトラック端部からの漏洩磁界が大きい場合で
あっても、媒体上のトラックとトラック間の磁気特性を
変えることにより、トラック幅で決められた一定の幅
で、かつ位置ズレのない場所に信号を記録することがで
きる。したがって、トラックピッチを狭くすることがで
き、ひいてはトラック密度を高めることができる。ま
た、磁性体が連続膜であるために、ヘッドをシークした
状態であっても耐久性が良好な磁気記録媒体が得られ
る。
As described above, according to the present invention, even when the leakage magnetic field from the track end of the magnetic head is large, the magnetic characteristics between the tracks on the medium are changed to change the track. It is possible to record a signal at a fixed width determined by the width and at a position without positional deviation. Therefore, the track pitch can be narrowed, and the track density can be increased. Further, since the magnetic material is a continuous film, a magnetic recording medium having good durability can be obtained even when the head is in a seek state.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の磁気記録媒体の断面図であ
る。
FIG. 1 is a sectional view of a magnetic recording medium of Example 1 of the present invention.

【図2】本発明の実施例2の磁気記録媒体の断面図であ
る。
FIG. 2 is a sectional view of a magnetic recording medium of Example 2 of the present invention.

【図3】本発明の実施例1と比較例のオフトラック特性
を示す図である。
FIG. 3 is a diagram showing off-track characteristics of Example 1 of the present invention and a comparative example.

【符号の説明】 1………ガラス基板 2………非磁性Cr下地層 3………CoCrTa磁性層 4………トラック間領域 5………記録トラック部 6………酸化ケイ素保護膜 7………セラミックス基体 8………FeN軟磁性下地層 9………CoPt垂直磁性層 10……窒化ケイ素保護膜[Explanation of reference symbols] 1 ... Glass substrate 2 ... Non-magnetic Cr underlayer 3 ... CoCrTa magnetic layer 4 ... Track area 5 ... Recording track portion 6 ... Silicon oxide protective film 7 ………… Ceramics substrate 8 ………… FeN soft magnetic underlayer 9 ………… CoPt perpendicular magnetic layer 10 …… Silicon nitride protective film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 非磁性基体上の連続した磁性層に形成し
た複数の記録トラックに磁気記録を行う磁気記録媒体に
おいて、前記記録トラックの磁性層の飽和磁化Ms が、
前記記録トラックと前記記録トラックとに挟まれたトラ
ック間領域の磁性層の飽和磁化Ms より大きく、かつ、
前記記録トラックの磁性層の保磁力Hc が、前記トラッ
ク間領域の磁性層の保磁力Hc より小さくなるように、
前記連続した磁性層の所望の箇所の磁気的特性を局所的
に変えて前記記録トラックを形成するようにしたことを
特徴とする磁気記録媒体。
1. A magnetic recording medium for performing magnetic recording on a plurality of recording tracks formed on a continuous magnetic layer on a non-magnetic substrate, wherein the saturation magnetization Ms of the magnetic layer of the recording tracks is:
Greater than the saturation magnetization Ms of the magnetic layer in the inter-track region sandwiched between the recording tracks and the recording tracks, and
The coercive force Hc of the magnetic layer of the recording track is smaller than the coercive force Hc of the magnetic layer of the inter-track region.
A magnetic recording medium, wherein the recording track is formed by locally changing the magnetic characteristics of a desired portion of the continuous magnetic layer.
