JPH05203574A - Device for measuring fluorescence immunity - Google Patents

Device for measuring fluorescence immunity

Info

Publication number
JPH05203574A
JPH05203574A JP3418492A JP3418492A JPH05203574A JP H05203574 A JPH05203574 A JP H05203574A JP 3418492 A JP3418492 A JP 3418492A JP 3418492 A JP3418492 A JP 3418492A JP H05203574 A JPH05203574 A JP H05203574A
Authority
JP
Japan
Prior art keywords
optical waveguide
fluorescence
antibody
fluorescent
antigen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3418492A
Other languages
Japanese (ja)
Inventor
Mutsuyuki Sugimura
睦之 杉村
Kaori Tosa
かおり 土左
Masanori Hasegawa
雅典 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP3418492A priority Critical patent/JPH05203574A/en
Publication of JPH05203574A publication Critical patent/JPH05203574A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"

Abstract

PURPOSE:To improve measurement sensitivity and accuracy of the degree of immunity reaction based on fluorescence intensity which is excited by evanescent wave component. CONSTITUTION:An antibody 4 is fixed to a slab-type optical waveguide 4 and an antibody 4d which is labeled by BICY5.18-OSu4e is coupled to an antibody 4c which is connected to the antibody 4b by the antigen antibody reaction. An excitation light with a wavelength exceeding 600nm is introduced to the slab-type optical waveguide 4, thus exciting BICY5.18-OSu4e which is constrained near the surface of the optical waveguide 4 by the evanescent wave component.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は蛍光免疫測定装置に関
し、さらに詳細にいえば、導入された励起光を全反射さ
せながら伝播させる光導波路の表面において抗原抗体反
応を行なわせ、さらに蛍光物質で標識された物質を反応
させ、上記励起光のエバネッセント波成分により励起さ
れる蛍光物質が発する蛍光を光導波路に導入し、全反射
させながら伝播させ、光導波路から出射される蛍光に基
づいて免疫反応の程度を測定する蛍光免疫測定装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluorescence immunoassay device, and more specifically, it causes an antigen-antibody reaction to occur on the surface of an optical waveguide that propagates the introduced excitation light while totally reflecting it. The labeled substance is reacted, the fluorescence emitted by the fluorescent substance excited by the evanescent wave component of the excitation light is introduced into the optical waveguide, propagated while being totally reflected, and the immune reaction is caused based on the fluorescence emitted from the optical waveguide. The present invention relates to a fluorescence immunoassay device for measuring the degree of

【0002】[0002]

【従来の技術】従来から光導波路に励起光を導入し、励
起光を全反射させながら光導波路中を伝播させることに
より生じるエバネッセント波成分を用いて、抗原抗体反
応により光導波路の表面近傍に拘束された蛍光物質を励
起し、励起された蛍光を光導波路を通して全反射させな
がら伝播させ、光導波路から出射させ、出射した蛍光の
強度を測定することにより間接的に免疫反応の程度を測
定する蛍光免疫測定装置の研究が行なわれている。
2. Description of the Related Art Conventionally, an evanescent wave component generated by introducing excitation light into an optical waveguide and propagating in the optical waveguide while totally reflecting the excitation light is confined to the vicinity of the surface of the optical waveguide by an antigen-antibody reaction. Fluorescence that indirectly measures the degree of immune reaction by exciting the emitted fluorescent substance, propagating the excited fluorescence through the optical waveguide while totally reflecting it, emitting it from the optical waveguide, and measuring the intensity of the emitted fluorescence. Research on immunoassay devices is being conducted.

【0003】具体的には、光導波路として合成樹脂によ
り成型されたものを用いるとともに、蛍光物質としてフ
ルオレインイソチオシアネート(以下、FITCと略称
する)を用い、励起光として450〜550nmの波長領
域(可視光領域)のものを用いていた。
Specifically, an optical waveguide molded of synthetic resin is used, fluorein isothiocyanate (hereinafter abbreviated as FITC) is used as a fluorescent substance, and a wavelength region of 450 to 550 nm (excitation light) is used. The visible light region) was used.

