JPH05186810A - Method for brazing iron-based sintered parts in sintering - Google Patents

Method for brazing iron-based sintered parts in sintering

Info

Publication number
JPH05186810A
JPH05186810A JP2044892A JP2044892A JPH05186810A JP H05186810 A JPH05186810 A JP H05186810A JP 2044892 A JP2044892 A JP 2044892A JP 2044892 A JP2044892 A JP 2044892A JP H05186810 A JPH05186810 A JP H05186810A
Authority
JP
Japan
Prior art keywords
brazing
temperature
iron
green compact
atmosphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2044892A
Other languages
Japanese (ja)
Inventor
Koshiro Ueda
公志郎 上田
Takeaki Masuo
武昭 増尾
Toru Kono
通 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2044892A priority Critical patent/JPH05186810A/en
Publication of JPH05186810A publication Critical patent/JPH05186810A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce an iron-base sintered parts having intricate shape excellent in bonding strength by using a Cu-Ni-Mn based brazing filler metal incorporating a specified content of Fe. CONSTITUTION:An iron-based green compact is sintered and simultaneously brazed with the brazing filler metal contg. 16-30wt.% Fe. In this case, the green compact is heated in a vacuum atmosphere from room temp. to a specified temp. higher than the m.p. of the brazing filler metal and lower than 1080 deg.C and held at that temp. The atmosphere is changed into a reduction atmosphere, and the green compact is heated from the specified temp. to the sintering temp. of the green compact in the reduction atmosphere and held at this temp.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、鉄系圧粉体を焼結す
ると同時にろう付けし、複雑形状の鉄系焼結部品を製造
する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an iron-based sintered part having a complicated shape by sintering and brazing an iron-based green compact.

【0002】[0002]

【従来の技術】一般に、鉄系焼結部品は、鉄粉を主体と
しその他金属粉末を所定の成分組成となるように配合
し、混合したのち所定の形状に金型で成形して圧粉体と
し、この圧粉体を還元性雰囲気中で焼結することにより
製造されている。
2. Description of the Related Art Generally, iron-based sintered parts are mainly composed of iron powder, and other metal powders are compounded to have a predetermined component composition, mixed, and then molded into a predetermined shape with a mold to obtain a green compact. And is manufactured by sintering this green compact in a reducing atmosphere.

【0003】しかし、金型で成形しにくい複雑形状の焼
結部品は、複数の分割された部品形状に成形し、これら
各部品を組合せてろう付けするかまたは焼結時に同時に
ろう付けすることにより作製されていた。
However, a sintered part having a complicated shape which is difficult to be formed by a die is formed into a plurality of divided parts, and these parts are combined and brazed or simultaneously brazed at the time of sintering. It was made.

【0004】上記ろう付けに使用されるろう材は、重量
%で、Ni:30〜50%、Mn:15〜25%、F
e:3〜15%、Si:1〜5%、B:0.5〜2%を
含有し、残りがCuからなるCu合金粉末を圧粉体とし
たもの、またはNi:30〜50%、Mn:15〜25
%、Si:1〜5%、B:0.5〜2%を含有し、残り
がCuからなるCu合金粉末に、Fe粉末:3〜15%
を混合した混合粉末を圧粉体としたものを用いている。
The brazing filler metal used for the above brazing is Ni: 30 to 50%, Mn: 15 to 25%, F by weight.
e: 3 to 15%, Si: 1 to 5%, B: 0.5 to 2%, and a Cu alloy powder made of Cu with the rest being a green compact, or Ni: 30 to 50%, Mn: 15-25
%, Si: 1 to 5%, B: 0.5 to 2%, the rest is Cu alloy powder consisting of Cu, Fe powder: 3 to 15%
The mixed powder obtained by mixing is used as a green compact.