JP1267592A 1992-01-28 1992-01-28 Magnetic recording medium Withdrawn JPH05205257A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1267592A JPH05205257A (en) 1992-01-28 1992-01-28 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1267592A JPH05205257A (en) 1992-01-28 1992-01-28 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH05205257A true JPH05205257A (en) 1993-08-13

Family

ID=11811953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1267592A Withdrawn JPH05205257A (en) 1992-01-28 1992-01-28 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH05205257A (en)

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6014296A (en) * 1995-07-24 2000-01-11 Kabushiki Kaisha Toshiba Magnetic disk, method of manufacturing magnetic disk and magnetic recording apparatus
US6055139A (en) * 1995-12-14 2000-04-25 Fujitsu Limited Magnetic recording medium and method of forming the same and magnetic disk drive
US6841224B2 (en) 2001-03-30 2005-01-11 Kabushiki Kaisha Toshiba Method of patterning magnetic products using chemical reactions
WO2007097438A1 (en) * 2006-02-21 2007-08-30 Showa Denko K.K. Magnetic recording medium, method for production thereof, and magnetic recording and reproducing device
JP2008016086A (en) * 2006-07-03 2008-01-24 Toshiba Corp Magnetic recording medium and device
WO2008026610A1 (en) * 2006-08-28 2008-03-06 Showa Denko K.K. Method for manufacture of magnetic recording medium and magnetic recording and reproduction device
WO2008035520A1 (en) * 2006-09-21 2008-03-27 Showa Denko K.K. Magnetic recording medium and method for producing the same, and magnetic recorder/reproducer
JP2008084433A (en) * 2006-09-27 2008-04-10 Hoya Corp Manufacturing method of magnetic recording medium
JP2008084432A (en) * 2006-09-27 2008-04-10 Hoya Corp Magnetic recording medium and manufacturing method of magnetic recording medium
CN100458923C (en) * 2005-06-28 2009-02-04 株式会社东芝 Substrate for magnetic recording media, magnetic recording media and magnetic recording apparatus
WO2009017016A1 (en) * 2007-07-30 2009-02-05 Showa Denko K.K. Magnetic recording medium manufacturing method and magnetic recording/reproduction device
US20090117409A1 (en) * 2007-11-02 2009-05-07 Samsung Electronics Co., Ltd. Perpendicular magnetic recording medium and method of manufacturing the same
JP2009157983A (en) * 2007-12-26 2009-07-16 Showa Denko Kk Method of manufacturing magnetic recording medium, and magnetic recording and reproducing device
JP2009211759A (en) * 2008-03-04 2009-09-17 Fujitsu Ltd Magnetic recording medium and manufacturing method thereof
WO2009116412A1 (en) * 2008-03-17 2009-09-24 Hoya株式会社 Magnetic recording medium and method for manufacturing magnetic recording medium
JP2009223949A (en) * 2008-03-17 2009-10-01 Hoya Corp Magnetic recording medium and method of manufacturing magnetic recording medium
JP2009230795A (en) * 2008-03-21 2009-10-08 Fuji Electric Device Technology Co Ltd Magnetic recording medium and manufacturing method therefor
JP2009238287A (en) * 2008-03-26 2009-10-15 Fujitsu Ltd Manufacturing method of magnetic recording medium, magnetic recording medium, and magnetic recording and reproducing apparatus
JP2009271958A (en) * 2008-04-30 2009-11-19 Fujitsu Ltd Magnetic recording medium, method of manufacturing the same, and magnetic recording and reproducing apparatus
WO2010010843A1 (en) * 2008-07-22 2010-01-28 富士通株式会社 Method of manufacturing magnetic recording medium, magnetic recording medium, and information storage device
WO2010038797A1 (en) * 2008-10-03 2010-04-08 株式会社アルバック Method for manufacturing magnetic storage medium, magnetic storage medium, and information storage device