【0004】[0004]

【発明が解決しようとする課題】上記従来の蛍光免疫測
定装置においては、励起光のエバネッセント波成分によ
り免疫反応の程度に対応する蛍光物質が励起されるだけ
でなく、光導波路自体に含まれる蛍光物質も励起されて
しまうため、光導波路から出射される蛍光の強度は免疫
反応の程度に対応する蛍光強度と光導波路自体からの蛍
光強度とが重畳された値になってしまう。そして、光導
波路の表面近傍に拘束された蛍光物質はエバネッセント
波成分のみによって励起されるのに対して光導波路中の
蛍光物質は励起光そのものによって励起されるのである
から、光導波路中に含まれる蛍光物質の量が少ないにも
拘らず、光導波路自体から到底無視し得ない蛍光が励起
され、免疫反応の程度の測定精度が低下するという不都
合がある。
In the conventional fluorescence immunoassay device described above, not only is the evanescent wave component of the excitation light excited by the fluorescent substance corresponding to the degree of the immune reaction, but also the fluorescence contained in the optical waveguide itself. Since the substance is also excited, the intensity of the fluorescence emitted from the optical waveguide becomes a value obtained by superimposing the fluorescence intensity corresponding to the degree of immune reaction and the fluorescence intensity from the optical waveguide itself. Since the fluorescent substance bound in the vicinity of the surface of the optical waveguide is excited only by the evanescent wave component, the fluorescent substance in the optical waveguide is excited by the excitation light itself, so that it is included in the optical waveguide. Despite the small amount of the fluorescent substance, there is a disadvantage that the optical waveguide itself excites fluorescence that cannot be ignored and the measurement accuracy of the degree of immune reaction is reduced.

【0005】このような不都合を解消するために、蛍光
物質としてアロフィコシアニンを用いることが提案され
ているが、アロフィコシアニンは高分子量(30,00
0程度)の蛋白質であるから、溶液中における移動度が
低く、必要量のアロフィコシアニンが光導波路の表面近
傍に拘束されるまでの所要時間が長くなるという不都合
があるのみならず、抗原や抗体に結合させた場合、結合
体の安定性が悪く、免疫反応の程度に対応する量のアロ
フィコシアニンが光導波路の表面近傍に拘束され続ける
という保証がなく、この結果、免疫反応の程度の測定精
度が低下するという不都合がある。
In order to solve such inconvenience, it has been proposed to use allophycocyanin as a fluorescent substance, but allophycocyanin has a high molecular weight (30,00).
Since it is a protein (about 0), its mobility in solution is low, and it takes a long time until the required amount of allophycocyanin is bound to the vicinity of the surface of the optical waveguide. When bound to, the stability of the conjugate is poor, and there is no guarantee that the amount of allophycocyanin corresponding to the degree of immune reaction will continue to be bound near the surface of the optical waveguide. Has the disadvantage that it decreases.

【0006】また、光導波路を石英ガラスで構成すれば
光導波路自体から発生する蛍光を殆ど皆無にできるので
あるが、この場合には光導波路が高価になってしまうと
ともに、合成樹脂と比較して割れ等が発生しやすいので
保管、取扱いに細心の注意を払わなければならず、作業
性が低下するという不都合がある。
Further, if the optical waveguide is made of quartz glass, almost no fluorescence generated from the optical waveguide itself can be eliminated. However, in this case, the optical waveguide becomes expensive and compared with synthetic resin. Since cracks and the like are likely to occur, great care must be taken in storage and handling, and there is the inconvenience that workability is reduced.

【0007】[0007]

【発明の目的】この発明は上記の問題点に鑑みてなされ
たものであり、合成樹脂からなる光導波路を用いた場合
において光導波路自体から発生する蛍光の強度を大幅に
低減し、ひいては免疫反応の程度の測定感度、測定精度
を大幅に向上できる蛍光免疫測定装置を提供することを
目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and when an optical waveguide made of a synthetic resin is used, the intensity of the fluorescence generated from the optical waveguide itself is significantly reduced, and the immunoreaction is further suppressed. It is an object of the present invention to provide a fluorescence immunoassay device capable of significantly improving the measurement sensitivity and the measurement accuracy of the degree.

【0008】[0008]

【課題を解決するための手段】上記の目的を達成するた
めの、請求項1の蛍光免疫測定装置は、光導波路の蛍光
励起波長と蛍光物質の蛍光励起波長とが互に異なる波長
となるように設定されてあるとともに、光導波路に導入
される励起光の波長が蛍光物質の蛍光励起波長に含まれ
る波長に設定されたものである。
In order to achieve the above object, the fluorescence immunoassay apparatus according to claim 1 is such that the fluorescence excitation wavelength of the optical waveguide and the fluorescence excitation wavelength of the fluorescent substance are different from each other. And the wavelength of the excitation light introduced into the optical waveguide is set to the wavelength included in the fluorescence excitation wavelength of the fluorescent substance.