【0005】この圧粉体ろう材を各部品の接合部または
接合部近傍に設置し、水素ガス、ブタン変成ガス、アン
モニア分解ガスなどの還元性ガス雰囲気中で加熱する
と、ろう材は溶融浸透し、上記各部品の接合部はろう付
けされる(かかるろう付け法に関しては、特開平2−1
5875号公報、特開平2−247303号公報などに
詳細に記載されている)。
When the powder compact brazing filler metal is placed at or near the joints of the respective parts and heated in a reducing gas atmosphere such as hydrogen gas, butane shift gas, or ammonia decomposition gas, the brazing filler metal melts and permeates. The joints of the above parts are brazed (for the brazing method, see Japanese Patent Laid-Open No. 2-1
5875, JP-A-2-247303, etc.).

【0006】[0006]

【発明が解決しようとする課題】しかし、上記従来の還
元性ガスには一般に微量の水分が含まれており、この微
量の水分を含む還元性ガス雰囲気中でろう付けすると、
ろう材に含まれるMnが酸化しMnが酸化するとろう材
の流動性は低下するとともに母材へのぬれ性が極端に低
下し、ろう材が溶けないこともあって、ろう付け不良が
発生し、ろう付け不良に伴ってろう付け部の強度が低下
するという問題点があった。また、Feを多く含有した
ろう材も市販されているが、上記Feを多く含有したろ
う材は融点が高くなると同時に溶融したろう材の表面張
力が上昇し、母材へのぬれ性が一層低下することにより
鉄系焼結部品への浸透力が低下し、したがって、ろう付
け性も低下しかつろう付け不良によるろう付け部の強度
低下がもたらされるなどの課題があった。
However, the above-mentioned conventional reducing gas generally contains a trace amount of water, and when brazing is performed in a reducing gas atmosphere containing this trace amount of water,
When Mn contained in the brazing material is oxidized and Mn is oxidized, the fluidity of the brazing material is reduced, the wettability to the base material is extremely reduced, and the brazing material may not be melted, resulting in poor brazing. However, there has been a problem that the strength of the brazed portion is reduced due to the poor brazing. In addition, although a brazing material containing a large amount of Fe is commercially available, the brazing material containing a large amount of Fe has a high melting point and at the same time the surface tension of the molten brazing material rises, further reducing the wettability to the base material. As a result, the penetrating force into the iron-based sintered component is reduced, and therefore, the brazing property is also reduced, and the strength of the brazed portion is reduced due to poor brazing, which is a problem.

【0007】[0007]

【課題を解決するための手段】そこで、本発明者等は、
Feを多量に含む(Fe:16%以上)ろう材のろう付
け性を一層改善し、ろう付け不良によるろう付け部強度
低下が生じることのない鉄系圧粉体焼結時のろう付け方
法を開発すべく研究を行った結果、(a) ろう付けが
進行する室温から1080℃以下の温度範囲を真空雰囲
気に保持すると、従来の還元性雰囲気のように水分の影
響によるMnの酸化が防止され、上記Feを多量に含む
ろう材であっても溶融したろう材の表面張力は低下して
接合面界面および鉄系圧粉体内部に浸透して行き、ほぼ
接合面全体にろう材が行きわたる(この場合、温度が低
いので鉄系圧粉体の焼結は不十分である)、(b) 続
く、1080℃超〜焼結温度の範囲では、通常の鉄系圧
粉体を焼結する雰囲気(露点:−40℃〜−5℃程度の
工業的には不可避的な微量水分を含む還元性雰囲気)で
焼結することにより、ろう材のMnは酸化されて鉄系圧
粉体へのぬれ性は極端に低下し、高温であってもろう材
の流動性は低下し、ろう材の浸透は防止されると同時に
鉄系圧粉体の焼結が十分に進行し、所望の強度が得られ
る、などの知見を得たのである。
Therefore, the present inventors have
A brazing method for iron-based green compact sintering that further improves the brazing property of a brazing material containing a large amount of Fe (Fe: 16% or more) and does not reduce the strength of the brazing part due to poor brazing. As a result of research for development, (a) When the temperature range from room temperature where brazing proceeds to 1080 ° C. or lower is maintained in a vacuum atmosphere, oxidation of Mn due to the influence of water is prevented as in the conventional reducing atmosphere. Even if the brazing material contains a large amount of Fe, the surface tension of the molten brazing material lowers and penetrates into the interface of the bonding surface and the inside of the iron-based green compact, and the brazing material spreads almost all over the bonding surface. (In this case, since the temperature is low, the sintering of the iron-based green compact is insufficient), (b) Subsequently, in the range of more than 1080 ° C to the sintering temperature, the normal iron-based green compact is sintered. Atmosphere (Dew point: -40 ℃ to -5 ℃ By sintering in a reducing atmosphere containing a small amount of water), Mn of the brazing material is oxidized and the wettability to the iron-based green compact is extremely reduced, and the fluidity of the brazing material is reduced even at high temperature. However, it has been found that the penetration of the brazing material can be prevented and, at the same time, the sintering of the iron-based green compact can sufficiently proceed to obtain a desired strength.