WO2010050399A1 (en) * 2008-10-30 2010-05-06 株式会社アルバック Film manufacturing method, magnetic storage medium, and information storage device
JP2010123179A (en) * 2008-11-19 2010-06-03 Ulvac Japan Ltd Manufacturing method of magnetic storage medium, magnetic storage medium, and information storage device
WO2010074077A1 (en) * 2008-12-26 2010-07-01 株式会社アルバック Magnetic storage medium production method, magnetic storage medium, and information storage device
WO2010074078A1 (en) * 2008-12-26 2010-07-01 株式会社アルバック Magnetic storage medium manufacturing method, magnetic storage medium, and information storage device
US7771791B2 (en) 2005-09-06 2010-08-10 Canon Kabushiki Kaisha Production process of structured material
JP2011146108A (en) * 2010-01-18 2011-07-28 Showa Denko Kk Method for manufacturing magnetic recording medium, magnetic recording medium, and magnetic recording and reproducing device
US7993536B2 (en) 2008-12-12 2011-08-09 Kabushiki Kaisha Toshiba Method of manufacturing magnetic recording medium
US8002997B2 (en) 2008-08-22 2011-08-23 Kabushiki Kaisha Toshiba Method of manufacturing magnetic recording medium and magnetic recording medium
US8012361B2 (en) 2009-02-20 2011-09-06 Kabushiki Kaisha Toshiba Method of manufacturing magnetic recording medium
US8029682B2 (en) 2009-02-20 2011-10-04 Kabushiki Kaisha Toshiba Method of manufacturing magnetic recording medium
US8048323B2 (en) 2006-11-27 2011-11-01 Showa Denko K.K. Method for manufacturing magnetic recording medium and magnetic recording and reproducing apparatus
US8057689B2 (en) 2009-02-20 2011-11-15 Kabushiki Kaisha Toshiba Method of manufacturing magnetic recording medium
US8120869B2 (en) 2008-01-17 2012-02-21 Showa Denko K.K. Magnetic recording medium and magnetic recording/reproducing apparatus
US8139303B2 (en) 2006-09-22 2012-03-20 Showa Denko K.K. Method for production of magnetic recording medium, magnetic recording medium and magnetic recording and reproduction device
US8257845B2 (en) 2008-02-22 2012-09-04 Hitachi Global Storage Technologies Netherlands B.V. Magnetic recording medium utilizing a recording layer having more and less concentrated parts of a nonmagnetic element in an in-plane direction and a nonmagnetic layer
US8263190B2 (en) 2007-06-19 2012-09-11 Showa Denko K.K. Method of producing magnetic recording medium, and magnetic recording and reading device
US8284520B2 (en) 2008-03-05 2012-10-09 Showa Denko K.K. Magnetic recording medium, method for producing magnetic recording medium, and magnetic recording/reproducing apparatus
US8303828B2 (en) 2008-12-01 2012-11-06 Showa Denko K.K. Method for manufacturing magnetic recording medium and magnetic recording-reproducing apparatus
US8305850B2 (en) 2008-05-21 2012-11-06 Showa Denko K.K. Method of evaluating magnetic recording medium and method of manufacturing magnetic recording medium
US8315018B2 (en) 2008-02-28 2012-11-20 Showa Denko K.K. Magnetic recording medium, method of manufacturing magnetic recording medium, and magnetic recording/reproducing apparatus
US8355223B2 (en) 2008-09-12 2013-01-15 Showa Denko K.K. Magnetic recording medium, method of manufacturing magnetic recording medium, and magnetic recording/reproducing apparatus
US8361640B2 (en) 2008-02-22 2013-01-29 HGST Netherlands B.V. Magnetic recording medium having ion-implanted parts
US8361641B2 (en) 2007-05-30 2013-01-29 Seagate Technology Llc Perpendicular magnetic recording layer with regions having different magnetic anisotropy constants
US8383253B2 (en) 2008-02-22 2013-02-26 HGST Netherlands B.V. Magnetic recording medium utilizing a recording layer having more and less concentrated parts of a nonmagnetic element in an in-plane direction and manufacturing method thereof