【0009】請求項2の蛍光免疫測定装置は、蛍光物質
がシアニン系蛍光色素であり、抗原抗体反応により光導
波路の表面近傍に拘束された抗原または抗体に対して特
異的に反応する物質に結合されたものである。請求項3
の蛍光免疫測定装置は、シアニン系蛍光色素が抗体に結
合されたものである。
In the fluorescence immunoassay device of claim 2, the fluorescent substance is a cyanine-based fluorescent dye, and the fluorescent substance is bound to a substance that specifically reacts with the antigen or antibody bound near the surface of the optical waveguide by the antigen-antibody reaction. It was done. Claim 3
The fluorescent immunoassay device described in (1) above has a cyanine-based fluorescent dye bound to an antibody.

【0010】[0010]

【作用】請求項1の蛍光免疫測定装置であれば、導入さ
れた励起光を全反射させながら伝播させる光導波路の表
面において抗原抗体反応を行なわせ、さらに蛍光物質で
標識された物質を反応させ、上記励起光のエバネッセン
ト波成分により励起される蛍光物質が発する蛍光を光導
波路に導入し、全反射させながら伝播させ、光導波路か
ら出射される蛍光に基づいて免疫反応の程度を測定する
場合において、光導波路の蛍光励起波長と蛍光物質の蛍
光励起波長とが互に異なる波長となるように設定されて
あるので、光導波路に導入される励起光の波長が蛍光物
質の蛍光励起波長に含まれる波長の励起光を光導波路に
導入することにより、光導波路の表面近傍に拘束されて
いる蛍光物質のみを励起できるとともに、光導波路自体
において励起される蛍光を殆ど皆無にできる。この結
果、光導波路が合成樹脂により形成されていてもノイズ
成分が著しく少ない状態で励起された蛍光を受光でき、
蛍光の強度に基づいて免疫反応の程度を著しく高感度か
つ高精度に測定できる。
According to the fluorescence immunoassay device of claim 1, an antigen-antibody reaction is carried out on the surface of the optical waveguide that propagates the introduced excitation light while totally reflecting it, and a substance labeled with a fluorescent substance is further reacted. In the case where the fluorescence emitted by the fluorescent substance excited by the evanescent wave component of the excitation light is introduced into the optical waveguide and propagated while being totally reflected, and the degree of the immune reaction is measured based on the fluorescence emitted from the optical waveguide. Since the fluorescence excitation wavelength of the optical waveguide and the fluorescence excitation wavelength of the fluorescent substance are set to be different from each other, the wavelength of the excitation light introduced into the optical waveguide is included in the fluorescence excitation wavelength of the fluorescent substance. By introducing excitation light of a wavelength into the optical waveguide, it is possible to excite only the fluorescent substance that is bound near the surface of the optical waveguide, and at the same time, it is excited in the optical waveguide itself. The fluorescence can be almost nil in. As a result, even if the optical waveguide is made of synthetic resin, it can receive the excited fluorescent light with a significantly reduced noise component,
The degree of immune reaction can be measured with extremely high sensitivity and accuracy based on the intensity of fluorescence.

【0011】請求項2の蛍光免疫測定装置であれば、蛍
光物質がシアニン系蛍光色素であり、抗原抗体反応によ
り光導波路の表面近傍に拘束された抗原または抗体に対
して特異的に反応する物質に結合されているので、励起
光として600nm以上の長波長光を採用でき、合成樹脂
からなる光導波路自体から発生する蛍光の強度を著しく
低減でき、光導波路から出射される蛍光の強度に基づい
て免疫反応の程度を著しく高感度かつ高精度に測定でき
る。また、励起光が600nm以上の長波長領域であるか
ら、励起光光源として単色性に優れたものを簡単に採用
でき、この面からも免疫反応の程度の高感度化かつ高精
度化を達成できる。
In the fluorescent immunoassay device according to claim 2, the fluorescent substance is a cyanine-based fluorescent dye, and the substance reacts specifically with the antigen or antibody bound near the surface of the optical waveguide by the antigen-antibody reaction. Since it is coupled to, it is possible to adopt long-wavelength light of 600 nm or more as excitation light, and it is possible to significantly reduce the intensity of the fluorescence generated from the optical waveguide itself made of synthetic resin, and based on the intensity of the fluorescence emitted from the optical waveguide. The degree of immune reaction can be measured with extremely high sensitivity and accuracy. In addition, since the excitation light is in the long wavelength region of 600 nm or more, it is possible to easily use a light source having excellent monochromaticity as the excitation light source, and also from this aspect, it is possible to achieve high sensitivity and high accuracy of the degree of immune reaction. ..

