JPH05174336A - Magneto-resistance effect type head - Google Patents

Magneto-resistance effect type head

Info

Publication number
JPH05174336A
JPH05174336A JP3342696A JP34269691A JPH05174336A JP H05174336 A JPH05174336 A JP H05174336A JP 3342696 A JP3342696 A JP 3342696A JP 34269691 A JP34269691 A JP 34269691A JP H05174336 A JPH05174336 A JP H05174336A
Authority
JP
Japan
Prior art keywords
film
magnetoresistive
head
soft magnetic
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3342696A
Other languages
Japanese (ja)
Inventor
Masahiro Kitada
正弘 北田
Noboru Shimizu
昇 清水
Naoki Koyama
直樹 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3342696A priority Critical patent/JPH05174336A/en
Priority to US07/981,400 priority patent/US5521005A/en
Publication of JPH05174336A publication Critical patent/JPH05174336A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain the inexpensive magneto-resistance effect type head having high performance by adding prescribed elements to an NiFe alloy film. CONSTITUTION:An Ni-Fe film is deposited at 1mum as a magnetic shielding film 2 by a sputtering method on a nonmagnetic insulating substrate 1 and is finely worked to a prescribed shape; thereafter, an Al2O3 film which is an insulating film 3 is deposited at 0.2mum thereon and an (Ni-19at.% Fe)-4at.% Ta film is deposited at 50nm thereon. In succession, Al2O3 which is an insulating film 8 is deposited at 20nm and further an Ni-19at.% Fe film which is a magneto-resistance effect film 6 is deposited at 50nm; thereafter, the films are finely worked to a prescribed shape. The compsn. of alloy consists of (M1M2) y.(M3M4)x, where (M1M2) consists of magnetic metal elements M1, M2 and (M3M4) contains Ta, x+y=100%. M3 includes Ta and M4 includes at least one selected from Ti, V, Zr, Hf, Ru, Rh and Cr. As a result, the inexpensive magneto-resistance effect type head having the high performance is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は磁気記録装置に使用され
る磁気ヘッドに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic head used in a magnetic recording device.

【0002】[0002]

【従来の技術】強磁性体の磁気抵抗効果型を用いた磁気
ヘッドにおいては、磁気記録媒体からの交流磁界を再生
するために磁気抵抗効果の磁界に対する直線変化部分を
用いなければならない。このために通常磁気抵抗効果膜
に隣接してバイアス磁界印加手段として、シャント膜,
軟磁性膜,永久磁石膜などが設置されている。
2. Description of the Related Art In a magnetic head using a magnetoresistive type of ferromagnetic material, a linear change portion with respect to the magnetic field of the magnetoresistive effect must be used in order to reproduce an alternating magnetic field from a magnetic recording medium. For this reason, a shunt film, a bias magnetic field applying means is usually provided adjacent to the magnetoresistive film.
A soft magnetic film and a permanent magnet film are installed.

【0003】本発明は軟磁性膜を使った磁気抵抗効果型
素子の中、特に結晶性軟磁性膜/スペーサ金属膜・スペ
ーサ絶縁膜/磁気抵抗効果膜からなる断面構造を有する
磁気抵抗効果型素子の軟磁性膜に関するものである。こ
の結晶性軟磁性膜に関する従来技術としては、米国特許
第4663685号,特開平3−116510号,文献ジャーナルオブ
アプライド フィジックス(Journal of Applied Phy
sics)69巻(1991)15号5631−5633頁に記載
されている。
The present invention relates to a magnetoresistive effect element using a soft magnetic film, particularly a magnetoresistive effect element having a cross-sectional structure of crystalline soft magnetic film / spacer metal film / spacer insulating film / magnetoresistive effect film. Of the soft magnetic film. Prior arts relating to this crystalline soft magnetic film include U.S. Pat. No. 4,663,685, Japanese Unexamined Patent Publication (Kokai) No. 3-116510, and Journal of Applied Phy.
sics) 69 (1991) No. 15, pp. 5631-5633.