【0008】この発明は、かかる知見にもとづいてなさ
れたものであって、鉄系圧粉体を焼結と同時にFe:1
6〜30重量%を含むCu−Ni−Mn系ろう材を使用
してろう付けすることにより鉄系焼結部品を製造する方
法において、真空雰囲気中で室温から上記ろう材の融点
以上1080℃以下の温度範囲内の所定の温度に昇温し
たのち、この温度範囲内に保持し、ついで、雰囲気を還
元性雰囲気に変換し、この還元性雰囲気中で上記ろう材
の融点以上1080℃以下の温度範囲内の所定の温度か
ら鉄系圧粉体の焼結温度に昇温したのち、この焼結温度
に保持する鉄系焼結部品の焼結時ろう付け法に特徴を有
するものである。
The present invention was made on the basis of such findings, and Fe: 1: 1 was formed at the same time as sintering of an iron-based green compact.
In a method for producing an iron-based sintered component by brazing using a Cu-Ni-Mn-based brazing material containing 6 to 30% by weight, in a vacuum atmosphere, from room temperature to a melting point of the brazing material or more and 1080C or less. After raising the temperature to a predetermined temperature within the temperature range, the temperature is maintained within this temperature range, and then the atmosphere is converted into a reducing atmosphere, and in this reducing atmosphere, the temperature of the melting point of the brazing material or more and 1080 ° C. or less. The method is characterized by a brazing method during sintering of an iron-based sintered component which is heated to a sintering temperature of the iron-based green compact from a predetermined temperature within the range and then maintained at this sintering temperature.

【0009】つぎに、この発明の雰囲気および温度を上
述の如く限定した理由を説明する。
Next, the reason why the atmosphere and temperature of the present invention are limited as described above will be explained.

【0010】(a) 真空雰囲気および温度 室温からFe:16〜30重量%を含むCu−Ni−M
n系ろう材の融点以上1080℃以下の温度範囲内の所
定の温度までを従来のように還元性雰囲気にするとMn
が酸化してろう材が溶融しにくくなり、ろう材が鉄系圧
粉体の接合面界面および母材へと浸透しにくくなること
から、この温度範囲内では真空(好ましくは、1×10
-2Torr以下の真空)雰囲気に保持する必要があるが、1
080℃を越えて保持すると上記ろう材が鉄系圧粉体に
浸透しすぎて接合部の強度が低下する。したがって、上
記真空雰囲気の温度の上限は1080℃に定めた。
(A) Vacuum atmosphere and temperature Cu—Ni—M containing Fe: 16 to 30 wt% from room temperature
If a reducing atmosphere is used as in the conventional method up to a predetermined temperature within the temperature range of the melting point of the n-based brazing material to 1080 ° C.
Oxidizes to make the brazing filler metal less likely to melt, and makes it difficult for the brazing filler metal to permeate the joint surface interface of the iron-based green compact and the base metal. Therefore, in this temperature range, a vacuum (preferably 1 × 10 5
It is necessary to maintain a vacuum of -2 Torr or less).
If the temperature is maintained above 080 ° C., the brazing material will penetrate too much into the iron-based green compact and the strength of the joint will decrease. Therefore, the upper limit of the temperature of the vacuum atmosphere is set to 1080 ° C.