US8389048B2 (en) * 2006-02-10 2013-03-05 Showa Denko K.K. Magnetic recording medium, method for production thereof and magnetic recording and reproducing device
US8394514B2 (en) 2007-12-03 2013-03-12 Showa Denko K.K. Method for producing magnetic recording medium and magnetic recording/reproducing apparatus
US8414967B2 (en) 2008-01-11 2013-04-09 Showa Denko K.K. Process for producing magnetic recording medium and magnetic recording and reproducing apparatus
US8486486B2 (en) 2010-10-22 2013-07-16 Showa Denko K.K. Method of manufacturing magnetic recording medium and magnetic recording and reproducing device
US8551348B2 (en) 2007-12-27 2013-10-08 Kabushiki Kaisha Toshiba Magnetic recording medium and method of manufacturing the same
US8802188B2 (en) 2008-05-15 2014-08-12 Showa Denko K.K. Method for manufacturing magnetic recording medium, magnetic recording medium, and magnetic recording and reproducing apparatus
US8859033B2 (en) 2009-10-20 2014-10-14 Showa Denko K.K. Method for producing magnetic recording medium and magnetic recording replaying device
US8883265B2 (en) 2009-12-21 2014-11-11 Showa Denko K.K. Method of manufacturing magnetic recording medium and magnetic recording/reproducing device
US8980451B2 (en) 2010-09-17 2015-03-17 Kabushiki Kaisha Toshiba Magnetic recording medium, method of manufacturing the same, and magnetic recording apparatus
US10026429B2 (en) 2009-03-13 2018-07-17 Seagate Technology Llc Perpendicular magnetic recording medium

Cited By (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6014296A (en) * 1995-07-24 2000-01-11 Kabushiki Kaisha Toshiba Magnetic disk, method of manufacturing magnetic disk and magnetic recording apparatus
US6055139A (en) * 1995-12-14 2000-04-25 Fujitsu Limited Magnetic recording medium and method of forming the same and magnetic disk drive
US6324032B1 (en) 1995-12-14 2001-11-27 Fujitsu Limited Magnetic recording medium having linear or curved tracking servo patterns formed obliquely relative to direction of tracks, and magnetic recording apparatus using the same
US6841224B2 (en) 2001-03-30 2005-01-11 Kabushiki Kaisha Toshiba Method of patterning magnetic products using chemical reactions
US7166261B2 (en) 2001-03-30 2007-01-23 Kabushiki Kaisha Toshiba Method of patterning products using chemical reaction
US7232621B2 (en) 2001-03-30 2007-06-19 Kabushiki Kaisha Toshiba Method of patterning magnetic products using chemical reaction
CN100458923C (en) * 2005-06-28 2009-02-04 株式会社东芝 Substrate for magnetic recording media, magnetic recording media and magnetic recording apparatus
US7635529B2 (en) 2005-06-28 2009-12-22 Showa Denko K.K. Substrate for magnetic recording media, magnetic recording media and magnetic recording apparatus
US7771791B2 (en) 2005-09-06 2010-08-10 Canon Kabushiki Kaisha Production process of structured material
US8389048B2 (en) * 2006-02-10 2013-03-05 Showa Denko K.K. Magnetic recording medium, method for production thereof and magnetic recording and reproducing device
WO2007097438A1 (en) * 2006-02-21 2007-08-30 Showa Denko K.K. Magnetic recording medium, method for production thereof, and magnetic recording and reproducing device
JP2008016086A (en) * 2006-07-03 2008-01-24 Toshiba Corp Magnetic recording medium and device
US7983004B2 (en) 2006-07-03 2011-07-19 Kabushiki Kaisha Toshiba Magnetic recording medium with magnetic film pattern sidewalls having at least two faces of different slope angles and magnetic recording apparatus having the same
JP4599328B2 (en) * 2006-07-03 2010-12-15 株式会社東芝 Magnetic recording medium
WO2008026610A1 (en) * 2006-08-28 2008-03-06 Showa Denko K.K. Method for manufacture of magnetic recording medium and magnetic recording and reproduction device