【0004】[0004]

【発明が解決しようとする課題】磁気抵抗効果型素子の
バイアス磁界印加手段として使用される軟磁性膜には、
その磁気特性の他に、耐食性,価格,磁気特性のばらつ
きや経時変化などの信頼性、なども重要な課題である。
従来のNiFe−Rh合金膜は耐食性等も優れている
が、NiFeに対して高価なRhを20−25at.% 添
加することが必要であり、材料としての価格が高い。
The soft magnetic film used as the bias magnetic field applying means of the magnetoresistive effect element includes:
In addition to the magnetic properties, corrosion resistance, price, and reliability such as variations in magnetic properties and changes with time are also important issues.
Although the conventional NiFe-Rh alloy film is excellent in corrosion resistance and the like, it is necessary to add 20-25 at.% Of expensive Rh to NiFe, and the price as a material is high.

【0005】また、NiFeにNbやZrを添加した合
金膜の価格はNiFe−Rh合金膜に比較して低いが、
耐食性が劣り、磁気特性のばらつきや経時変化が大きい
欠点がある。
Although the cost of the alloy film in which Nb or Zr is added to NiFe is lower than that of the NiFe-Rh alloy film,
It has the disadvantages of poor corrosion resistance, large variations in magnetic properties, and large changes over time.

【0006】また、アモルファス磁性膜は基板上に堆積
するときの初期層が結晶化しやすく、磁気特性のばらつ
きや熱処理による変化が非常に大きい。
Further, in the amorphous magnetic film, the initial layer is easily crystallized when deposited on the substrate, and variations in magnetic characteristics and changes due to heat treatment are very large.

【0007】本発明は磁気特性の他に、耐食性,価格,
磁気特性のばらつきや経時変化などの信頼性、などの課
題を解決するものである。
In addition to the magnetic characteristics, the present invention has corrosion resistance, price,
It is intended to solve problems such as variations in magnetic characteristics and reliability such as aging.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、NiFe合金膜に添加する第3元素および第4元素
の効果を検討し、第3元素としてTa、第4元素として
Nb,Ti,V,Zr,Hf,Ru,Rh,Ir,Cr
を添加した。
In order to solve the above problems, the effects of the third element and the fourth element added to the NiFe alloy film are examined, and Ta as the third element and Nb, Ti as the fourth element, V, Zr, Hf, Ru, Rh, Ir, Cr
Was added.

【0009】[0009]

【作用】本発明の作用を図1から図5を用いて説明す
る。NiFe合金膜にTaを添加した場合、図1で示す
ようにTaの添加量が約6at.% まではNiFe合金膜
の飽和磁化の劣化が全くみられず、6at.% 以上になる
と徐々に低下する。
The operation of the present invention will be described with reference to FIGS. When Ta is added to the NiFe alloy film, the saturation magnetization of the NiFe alloy film does not deteriorate at all up to about 6 at.% Ta, as shown in Fig. 1, and gradually decreases when it exceeds 6 at.%. To do.

【0010】保磁力は図2で示すようにTaの添加量が
6at.% まではほとんど変化せず、これ以上になると増
加の傾向を示す。
As shown in FIG. 2, the coercive force hardly changes up to the addition amount of Ta of 6 at.%, And it tends to increase when the addition amount exceeds Ta.

【0011】磁歪はTaの添加により図3で示すように
正の向きへと変化するが、Taの添加の少ないときに変
化が大きく、2at.% 以上での変化量は極めて少ない。
The magnetostriction changes to the positive direction as shown in FIG. 3 by the addition of Ta, but the change is large when the addition of Ta is small, and the amount of change at 2 at.% Or more is extremely small.

【0012】磁気抵抗効果率は図4で示すようにTaの
添加により急激に低下し、約2at.% でNiFe合金膜
の1/10以下に低下する。
As shown in FIG. 4, the magnetoresistive effect rate drops sharply by the addition of Ta, and falls to about 1/10 or less of the NiFe alloy film at about 2 at.%.