【0011】なお、Fe:16〜30重量%を含むCu
−Ni−Mn系ろう材の融点は940〜1050℃の範
囲内にある。
Fe: Cu containing 16 to 30% by weight
The melting point of the —Ni—Mn-based brazing material is in the range of 940 to 1050 ° C.

【0012】(b) 還元性雰囲気および温度 ろう付け終了後1080℃を越え焼結温度までの雰囲気
および焼結温度保持の雰囲気は、露点がMn酸化側にあ
ることが必要であり、不可避な微量水分が含まれている
市販の還元性ガスを雰囲気とすることが好ましい。Mn
が酸化側にない特別に微量水分を除去した還元性ガスを
雰囲気ガスとすると、露点はMn酸化側になくなり、M
nが酸化されずかつ高温にあるためにろう材の流動性が
よくなりすぎて接合面界面等にポア等が発生しやすくな
るので好ましくない。
(B) Reducing Atmosphere and Temperature After the brazing, the atmosphere exceeding 1080 ° C. up to the sintering temperature and the atmosphere for maintaining the sintering temperature must have a dew point on the Mn oxidation side, and an inevitable trace amount. It is preferable to use a commercially available reducing gas containing water as the atmosphere. Mn
Is not on the oxidation side, and when a reducing gas with a special amount of water removed is used as the atmosphere gas, the dew point disappears on the Mn oxidation side and M
Since n is not oxidized and is at a high temperature, the fluidity of the brazing material becomes too good, and pores and the like are likely to occur at the interface of the joint surface, which is not preferable.

【0013】したがって、かかる微量水分を含まない還
元性ガス雰囲気に対しては鉄系焼結部品の特性を害さな
い範囲内で積極的に微量水分を添加し、露点がMn酸化
側にあるようにする必要がある。
Therefore, in the reducing gas atmosphere containing no trace amount of water, a trace amount of water is positively added within a range that does not impair the characteristics of the iron-based sintered part so that the dew point is on the Mn oxidation side. There is a need to.

【0014】なお、鉄系圧粉体の焼結温度は一般に11
00〜1250℃の範囲内にあり、Mn酸化側にある還
元性雰囲気ガスは露点が−40℃以上を有するガスであ
る。
The sintering temperature of the iron-based green compact is generally 11
The reducing atmosphere gas in the range of 00 to 1250 ° C. and on the Mn oxidation side is a gas having a dew point of −40 ° C. or higher.

【0015】この発明の鉄系焼結部品の焼結時ろう付け
方法を一層理解しやすくするために図面に基づいて具体
的に説明するが、この発明の方法は上記図面に限定され
るものではない。
The method of brazing at the time of sintering of the iron-based sintered component of the present invention will be specifically described with reference to the drawings, but the method of the present invention is not limited to the above drawings. Absent.

【0016】図1は、この発明の鉄系焼結部品の焼結時
ろう付け方法を示すパターンの概略図である。図1にお
いて縦軸に温度をとってあり、Tsは焼結温度であり、
1 はろう付けに適するろう材溶融温度から1080℃
以下の範囲内の所定の温度である。また横軸には経過時
間がとってあり、雰囲気保持時間が示されている。
FIG. 1 is a schematic diagram of a pattern showing a brazing method during sintering of an iron-based sintered component of the present invention. In FIG. 1, the vertical axis represents temperature, Ts is the sintering temperature,
T 1 is a brazing material melting temperature suitable for brazing to 1080 ° C.
It is a predetermined temperature within the following range. The horizontal axis shows elapsed time, and the atmosphere holding time is shown.

【0017】図2は、この発明の鉄系焼結部品の焼結時
ろう付け方法における圧粉体およびろう材の設置方法を
示す断面説明図である。
FIG. 2 is a sectional explanatory view showing a method of installing the green compact and the brazing material in the brazing method during sintering of the iron-based sintered part of the present invention.

【0018】図3は、この発明の方法によりろう付けお
よび焼結された鉄系焼結部品のろう付け部強度の測定法
を示す断面説明図である。
FIG. 3 is an explanatory cross-sectional view showing a method for measuring the strength of the brazed portion of an iron-based sintered component that has been brazed and sintered by the method of the present invention.