US9224414B2 (en) 2006-08-28 2015-12-29 Showa Denko K.K. Method for manufacture of magnetic recording medium and magnetic recording and reproduction device
WO2008035520A1 (en) * 2006-09-21 2008-03-27 Showa Denko K.K. Magnetic recording medium and method for producing the same, and magnetic recorder/reproducer
US8158215B2 (en) 2006-09-21 2012-04-17 Showa Denko K.K. Magnetic recording media and method of manufacturing the same, and magnetic recording/reproduction device
US8139303B2 (en) 2006-09-22 2012-03-20 Showa Denko K.K. Method for production of magnetic recording medium, magnetic recording medium and magnetic recording and reproduction device
JP2008084432A (en) * 2006-09-27 2008-04-10 Hoya Corp Magnetic recording medium and manufacturing method of magnetic recording medium
US9005699B2 (en) 2006-09-27 2015-04-14 WD Media, LLC Method for manufacturing magnetic recording medium
JP2008084433A (en) * 2006-09-27 2008-04-10 Hoya Corp Manufacturing method of magnetic recording medium
US8048323B2 (en) 2006-11-27 2011-11-01 Showa Denko K.K. Method for manufacturing magnetic recording medium and magnetic recording and reproducing apparatus
US8889274B2 (en) 2007-05-30 2014-11-18 Seagate Technology International Perpendicular magnetic recording layer with regions having different magnetic anisotropy constants
US8361641B2 (en) 2007-05-30 2013-01-29 Seagate Technology Llc Perpendicular magnetic recording layer with regions having different magnetic anisotropy constants
US8263190B2 (en) 2007-06-19 2012-09-11 Showa Denko K.K. Method of producing magnetic recording medium, and magnetic recording and reading device
US8336193B2 (en) 2007-07-30 2012-12-25 Showa Denko K.K. Process for making magnetic recording medium and magnetic recording-reproducing apparatus
WO2009017016A1 (en) * 2007-07-30 2009-02-05 Showa Denko K.K. Magnetic recording medium manufacturing method and magnetic recording/reproduction device
JP5478251B2 (en) * 2007-07-30 2014-04-23 昭和電工株式会社 Method for manufacturing magnetic recording medium
US20090117409A1 (en) * 2007-11-02 2009-05-07 Samsung Electronics Co., Ltd. Perpendicular magnetic recording medium and method of manufacturing the same
US8394514B2 (en) 2007-12-03 2013-03-12 Showa Denko K.K. Method for producing magnetic recording medium and magnetic recording/reproducing apparatus
JP2009157983A (en) * 2007-12-26 2009-07-16 Showa Denko Kk Method of manufacturing magnetic recording medium, and magnetic recording and reproducing device
US8551349B2 (en) 2007-12-26 2013-10-08 Showa Denko K.K. Method for producing magnetic recording medium, and magnetic recording/reproducing apparatus
US8551348B2 (en) 2007-12-27 2013-10-08 Kabushiki Kaisha Toshiba Magnetic recording medium and method of manufacturing the same
US8414967B2 (en) 2008-01-11 2013-04-09 Showa Denko K.K. Process for producing magnetic recording medium and magnetic recording and reproducing apparatus
US8120869B2 (en) 2008-01-17 2012-02-21 Showa Denko K.K. Magnetic recording medium and magnetic recording/reproducing apparatus
US8361640B2 (en) 2008-02-22 2013-01-29 HGST Netherlands B.V. Magnetic recording medium having ion-implanted parts
US8383253B2 (en) 2008-02-22 2013-02-26 HGST Netherlands B.V. Magnetic recording medium utilizing a recording layer having more and less concentrated parts of a nonmagnetic element in an in-plane direction and manufacturing method thereof
US8257845B2 (en) 2008-02-22 2012-09-04 Hitachi Global Storage Technologies Netherlands B.V. Magnetic recording medium utilizing a recording layer having more and less concentrated parts of a nonmagnetic element in an in-plane direction and a nonmagnetic layer