【0013】合金膜の比抵抗は図5で示すように2at.
%Ta まで急激に増加するが、これ以上ではNiFe
合金膜の約4−5倍で飽和に達する。NiFe−Ta合
金膜の基本特性は以上のごとくで、Ta添加量が2at.
%から9at.%までは、極めて特性の安定な領域であ
り、得られた合金膜の特性ばらつきは非常に小さい。従
って、この組成領域は磁気抵抗効果型素子のバイアス膜
として使用可能であり、高温多湿下の耐食性試験の結果
も従来合金より優れていた。また、Ta量が1−12a
t.% の範囲でもソフトバイアス型素子の膜厚などを調
整すれば使用できる。
The resistivity of the alloy film is 2 at. As shown in FIG.
% Ta increases sharply, but beyond this, NiFe
Saturation is reached at about 4-5 times the alloy film. The basic characteristics of the NiFe-Ta alloy film are as described above, and the Ta addition amount is 2 at.
% To 9 at.% Is a region in which the characteristics are extremely stable, and the variation in characteristics of the obtained alloy film is very small. Therefore, this composition region can be used as a bias film of the magnetoresistive element, and the result of the corrosion resistance test under high temperature and high humidity was also superior to that of the conventional alloy. Also, the Ta amount is 1-12a
It can be used even in the range of t.% by adjusting the film thickness of the soft bias type element.

【0014】NiFe−Ta合金膜を基本合金として、
これにNb,Ti,V,Zr,Hf,Ru,Rhを少量
添加すると、NiFe−Ta合金膜の上記長所を損なわ
ずにバイアス用軟磁性膜として必要な比抵抗などの特性
が更に適した値となる。
Using a NiFe-Ta alloy film as a basic alloy,
By adding a small amount of Nb, Ti, V, Zr, Hf, Ru, and Rh to this, the characteristics such as the specific resistance required as a soft magnetic film for bias are more suitable without impairing the above advantages of the NiFe-Ta alloy film. Becomes

【0015】[0015]

【実施例】以下に実施例で詳細を説明する。EXAMPLES Details will be described below with reference to examples.

【0016】実施例1 Ni−19at.%Fe 合金板の
上に直径8mmのTa板を貼り付けてNiFe−Ta合金タ
ーゲットとした。Ta添加量は貼り付けたTaの枚数で
制御した。本実施例はTa添加量を細かく変えるために
採用したもので、NiFeTa合金ターゲットとしても効
果は同じである。基板にはガラスを用いたが、これもア
ルミナ等の絶縁性基板であれば同じであり、金属薄膜等
でもかまわない。スパッタ装置の真空槽内部を10-4
a以下の真空度となるまで排気し、次に5×10-1Pa
を保つようにArガスを導入し、投入電力200Wでス
パッタした。この時の膜厚は5−100nmである。
Example 1 A Ta plate having a diameter of 8 mm was stuck on a Ni-19 at.% Fe alloy plate to obtain a NiFe-Ta alloy target. The amount of Ta added was controlled by the number of Ta stuck. This embodiment was adopted to finely change the amount of Ta added, and the same effect can be obtained as a NiFeTa alloy target. Although glass was used for the substrate, this is also the same as long as it is an insulating substrate such as alumina, and a metal thin film or the like may be used. 10 -4 P inside the vacuum chamber of the sputtering equipment
Evacuate to a vacuum of a or less, then 5 × 10 -1 Pa
Ar gas was introduced so as to keep the above value, and sputtering was performed with an input power of 200W. The film thickness at this time is 5 to 100 nm.