【0019】リング状圧粉体1および円板状圧粉体2を
ろう付けと同時に焼結するには、まず図2に示されるよ
うに、リング状圧粉体1を円板状圧粉体2の上に載置
し、上記リング状圧粉体1の内径部にリング状ろう材3
を入れ、円板状圧粉体2の上にのせたまま加熱炉(図示
せず)に装入する。この場合、図2に示されるように、
リング状圧粉体1および円板状圧粉体2を治具4に乗せ
て位置を固定し、加熱炉に装入する方が好ましい。
In order to sinter the ring-shaped green compact 1 and the disc-shaped green compact 2 at the same time as brazing, first, as shown in FIG. 2 is placed on the inner surface of the ring-shaped green compact 1 and the ring-shaped brazing material 3
Is placed in a heating furnace (not shown) while being placed on the disk-shaped green compact 2. In this case, as shown in FIG.
It is preferable that the ring-shaped green compact 1 and the disk-shaped green compact 2 are placed on the jig 4 to fix their positions and then charged into the heating furnace.

【0020】上記リング状圧粉体1、円板状圧粉体2お
よびリング状ろう材3は、治具4とともに加熱炉に装入
したのち、加熱炉内を図1に示されるように真空雰囲気
に保持し、昇温してろう付け可能な温度T1 まで加熱
し、このT1 に保持する。このT1 温度ではろう材3は
溶融してろう付けできるが、上記リング状圧粉体1およ
び円板状圧粉体2の焼結には不十分な温度である。
The ring-shaped green compact 1, the disk-shaped green compact 2 and the ring-shaped brazing material 3 are charged into the heating furnace together with the jig 4, and then the inside of the heating furnace is vacuumed as shown in FIG. The temperature is maintained in the atmosphere, the temperature is raised to the brazing temperature T 1, and the temperature is maintained at T 1 . At this T 1 temperature, the brazing material 3 can be melted and brazed, but the temperature is insufficient for sintering the ring-shaped green compact 1 and the disk-shaped green compact 2.

【0021】次に、上記加熱炉内の雰囲気を図1に示さ
れるようにMn酸化側の還元性雰囲気に置換し、圧粉体
の焼結温度Tsまで昇温し、この温度に保持して焼結が
終了したのち炉冷する。
Next, as shown in FIG. 1, the atmosphere in the heating furnace is replaced with a reducing atmosphere on the Mn oxidation side, the temperature is raised to the sintering temperature Ts of the green compact, and the temperature is maintained at this temperature. After the sintering is completed, the furnace is cooled.

【0022】このようにして製造された鉄系焼結部品の
ろう付け強度は、図3に示されるように、リング状焼結
体1′の外径よりも小さく円板状焼結体2′の外径より
も大きい内径の空間6を有する台7に置き、パンチ8を
円板状焼結体2′にFの力で押圧し、ろう付け部5が破
断した時の破断荷重を測定し、 ろう付け強度(kgf /mm2 )=破断荷重/ろう付け面積 の式によりろう付け強度を計算して求めた。
The brazing strength of the iron-based sintered component thus manufactured is smaller than the outer diameter of the ring-shaped sintered body 1 ', as shown in FIG. Placed on a table 7 having a space 6 having an inner diameter larger than the outer diameter of the punch, the punch 8 is pressed against the disc-shaped sintered body 2'with a force F, and the breaking load when the brazing portion 5 breaks is measured. The brazing strength (kgf / mm 2 ) = breaking load / brazing area was calculated.

【0023】[0023]