【0012】請求項3の蛍光免疫測定装置であれば、シ
アニン系蛍光色素が抗体に結合されているのであるか
ら、光導波路の表面に予め抗体を固定した状態で測定対
象溶液中の抗原との間で抗原抗体反応を行なわせ、次い
で光導波路の表面近傍に拘束された抗原と蛍光標識抗体
とにより抗原抗体反応を行なわせることにより、確実に
免疫反応の程度に対応する量の蛍光標識抗体を光導波路
の表面近傍に拘束でき、拘束された蛍光標識抗体からの
励起蛍光に基づいて免疫反応の程度を高感度かつ高精度
に測定できる。
According to the fluorescence immunoassay device of claim 3, since the cyanine fluorescent dye is bound to the antibody, the cyanine-based fluorescent dye is bound to the antigen in the solution to be measured with the antibody previously fixed on the surface of the optical waveguide. By performing an antigen-antibody reaction between the antigen-antibody reaction and the fluorescent-labeled antibody bound by the antigen bound near the surface of the optical waveguide, the amount of the fluorescent-labeled antibody corresponding to the degree of the immune reaction can be surely obtained. It can be bound near the surface of the optical waveguide, and the degree of immune reaction can be measured with high sensitivity and accuracy based on the excited fluorescence from the bound fluorescent-labeled antibody.

【0013】[0013]

【実施例】以下、実施例を示す添付図面によって詳細に
説明する。図1はこの発明の蛍光免疫測定装置の一実施
例を示す概略図であり、半導体レーザ1から出射される
励起光(600nm以上の長波長光)をレンズ系2により
絞り込み、ダイクロイックミラー3により反射させて合
成樹脂からなるスラブ型光導波路4に入射させ、スラブ
型光導波路4の入射面から出射される蛍光をダイクロイ
ックミラー3を透過させ、シャープカットフィルタを含
むレンズ系5によりノイズ成分を除去するとともに十分
に集光して受光素子としての光電子増倍管6に導いてい
る。尚、7はダイクロイックミラー3を透過した励起光
を受光する受光素子であり、半導体レーザ1から出力さ
れる励起光強度の変化を検出して半導体レーザ1をフィ
ードバック制御することにより励起光強度を一定に保持
できる。また、上記スラブ型光導波路4は、例えば図2
に示すように、表面の所定範囲を包囲するように溶液収
容部4aが形成されてあり、溶液収容部4aに含まれる
光導波路本体の表面に予め抗体4bが固定されている。
尚、スラブ型光導波路本体を水平方向を向くように配置
する代わりに垂直方向を向くように配置して両面に溶液
収容部4aを形成してもよく、この場合には励起される
蛍光の強度を倍増できるので、高感度化、高精度化に有
利である。また、4cは抗原、4dは標識抗体、4eは
蛍光物質をそれぞれ示している。
Embodiments will now be described in detail with reference to the accompanying drawings showing embodiments. FIG. 1 is a schematic diagram showing an embodiment of the fluorescence immunoassay device of the present invention. Excitation light (long wavelength light of 600 nm or more) emitted from a semiconductor laser 1 is narrowed down by a lens system 2 and reflected by a dichroic mirror 3. Then, it is made incident on the slab type optical waveguide 4 made of synthetic resin, the fluorescence emitted from the incident surface of the slab type optical waveguide 4 is transmitted through the dichroic mirror 3, and the noise component is removed by the lens system 5 including the sharp cut filter. At the same time, the light is sufficiently condensed and guided to the photomultiplier tube 6 as a light receiving element. Reference numeral 7 denotes a light receiving element that receives the excitation light transmitted through the dichroic mirror 3, and detects the change in the intensity of the excitation light output from the semiconductor laser 1 and feedback-controls the semiconductor laser 1 to keep the excitation light intensity constant. Can be held at In addition, the slab type optical waveguide 4 is, for example, as shown in FIG.
As shown in FIG. 5, the solution containing portion 4a is formed so as to surround a predetermined area of the surface, and the antibody 4b is fixed in advance on the surface of the optical waveguide main body included in the solution containing portion 4a.
Instead of arranging the slab type optical waveguide main body so as to face the horizontal direction, the slab type optical waveguide main body may be arranged so as to face the vertical direction to form the solution storage portions 4a on both sides. In this case, the intensity of the excited fluorescence is increased. Can be doubled, which is advantageous for higher sensitivity and higher accuracy. Further, 4c represents an antigen, 4d represents a labeled antibody, and 4e represents a fluorescent substance.