US8315018B2 (en) 2008-02-28 2012-11-20 Showa Denko K.K. Magnetic recording medium, method of manufacturing magnetic recording medium, and magnetic recording/reproducing apparatus
JP2009211759A (en) * 2008-03-04 2009-09-17 Fujitsu Ltd Magnetic recording medium and manufacturing method thereof
US8284520B2 (en) 2008-03-05 2012-10-09 Showa Denko K.K. Magnetic recording medium, method for producing magnetic recording medium, and magnetic recording/reproducing apparatus
JP2009223949A (en) * 2008-03-17 2009-10-01 Hoya Corp Magnetic recording medium and method of manufacturing magnetic recording medium
US8605388B2 (en) 2008-03-17 2013-12-10 Wd Media (Singapore) Pte. Ltd. Magnetic recording medium with guard layer between auxiliary and magnetic recording layers and manufacturing method of the magnetic recording medium
WO2009116412A1 (en) * 2008-03-17 2009-09-24 Hoya株式会社 Magnetic recording medium and method for manufacturing magnetic recording medium
JP2009230795A (en) * 2008-03-21 2009-10-08 Fuji Electric Device Technology Co Ltd Magnetic recording medium and manufacturing method therefor
JP2009238287A (en) * 2008-03-26 2009-10-15 Fujitsu Ltd Manufacturing method of magnetic recording medium, magnetic recording medium, and magnetic recording and reproducing apparatus
US8277874B2 (en) 2008-03-26 2012-10-02 Fujitsu Limited Manufacturing method of magnetic recording medium, the magnetic recording medium, and magnetic recording and reproducing apparatus
JP2009271958A (en) * 2008-04-30 2009-11-19 Fujitsu Ltd Magnetic recording medium, method of manufacturing the same, and magnetic recording and reproducing apparatus
US8802188B2 (en) 2008-05-15 2014-08-12 Showa Denko K.K. Method for manufacturing magnetic recording medium, magnetic recording medium, and magnetic recording and reproducing apparatus
US8305850B2 (en) 2008-05-21 2012-11-06 Showa Denko K.K. Method of evaluating magnetic recording medium and method of manufacturing magnetic recording medium
JP2010027159A (en) * 2008-07-22 2010-02-04 Fujitsu Ltd Method of manufacturing magnetic recording medium, magnetic recording medium, and information storage device
WO2010010843A1 (en) * 2008-07-22 2010-01-28 富士通株式会社 Method of manufacturing magnetic recording medium, magnetic recording medium, and information storage device
US8002997B2 (en) 2008-08-22 2011-08-23 Kabushiki Kaisha Toshiba Method of manufacturing magnetic recording medium and magnetic recording medium
US8017023B2 (en) 2008-08-22 2011-09-13 Kabushiki Kaisha Toshiba Method of manufacturing magnetic recording medium and magnetic recording medium
US8355223B2 (en) 2008-09-12 2013-01-15 Showa Denko K.K. Magnetic recording medium, method of manufacturing magnetic recording medium, and magnetic recording/reproducing apparatus
WO2010038797A1 (en) * 2008-10-03 2010-04-08 株式会社アルバック Method for manufacturing magnetic storage medium, magnetic storage medium, and information storage device
JP2010092515A (en) * 2008-10-03 2010-04-22 Ulvac Japan Ltd Method for manufacturing magnetic storage medium, magnetic storage medium, and information storage device
WO2010050399A1 (en) * 2008-10-30 2010-05-06 株式会社アルバック Film manufacturing method, magnetic storage medium, and information storage device
JP2010108551A (en) * 2008-10-30 2010-05-13 Ulvac Japan Ltd Method of manufacturing film, magnetic recording medium, and information recording apparatus
JP2010123179A (en) * 2008-11-19 2010-06-03 Ulvac Japan Ltd Manufacturing method of magnetic storage medium, magnetic storage medium, and information storage device
US8303828B2 (en) 2008-12-01 2012-11-06 Showa Denko K.K. Method for manufacturing magnetic recording medium and magnetic recording-reproducing apparatus
US7993536B2 (en) 2008-12-12 2011-08-09 Kabushiki Kaisha Toshiba Method of manufacturing magnetic recording medium