【実施例】原料粉末として重量%で(以下、%は重量%
を示す)、Ni:41.3%、Mn:17.0%を含有
し、残りがCuおよび不可避不純物からなる平均粒径:
150μmのCu合金粉末(以下、A粉末という)、N
i:40.1%、Mn:16.2%、B:1.47%、
Si:2.00%を含有し、残りがCuおよび不可避不
純物からなり、平均粒径:170μmのCu合金粉末
(以下、B粉末という)、Ni:29.3%、Mn1
2.3%、Fe:21.5%、B:1.10%、Si:
1.43%を含有し、残りがCuおよび不可避不純物か
らなる平均粒径:160μmのCu合金粉末(以下、C
粉末という)、Ni:32.4%、Mn12.5%、F
e:19.4%、B:1.03%、Si:1.51%を
含有し、残りがCuおよび不可避不純物からなる平均粒
径:160μmのCu合金粉末(以下、D粉末とい
う)、並びに、平均粒径:100μmを有し純度:9
9.5%を有するアトマイズ純Fe粉末(以下、純Fe
粉末という)をそれぞれ用意した。
[Examples] In% by weight as raw material powder (hereinafter,% is% by weight)
Average particle size of Ni: 41.3%, Mn: 17.0%, and the balance of Cu and unavoidable impurities:
Cu alloy powder of 150 μm (hereinafter referred to as A powder), N
i: 40.1%, Mn: 16.2%, B: 1.47%,
Si: 2.00% contained, the rest consisting of Cu and unavoidable impurities, Cu alloy powder (hereinafter referred to as B powder) having an average particle diameter of 170 μm, Ni: 29.3%, Mn1
2.3%, Fe: 21.5%, B: 1.10%, Si:
Cu alloy powder containing 1.43% and the rest consisting of Cu and unavoidable impurities and having an average particle size of 160 μm (hereinafter, C
Powder), Ni: 32.4%, Mn 12.5%, F
e: 19.4%, B: 1.03%, Si: 1.51%, and the rest Cu alloy powder (hereinafter referred to as D powder) having an average particle diameter of 160 μm and consisting of Cu and unavoidable impurities, and , Average particle size: 100 μm and purity: 9
Atomized pure Fe powder having 9.5% (hereinafter, pure Fe)
Powder) was prepared.

【0024】これらA〜D粉末に表1に示されるように
純Fe粉末を配合しまたは配合せずに、パラフィンワッ
クスを1%を添加して湿式混合し、圧力:6ton /cm2
でプレス成形し、外径:15mmの寸法を有するリング状
ろう材3を作製した。
As shown in Table 1, pure Fe powder was blended or not blended with these powders A to D, 1% of paraffin wax was added and wet blended, and pressure: 6 ton / cm 2
Then, a ring-shaped brazing material 3 having a size of an outer diameter of 15 mm was produced.

【0025】一方、C:0.7%、Cu:2%を含有
し、残りがFeおよび不可避不純物からなるFe粉末を
用意し、この粉末を7ton /cm2 の圧力でプレス成形す
ることにより、外径:32mm、内径:15.8mm、厚
さ:10mmの寸法を有するリング状圧粉体1および外
径:27mm、厚さ:7mmの寸法を有する円板状圧粉体2
を作製した。
On the other hand, an Fe powder containing C: 0.7% and Cu: 2% and the balance of Fe and inevitable impurities was prepared, and this powder was press-molded at a pressure of 7 ton / cm 2 , Ring-shaped green compact 1 having dimensions of outer diameter: 32 mm, inner diameter: 15.8 mm, thickness: 10 mm and disc-shaped green compact 2 having dimensions of outer diameter: 27 mm, thickness: 7 mm
Was produced.

【0026】上記リング状圧粉体1およびリング状ろう
材3を図2に示されるように組合せ、治具4と共に加熱
炉内に装入し、加熱炉内を1×10-3Torrの真空に保持
したのち、表1に示される温度T1 に加熱昇温してろう
付けし、ついで加熱炉内の雰囲気を表1に示される還元
性ガス雰囲気に置換し、焼結温度Tsに加熱保持するこ
とにより焼結し、本発明ろう付け法1〜7および比較ろ
う付け法1〜4を実施した。
The ring-shaped green compact 1 and the ring-shaped brazing filler metal 3 are combined as shown in FIG. 2, charged into a heating furnace together with the jig 4, and the inside of the heating furnace is evacuated to a vacuum of 1 × 10 −3 Torr. After that, the temperature in the heating furnace was raised to the temperature T 1 shown in Table 1 and brazing was performed. Then, the atmosphere in the heating furnace was replaced with the reducing gas atmosphere shown in Table 1, and the temperature was maintained at the sintering temperature Ts. Then, the brazing methods 1 to 7 of the present invention and the comparative brazing methods 1 to 4 were carried out.