【0014】上記構成の蛍光免疫測定装置を用いて被検
溶液の測定を行なう場合には、先ず、溶液収容部4aに
そのままの濃度の被検溶液または所定倍率に希釈した被
検溶液を注入することにより、スラブ型光導波路本体の
表面に固定されている抗体との間で抗原抗体反応を行な
わせる。次いで、溶液収容部4aから被検溶液を排出
し、半導体レーザ1を駆動し、被検溶液の代わりに蛍光
物質で標識された蛍光標識抗体を含む溶液を溶液収容部
4aに注入し、抗原抗体反応により光導波路本体の表面
近傍に拘束された抗原との間で再び抗原抗体反応を行な
わせる。尚、ここで蛍光物質としては、シアニン系色素
としてのBICY5.18−OSu{バイオケミカル
ディテクション システムズ社(Biochemical Detectio
n SystemsInc. 4516 Henry Street, Pittsburgh, PA 15
213 USA) 製}を用い、抗β−2マイクログロブリン抗
体を所定の割合で混合し、互に結合させて得たBICY
5.18−OSu標識抗体を含む溶液を被検溶液に代え
て溶液収容部4aに注入する。また、半導体レーザ1と
しては650nmの波長の光を出射するものを用いてい
る。上記BICY5.18−OSuは、蛍光強度が優れ
ているだけでなくストークスシフト(励起光波長と励起
される蛍光波長との差)においても著しく優れている。
また、アロフィコシアニンと比較して分子量が著しく小
さいので光導波路の表面近傍に拘束された蛍光物質であ
るBICY5.18−OSuの安定性がアロフィコシア
ニンと比較して著しく優れている。
When the test solution is measured by using the fluorescence immunoassay device having the above-described structure, first, the test solution having the same concentration or the test solution diluted to a predetermined magnification is injected into the solution container 4a. As a result, an antigen-antibody reaction is carried out with the antibody immobilized on the surface of the slab type optical waveguide body. Then, the test solution is discharged from the solution storage section 4a, the semiconductor laser 1 is driven, and a solution containing a fluorescent labeled antibody labeled with a fluorescent substance is injected into the solution storage section 4a in place of the test solution, and the antigen antibody The reaction causes the antigen-antibody reaction again with the antigen bound near the surface of the optical waveguide body. Here, as the fluorescent substance, BICY5.18-OSu as a cyanine dye {biochemical
Detection Systems (Biochemical Detectio
n Systems Inc. 4516 Henry Street, Pittsburgh, PA 15
213 USA)}, and mixed with anti-β-2 microglobulin antibodies at a predetermined ratio and bound to each other to obtain BICY.
The solution containing the 5.18-OSu-labeled antibody is replaced with the test solution and injected into the solution container 4a. The semiconductor laser 1 used is one that emits light having a wavelength of 650 nm. BICY5.18-OSu is excellent not only in fluorescence intensity but also in Stokes shift (difference between excitation light wavelength and excited fluorescence wavelength).
In addition, since the molecular weight is significantly smaller than that of allophycocyanin, the stability of BICY5.18-OSu, which is a fluorescent substance bound near the surface of the optical waveguide, is significantly superior to that of allophycocyanin.