【0017】図1は膜厚50nmのNiFe−Ta合金
スパッタ膜の磁気特性および磁気抵抗効果特性で、Ta
の添加量が約6at.% まではNiFe合金膜の飽和磁化
の劣化が全くみられず、6at.%以上になると徐々に低
下し、12at.%以上で0.4以下となり、軟磁性バイア
ス膜に利用する下限値(0.4T)より低くなる。保磁力
は図2で示すようにTaの添加量が13at.% 以上にな
るとかなり増加する。磁歪は図3で示すようにNiFe
基本合金の値が−3.5×10-7 でTaの添加により最
初は急激に減少し、その後徐々に減少する。約8at.%
Ta で負から正へと変化する。しかし、変化量は極め
て少なく、バイアス膜として±10-6以下であれば使用
できるので、上記の組成範囲は十分実用に供せる。磁気
抵抗効果率は図4で示すようにTaの添加により急激に
低下し、約2at.% でNiFe合金膜の1/10以下に
低下する。合金膜の比抵抗は図5で示すように2at.%
Taまで急激に増加するが、これ以上ではNiFe合金
膜の約4−5倍でほぼ飽和に達する。NiFe−Ta合
金膜の基本特性は以上のごとくで、上記の特性を勘案す
るとTa添加量が2at.%から9at.%までは、バイアス
膜として極めて特性がよい領域であり、かつ得られた合
金膜の特性ばらつきは非常に小さい。また、Ta量が1
−12at.% の範囲でもソフトバイアス型素子の膜厚な
どを調整すれば使用できる。
FIG. 1 shows the magnetic characteristics and the magnetoresistive effect characteristics of a NiFe-Ta alloy sputtered film having a film thickness of 50 nm.
The saturation magnetization of the NiFe alloy film was not deteriorated at all up to about 6 at.%, And gradually decreased at 6 at.% Or more, and 0.4 or less at 12 at.% Or more. It becomes lower than the lower limit value (0.4T) used for. As shown in FIG. 2, the coercive force increases considerably when the addition amount of Ta becomes 13 at.% Or more. Magnetostriction is NiFe as shown in FIG.
The value of the basic alloy is −3.5 × 10 −7 , and the addition of Ta causes a sharp decrease at first and then a gradual decrease. About 8 at.%
It changes from negative to positive at Ta. However, the amount of change is extremely small, and since it can be used as the bias film if it is ± 10 −6 or less, the above composition range is sufficiently practical. As shown in FIG. 4, the magnetoresistive effect rate drops sharply by the addition of Ta, and falls to about 1/10 or less of the NiFe alloy film at about 2 at. The resistivity of the alloy film is 2 at.% As shown in Fig. 5.
Although it rapidly increases up to Ta, it is almost saturated at about 4-5 times that of the NiFe alloy film above this. The basic characteristics of the NiFe-Ta alloy film are as described above. Considering the above characteristics, the range of Ta addition amount from 2 at.% To 9 at. The variation in the characteristics of the film is very small. Also, the Ta amount is 1
Even in the range of -12 at.%, It can be used by adjusting the film thickness of the soft bias type element.

【0018】次に、NiFe基本合金の組成を変えてN
iFe−Ta合金膜を作製して、NiFe組成依存性を
調べた。図6はNiFeの組成を横軸にし、保磁力を縦
軸にプロットした場合のTa添加量の関係である。保磁
力はNiFe中のNiの含有量が79−91at.% まで
の範囲内では変化が少なくかつ低い値を示すが、この範
囲を外れると高くなる。従って、NiFe基本合金の組
成はNiが80−82at.% であることが望ましい。図
7はNiFeの組成を横軸にし、磁歪を縦軸にプロット
した場合のTa添加量の関係で、磁歪は保磁力と同様N
iFe中のNiの含有量が80−82at.% までの範囲
内では変化が少なくかつ10-6以下の低い値を示すが、
この範囲を外れると高くなる。従って、磁歪の面からみ
てもNiFe基本合金の組成はNiが80−82at.%
であることが望ましい。
Next, the composition of the NiFe basic alloy is changed to N.
An iFe-Ta alloy film was produced and the NiFe composition dependence was investigated. FIG. 6 shows the relationship of the Ta addition amount when the composition of NiFe is plotted on the horizontal axis and the coercive force is plotted on the vertical axis. The coercive force shows a small change and shows a low value within the range of the Ni content in NiFe up to 79-91 at.%, But increases outside this range. Therefore, the composition of the NiFe basic alloy is preferably 80-82 at.% Ni. FIG. 7 shows the relationship of the Ta addition amount when the composition of NiFe is plotted on the horizontal axis and the magnetostriction is plotted on the vertical axis.
When the Ni content in iFe is within the range of 80-82 at.%, the change is small and shows a low value of 10 -6 or less.
It goes up when it goes out of this range. Therefore, from the viewpoint of magnetostriction, the composition of the NiFe basic alloy is 80-82 at.% Ni.
Is desirable.