【0027】さらに比較のために、加熱炉内の雰囲気を
変えることなく表1に示される条件でろう付けと同時に
焼結し、従来ろう付け法を実施した。
For comparison, the conventional brazing method was carried out by simultaneously sintering and brazing under the conditions shown in Table 1 without changing the atmosphere in the heating furnace.

【0028】このようにして得られた焼結部品を図3に
示されるように台7の上に載置し、ポンチ8でろう付け
部5が破断するまで押圧し、ろう付け部の単位面積当り
の断面強度(kgf/mm2 )、すなわちろう付け強度を求
め、その結果を表1に示した。
The sintered part thus obtained is placed on a table 7 as shown in FIG. 3, and pressed by a punch 8 until the brazing part 5 is broken, and the unit area of the brazing part is The cross-sectional strength (kgf / mm 2 ) per hit, that is, the brazing strength was determined, and the results are shown in Table 1.

【0029】[0029]

【表1】 [Table 1]

【0030】[0030]

【発明の効果】表1に示される結果から、Fe:16〜
30%を含むCu−Ni−Mn系ろう材を用い、雰囲気
を真空雰囲気から還元性雰囲気に置換する本発明ろう付
け法1〜7により得られた鉄系焼結部品のろう付け強度
は、従来ろう付け法による還元性雰囲気のみでろう付け
して得られたろう付け強度よりも一層優れた値を示すこ
とがわかる。
From the results shown in Table 1, Fe: 16-
The brazing strength of the iron-based sintered parts obtained by the brazing methods 1 to 7 of the present invention in which a Cu-Ni-Mn-based brazing material containing 30% is used and the atmosphere is replaced with a reducing atmosphere is It can be seen that the value is even better than the brazing strength obtained by brazing only in the reducing atmosphere by the brazing method.

【0031】また、この発明の条件から外れる比較例1
〜4(この発明の条件から外れる値に*印を付して示し
た)のろう付け強度はやや低下することがわかる。
Comparative Example 1 which deviates from the conditions of the present invention
It can be seen that the brazing strengths of 4 to 4 (values deviating from the conditions of the present invention are marked with *) are slightly lowered.

【0032】上述のように、この発明のろう付け法によ
ると従来よりも一層優れたろう付け強度を有する鉄系焼
結部品が得られ、従来よりも一層苛酷な条件下でも使用
することのできる複雑形状の鉄系焼結部品を提供するこ
とができ、産業の発展に大いに貢献しうるものである。
As described above, according to the brazing method of the present invention, an iron-based sintered component having a brazing strength superior to the conventional one can be obtained, and it can be used under more severe conditions than the conventional one. It is possible to provide shaped iron-based sintered parts, which can greatly contribute to the development of the industry.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の鉄系焼結部品の焼結時ろう付け方法
を示すパターンの概略図である。
FIG. 1 is a schematic view of a pattern showing a brazing method during sintering of an iron-based sintered component of the present invention.

【図2】この発明の鉄系焼結部品の焼結時ろう付け方法
における圧粉体およびろう材の設置方法を示す断面説明
図である。
FIG. 2 is a cross-sectional explanatory view showing a method of installing a green compact and a brazing material in a brazing method during sintering of an iron-based sintered component of the present invention.

【図3】この発明の方法によりろう付けおよび焼結され
た鉄系焼結部品のろう付け強度の測定法を示す断面説明
図である。
FIG. 3 is an explanatory sectional view showing a method for measuring the brazing strength of an iron-based sintered component that is brazed and sintered by the method of the present invention.