【0015】したがって、BICY5.18−OSu標
識抗体に基づく抗原抗体反応の進行に伴なって励起され
る蛍光の強度が増加し、最終的に免疫反応の程度に対応
する蛍光強度になる。この蛍光強度曲線に基づいて検量
線を得たところ図3(A)のとおりであり、10-11
の測定感度を達成できた。比較例として、図4に示すよ
うにハロゲンランプ41からの励起光を熱線吸収フィル
タ42a、コンデンサレンズ42b、干渉フィルタ42
c、光チョッパ42d、スリット42e、アクロマート
レンズ42fおよびダイクロイックミラー43を通して
合成樹脂からなる光導波路44に導き、光導波路44か
ら出射される蛍光をアクロマートレンズ42fを通して
ダイクロイックミラー43により反射させ、シャープカ
ットフィルタ45を通して光電子増倍管46に導くよう
にした免疫測定装置を用いて検量線を得た。尚、光電子
増倍管46により得られる電流をI/V変換器47aに
より電圧に変換し、光チョッパ42dからの同期信号が
制御信号として供給されているロックインアンプ47b
により増幅し、A/D変換器47cによりディジタル信
号に変換して信号処理を行なうコンピュータ47dに供
給している。また、蛍光物質としてFITCを用い、抗
β−2マイクログロブリン抗体を所定の割合で混合し、
互に結合させて得たFITC標識抗体を含む溶液を溶液
収容部に注入した。
Therefore, the intensity of the excited fluorescence increases with the progress of the antigen-antibody reaction based on the BICY5.18-OSu labeled antibody, and finally becomes the fluorescence intensity corresponding to the degree of the immune reaction. This based on the fluorescence intensity curve is shown in Chart was obtained a calibration curve 3 (A), 10 -11 M
The measurement sensitivity of As a comparative example, as shown in FIG. 4, the heat ray absorption filter 42a, the condenser lens 42b, and the interference filter 42 are used for the excitation light from the halogen lamp 41.
c, the optical chopper 42d, the slit 42e, the achromat lens 42f, and the dichroic mirror 43 to guide it to the optical waveguide 44 made of synthetic resin, and the fluorescence emitted from the optical waveguide 44 is reflected by the dichroic mirror 43 through the achromat lens 42f, and a sharp cut filter A calibration curve was obtained using an immunoassay device which was designed to lead to a photomultiplier tube 46 through 45. A lock-in amplifier 47b, which converts the current obtained by the photomultiplier tube 46 into a voltage by the I / V converter 47a, and is supplied with the synchronizing signal from the optical chopper 42d as a control signal.
Is amplified by the A / D converter 47c, converted into a digital signal by the A / D converter 47c, and supplied to the computer 47d for signal processing. In addition, FITC is used as a fluorescent substance, and anti-β-2 microglobulin antibody is mixed at a predetermined ratio,
The solution containing the FITC-labeled antibody obtained by binding to each other was injected into the solution container.

【0016】この比較例により得られた検量線は図3
(B)のとおりであり、10-10Mの測定感度を達成で
きた。以上から明らかなように、蛍光色素としてBIC
Y5.18−OSuを用い、波長が650nmの励起光を
用いるだけで、免疫反応の程度の測定感度を1桁向上さ
せることができる。
The calibration curve obtained by this comparative example is shown in FIG.
As in (B), the measurement sensitivity of 10 −10 M was achieved. As is clear from the above, BIC is used as the fluorescent dye.
By using Y5.18-OSu and using excitation light having a wavelength of 650 nm, the measurement sensitivity of the degree of immune reaction can be improved by one digit.

【0017】尚、この発明は上記の実施例に限定される
ものではなく、例えば、光導波路の表面に抗体を固定す
る代わりに抗原またはハプテン(hapten)を固定し、シ
アニン系色素を抗原またはハプテンと結合させることが
可能であるほか、BICY5.18−OSu以外のシア
ニン系色素を用いることが可能であり、その他、この発
明の要旨を変更しない範囲内において種々の設計変更を
施すことが可能である。
The present invention is not limited to the above-mentioned embodiment, and for example, instead of immobilizing the antibody on the surface of the optical waveguide, the antigen or hapten is immobilized, and the cyanine dye is used as the antigen or hapten. Cyanine dyes other than BICY5.18-OSu can be used, and various design changes can be made without departing from the scope of the present invention. is there.

【0018】[0018]

【発明の効果】以上のように請求項1の発明は、光導波
路に導入される励起光の波長が蛍光物質の蛍光励起波長
に含まれる波長の励起光を光導波路に導入することによ
り、光導波路の表面近傍に拘束されている蛍光物質のみ
を励起できるとともに、光導波路自体において励起され
る蛍光を殆ど皆無にでき、光導波路が合成樹脂により形
成されていてもノイズ成分が著しく少ない状態で励起さ
れた蛍光を受光でき、蛍光の強度に基づいて免疫反応の
程度を著しく高感度かつ高精度に測定できるという特有
の効果を奏する。
As described above, according to the invention of claim 1, the wavelength of the excitation light introduced into the optical waveguide is introduced into the optical waveguide by introducing the excitation light having a wavelength contained in the fluorescence excitation wavelength of the fluorescent substance. It is possible to excite only fluorescent substances that are bound near the surface of the waveguide, and it is possible to virtually eliminate the fluorescence that is excited in the optical waveguide itself. Even if the optical waveguide is made of synthetic resin, it is excited in a state where the noise component is extremely small. The unique effect of being able to receive the emitted fluorescence and being able to measure the degree of the immune reaction based on the intensity of the fluorescence with extremely high sensitivity and high accuracy is exhibited.