JP2010153002A (en) * 2008-12-26 2010-07-08 Ulvac Japan Ltd Method for manufacturing magnetic storage medium, magnetic storage medium, and information storage device
WO2010074077A1 (en) * 2008-12-26 2010-07-01 株式会社アルバック Magnetic storage medium production method, magnetic storage medium, and information storage device
WO2010074078A1 (en) * 2008-12-26 2010-07-01 株式会社アルバック Magnetic storage medium manufacturing method, magnetic storage medium, and information storage device
JP2010153003A (en) * 2008-12-26 2010-07-08 Ulvac Japan Ltd Method for manufacturing magnetic storage medium, magnetic storage medium, and information storage device
US8057689B2 (en) 2009-02-20 2011-11-15 Kabushiki Kaisha Toshiba Method of manufacturing magnetic recording medium
US8012361B2 (en) 2009-02-20 2011-09-06 Kabushiki Kaisha Toshiba Method of manufacturing magnetic recording medium
US8029682B2 (en) 2009-02-20 2011-10-04 Kabushiki Kaisha Toshiba Method of manufacturing magnetic recording medium
US10026429B2 (en) 2009-03-13 2018-07-17 Seagate Technology Llc Perpendicular magnetic recording medium
US8859033B2 (en) 2009-10-20 2014-10-14 Showa Denko K.K. Method for producing magnetic recording medium and magnetic recording replaying device
US8883265B2 (en) 2009-12-21 2014-11-11 Showa Denko K.K. Method of manufacturing magnetic recording medium and magnetic recording/reproducing device
JP2011146108A (en) * 2010-01-18 2011-07-28 Showa Denko Kk Method for manufacturing magnetic recording medium, magnetic recording medium, and magnetic recording and reproducing device
US8980451B2 (en) 2010-09-17 2015-03-17 Kabushiki Kaisha Toshiba Magnetic recording medium, method of manufacturing the same, and magnetic recording apparatus
US8486486B2 (en) 2010-10-22 2013-07-16 Showa Denko K.K. Method of manufacturing magnetic recording medium and magnetic recording and reproducing device

Similar Documents

Publication Publication Date Title
JPH05205257A (en) Magnetic recording medium
US5815343A (en) Magnetic recording medium, process for producing the same and magnetic recording system
US6153281A (en) Magnetic media with permanently defined non-magnetic tracks and servo-patterns
JP4428835B2 (en) Magnetic recording medium and method for manufacturing the same
EP0452876A2 (en) A longitudinal magnetic recording medium
JP3803180B2 (en) Magnetic recording medium, method for manufacturing the same, and magnetic disk drive
JP3172000B2 (en) Magnetic recording / reproducing device
JP3329259B2 (en) Master information carrier and method of manufacturing magnetic recording medium
JP3286291B2 (en) Magnetic recording media
US5812337A (en) Magnetic disk device using reproducing head having a large reproducing width
JP2000306227A (en) Magnetic recording medium
KR100630585B1 (en) Magnetic recording medium, method of manufacturing thereof and magnetic disk apparatus
JP2003016621A (en) Magnetic recording medium
JP2706173B2 (en) Method for manufacturing magnetic memory element
JP3495674B2 (en) Magnetic recording medium and method of manufacturing the same
JP2001076330A (en) Magnetic recording medium and its production
JP3359706B2 (en) Magnetic recording media
JP3564707B2 (en) Magnetic recording media
JP2002324313A (en) Manufacturing method of magnetic recording medium
JP3565103B2 (en) Magnetic recording device
KR940005350B1 (en) Magnetic recording medium
JP2001067660A (en) Production of magnetic recording medium
JP2000048358A (en) Production of magnetic record medium
JP3933731B2 (en) Metal thin film type magnetic recording medium and manufacturing method thereof
JP3933732B2 (en) Metal thin film type magnetic recording medium

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990408