【符号の説明】[Explanation of symbols]

1 リング状圧粉体 1′ リング状焼結体 2 円板状圧粉体 2′ 円板状焼結体 3 リング状ろう材 4 治具 5 ろう付け部 6 空間 7 台 8 パンチ 1 ring-shaped green compact 1'ring-shaped green compact 2 disc-shaped green compact 2'disk-shaped sintered compact 3 ring-shaped brazing material 4 jig 5 brazing part 6 space 7 units 8 punches

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 鉄系圧粉体を焼結と同時に、Fe:16
〜30重量%を含むCu−Ni−Mn系ろう材を使用し
てろう付けする鉄系焼結部品の製造法において、 真空雰囲気中で室温から上記ろう材の融点以上1080
℃以下の温度範囲内の所定の温度に昇温したのち、この
温度範囲内に保持し、 ついで、雰囲気を還元性雰囲気に変換し、この還元性雰
囲気中で上記ろう材の融点以上1080℃以下の温度範
囲内の所定の温度から鉄系圧粉体の焼結温度に昇温し保
持することを特徴とする鉄系焼結部品の焼結時ろう付け
法。
1. An iron-based green compact is sintered at the same time as Fe: 16.
In a method for producing an iron-based sintered component, which is brazed using a Cu-Ni-Mn-based brazing material containing 30 to 30% by weight, the melting point of the brazing material is not less than 1080 from room temperature in a vacuum atmosphere.
After raising the temperature to a predetermined temperature within a temperature range of ℃ or less, maintaining within this temperature range, the atmosphere is then converted into a reducing atmosphere, and in the reducing atmosphere, the melting point of the brazing filler metal is not lower than 1080 ° C. A method of brazing during sintering of iron-based sintered parts, which is characterized in that the temperature is raised from a predetermined temperature within the temperature range to the sintering temperature of the iron-based green compact and maintained.
JP2044892A 1992-01-09 1992-01-09 Method for brazing iron-based sintered parts in sintering Withdrawn JPH05186810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2044892A JPH05186810A (en) 1992-01-09 1992-01-09 Method for brazing iron-based sintered parts in sintering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2044892A JPH05186810A (en) 1992-01-09 1992-01-09 Method for brazing iron-based sintered parts in sintering

Publications (1)

Publication Number Publication Date
JPH05186810A true JPH05186810A (en) 1993-07-27

Family

ID=12027348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2044892A Withdrawn JPH05186810A (en) 1992-01-09 1992-01-09 Method for brazing iron-based sintered parts in sintering

Country Status (1)

Country Link
JP (1) JPH05186810A (en)

Similar Documents

Publication Publication Date Title
US4029476A (en) Brazing alloy compositions
US20080019858A1 (en) Iron-based powder
JP2010215951A (en) Sintered composite sliding component and manufacturing method therefor
JPH044362B2 (en)
US20180290213A1 (en) Method of manufacturing iron powder and iron powder manufactured thereby
US4612048A (en) Dimensionally stable powder metal compositions
JPH0715121B2 (en) Fe-Co alloy fine powder for injection molding and Fe-Co sintered magnetic material
JPH05186810A (en) Method for brazing iron-based sintered parts in sintering
US4078713A (en) Brazing sintered ferrous powder metal articles
JPH0215875A (en) Joining method for iron compound sintered parts by brazing
JP4295491B2 (en) Copper-tungsten alloy and method for producing the same
KR100186931B1 (en) Method of manufacturing tungsten heavy alloy
JP7447795B2 (en) Brazing material for joining ferrous sintered parts and method for manufacturing ferrous sintered parts
JPH0195894A (en) Copper-based brazing filler alloy for sintering alloy
JP3788385B2 (en) Manufacturing method of iron-based sintered alloy members with excellent dimensional accuracy, strength and slidability
JP2760131B2 (en) Method for producing Fe-Co-V soft magnetic sintered alloy
JP2735132B2 (en) Manufacturing method of high density Elinvar type Fe-based sintered alloy
JPH05148590A (en) Low thermal expansion alloy powder and composition thereof
KR970008044B1 (en) Method of oscillation weight
JPS6249345B2 (en)
JP3300420B2 (en) Alloy for sintered sealing material
JPH05263177A (en) Manufacture of nb3al intermetallic compound base alloy having a15 type crystalline structure
JPS6049079B2 (en) Joining method for metal parts
JPH07214378A (en) Production of brazing filler metal
CN118002789A (en) Forming method of metal composite part and metal composite part

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990408