【0019】請求項2の発明は、励起光として600nm
以上の長波長光を採用することにより、合成樹脂からな
る光導波路自体から発生する蛍光の強度を著しく低減で
き、光導波路から出射される蛍光の強度に基づいて免疫
反応の程度を著しく高感度かつ高精度に測定でき、さら
に、励起光が600nm以上の長波長領域であるから、励
起光光源として単色性に優れたものを簡単に採用でき、
この面からも免疫反応の程度の高感度化かつ高精度化を
達成できるという特有の効果を奏する。
According to the second aspect of the invention, the excitation light is 600 nm.
By adopting the above long-wavelength light, the intensity of fluorescence generated from the optical waveguide itself made of synthetic resin can be remarkably reduced, and the degree of the immune reaction can be remarkably highly sensitive based on the intensity of the fluorescence emitted from the optical waveguide. High-accuracy measurement is possible. Furthermore, since the excitation light is in the long wavelength region of 600 nm or more, it is easy to adopt a monochromatic excitation light source.
From this aspect as well, there is a unique effect that it is possible to achieve high sensitivity and high accuracy of the degree of immune reaction.

【0020】請求項3の発明は、光導波路の表面に予め
抗体を固定した状態で測定対象溶液中の抗原との間で抗
原抗体反応を行なわせ、次いで光導波路の表面近傍に拘
束された抗原と蛍光標識抗体とにより抗原抗体反応を行
なわせることにより、確実に免疫反応の程度に対応する
量の蛍光標識抗体を光導波路の表面近傍に拘束でき、拘
束された蛍光標識抗体からの励起蛍光に基づいて免疫反
応の程度を高感度かつ高精度に測定できるという特有の
効果を奏する。
According to a third aspect of the present invention, an antigen-antibody reaction is carried out with an antigen in a solution to be measured in the state where an antibody is immobilized on the surface of the optical waveguide in advance, and then the antigen bound near the surface of the optical waveguide. By carrying out the antigen-antibody reaction with the fluorescence-labeled antibody and the fluorescence-labeled antibody, it is possible to reliably bind the fluorescence-labeled antibody in an amount corresponding to the degree of the immune reaction to the vicinity of the surface of the optical waveguide, and to excite fluorescence from the bound fluorescence-labeled antibody. Based on this, the unique effect that the degree of immune reaction can be measured with high sensitivity and high accuracy is achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の蛍光免疫測定装置の一実施例を示す
概略図である。
FIG. 1 is a schematic diagram showing an embodiment of a fluorescent immunoassay device of the present invention.

【図2】スラブ型光導波路の構成を示す縦断面図であ
る。
FIG. 2 is a vertical sectional view showing a configuration of a slab type optical waveguide.

【図3】得られた検量線を示す図である。FIG. 3 is a diagram showing an obtained calibration curve.

【図4】比較例としての蛍光免疫測定装置を示す概略図
である。
FIG. 4 is a schematic diagram showing a fluorescence immunoassay device as a comparative example.

【符号の説明】[Explanation of symbols]

4 スラブ型光導波路 4d 標識抗体 4e 蛍
光物質
4 Slab type optical waveguide 4d Labeled antibody 4e Fluorescent substance

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 導入された励起光を全反射させながら伝
播させる光導波路(4)の表面において抗原抗体反応を
行なわせ、さらに蛍光物質(4e)で標識された物質
(4d)を反応させ、上記励起光のエバネッセント波成
分により励起される蛍光物質(4e)が発する蛍光を光
導波路(4)に導入し、全反射させながら伝播させ、光
導波路(4)から出射される蛍光に基づいて免疫反応の
程度を測定する蛍光免疫測定装置において、光導波路
(4)の蛍光励起波長と蛍光物質(4e)の蛍光励起波
長とが互に異なる波長となるように設定されてあるとと
もに、光導波路(4)に導入される励起光の波長が蛍光
物質(4e)の蛍光励起波長に含まれる波長に設定され
てあることを特徴とする蛍光免疫測定装置。
1. An antigen-antibody reaction is carried out on the surface of an optical waveguide (4) which propagates the introduced excitation light while totally reflecting it, and a substance (4d) labeled with a fluorescent substance (4e) is further reacted. The fluorescence emitted by the fluorescent substance (4e) excited by the evanescent wave component of the excitation light is introduced into the optical waveguide (4), propagated while being totally reflected, and immunized based on the fluorescence emitted from the optical waveguide (4). In the fluorescence immunoassay device for measuring the degree of reaction, the fluorescence excitation wavelength of the optical waveguide (4) and the fluorescence excitation wavelength of the fluorescent substance (4e) are set to be different from each other, and the optical waveguide ( The fluorescence immunoassay device characterized in that the wavelength of the excitation light introduced into 4) is set to a wavelength included in the fluorescence excitation wavelength of the fluorescent substance (4e).
【請求項2】 蛍光物質(4e)がシアニン系蛍光色素
であり、抗原抗体反応により光導波路(4)の表面近傍
に拘束された抗原または抗体に対して特異的に反応する
物質に結合されている請求項1に記載の蛍光免疫測定装
置。
2. The fluorescent substance (4e) is a cyanine-based fluorescent dye, which is bound to a substance which specifically reacts with an antigen or antibody bound near the surface of the optical waveguide (4) by an antigen-antibody reaction. The fluorescent immunoassay device according to claim 1.
【請求項3】 シアニン系蛍光色素が抗体に結合されて
いる請求項2に記載の蛍光免疫測定装置。
3. The fluorescent immunoassay device according to claim 2, wherein a cyanine-based fluorescent dye is bound to the antibody.
JP3418492A 1992-01-25 1992-01-25 Device for measuring fluorescence immunity Pending JPH05203574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3418492A JPH05203574A (en) 1992-01-25 1992-01-25 Device for measuring fluorescence immunity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3418492A JPH05203574A (en) 1992-01-25 1992-01-25 Device for measuring fluorescence immunity

Publications (1)

Publication Number Publication Date
JPH05203574A true JPH05203574A (en) 1993-08-10

Family

ID=12407116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3418492A Pending JPH05203574A (en) 1992-01-25 1992-01-25 Device for measuring fluorescence immunity

Country Status (1)

Country Link
JP (1) JPH05203574A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08285851A (en) * 1995-04-13 1996-11-01 Nec Corp Optical waveguide type fluoroimmunoassary sensor and production thereof
US7276368B2 (en) 2001-02-02 2007-10-02 Research International, Inc. Enhanced waveguide and method
US7496245B2 (en) 2004-08-20 2009-02-24 Research International, Inc. Misalignment compensating optical sensor and method
US7651869B2 (en) 2006-03-14 2010-01-26 Research International, Inc. Optical assay apparatus and methods

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08285851A (en) * 1995-04-13 1996-11-01 Nec Corp Optical waveguide type fluoroimmunoassary sensor and production thereof
US7276368B2 (en) 2001-02-02 2007-10-02 Research International, Inc. Enhanced waveguide and method
US7608463B2 (en) 2001-02-02 2009-10-27 Research International, Inc. Enhanced waveguide and method
US7496245B2 (en) 2004-08-20 2009-02-24 Research International, Inc. Misalignment compensating optical sensor and method
US7651869B2 (en) 2006-03-14 2010-01-26 Research International, Inc. Optical assay apparatus and methods

Similar Documents

Publication Publication Date Title
US4582809A (en) Apparatus including optical fiber for fluorescence immunoassay
US4368047A (en) Process for conducting fluorescence immunoassays without added labels and employing attenuated internal reflection
US6287871B1 (en) System for determining analyte concentration
US4447546A (en) Fluorescent immunoassay employing optical fiber in capillary tube
FI76432C (en) Method and apparatus for determining elements in solution with a light conductor
Plowman et al. Femtomolar sensitivity using a channel-etched thin film waveguide fluoroimmunosensor
US7612349B2 (en) Surface plasmon enhanced fluorescence sensor
US5719063A (en) Multiplex immunoassay system
Stringer et al. Quantum dot-based biosensor for detection of human cardiac troponin I using a liquid-core waveguide
EP1371967B1 (en) A cuvette for a reader device for assaying substances using the evanescence field method
US20200256790A1 (en) Uv solid state detection and methods therefor
Misiakos et al. A multi-band capillary immunosensor
JPH05203574A (en) Device for measuring fluorescence immunity
JP3362206B2 (en) Fluorescence immunoassay device
JPH04225144A (en) Optical apparatus for measurement
WO2021131331A1 (en) Biomolecular inspection chip for fluorescence detection
Starodub et al. Construction and biomedical application of immunosensors based on fiber optics and enhanced chemiluminescence
WO2020260865A1 (en) A method for detecting an analyte
JP3321469B2 (en) Luminescent labeling method, luminescent label structure, luminescent immunoassay method and apparatus therefor
JP2005077396A (en) Optical waveguide for analysis
Ligler et al. Effect of wavelength and dye selection on biosensor response
Yoshida et al. Development of fiber optic fluoroimmunoassay: proximal vs. distal end collection geometries of a fiber sensor
Yoshida et al. Sensitivity enhancement of evanescent wave immunoassay
Stone et al. Adaptive virus detection using filament-coupled antibodies
Petrou et al. Interferometry-Based Immunoassays