【0019】実施例2 Ni−19at.%Fe 合金板の
上に直径8mmのTa板とNb板を貼り付けてNiFe−
Ta−Nb合金ターゲットとした。TaとNbの添加量
は貼り付けた枚数で制御した。基板にはガラスを用い
た。スパッタ装置の真空槽内部を10-4Pa以下の真空
度となるまで排気し、次に5×10-1Paを保つように
Arガスを導入し、投入電力200Wでスパッタした。
この時の膜厚は5−100nmである。
Example 2 A Ni-19 at.% Fe alloy plate was pasted with a Ta plate and a Nb plate each having a diameter of 8 mm, and NiFe-
It was used as a Ta-Nb alloy target. The amount of Ta and Nb added was controlled by the number of sheets attached. Glass was used for the substrate. The inside of the vacuum chamber of the sputtering apparatus was evacuated to a vacuum degree of 10 -4 Pa or less, then Ar gas was introduced so as to maintain 5 × 10 -1 Pa, and sputtering was performed with an input power of 200 W.
The film thickness at this time is 5 to 100 nm.

【0020】図8および図9は膜厚50nmのNiFe
−5at.%Ru 合金スパッタ膜の磁気特性および磁気抵
抗効果特性におよぼすNb添加の効果で、Nbの添加量
が約2at.%までNiFe合金膜の飽和磁化の劣化は少
なく、3at.%以上になると急激に低下し始める。保磁
力はNbの添加量が5at.% まで徐々に低下し、これ以
上になると増加する。磁歪はNiFe−5at.%Ta 基
本合金の値が−3.3×10-8でNbの添加量が約2−
3at.%までは徐々に正側に変化し、3at.%以上になる
と正の向きへ大きく変化する。磁気抵抗効果率はNbの
添加により急激に低下し、約0.5at.%でNiFe合金
膜の1/20以下に低下する。合金膜の比抵抗は2at.
%Taまで急激に増加するが、これ以上ではNiFe−
5at.%Ta合金膜の約2.5 倍で飽和に達する。Ni
Fe−Ta−Nb合金膜の基本特性は以上のごとくで、
Nb添加量が0.5−5at.%までは、特性の安定な領域
であり、Nb添加の効果により特に抵抗の増大と磁気抵
抗効果率の減少が顕著であり、NiFe−Ta−Nb膜
は当該磁気抵抗効果型素子の軟磁性バイアス膜として十
分な特性を有している。また、得られた合金膜の特性ば
らつきは非常に小さい。次に、NiFe組成依存性を調
べた結果、NiFe中のNiの含有量が79−91at.
% までの範囲内では変化が少なくかつ低い値を示し、
NiFe基本合金の組成が79−81at.%NiでTa
が2−9at.%、Nbが0.5−5at.%まで当該磁気抵
抗効果型素子の軟磁性バイアス膜として十分な特性を有
している。
8 and 9 show a NiFe film having a thickness of 50 nm.
Due to the effect of Nb addition on the magnetic characteristics and magnetoresistive effect characteristics of the -5at.% Ru alloy sputtered film, the saturation magnetization of the NiFe alloy film does not deteriorate up to 3at.% Or more until the Nb addition amount reaches about 2at.%. Then it begins to fall sharply. The coercive force gradually decreases until the amount of Nb added reaches 5 at.% And increases when the amount exceeds this level. The magnetostriction of the NiFe-5 at.% Ta basic alloy was -3.3 x 10 -8 , and the amount of Nb added was about 2-.
It gradually changes to the positive side up to 3 at.%, And changes significantly to the positive direction when it exceeds 3 at.%. The magnetoresistive effect rate drops sharply by the addition of Nb, and falls to 1/20 or less of the NiFe alloy film at about 0.5 at. The resistivity of the alloy film is 2 at.
% Ta increases rapidly, but beyond this, NiFe-
Saturation is reached at about 2.5 times that of a 5 at.% Ta alloy film. Ni
The basic characteristics of the Fe-Ta-Nb alloy film are as described above.
When the amount of Nb added is 0.5 to 5 at.%, It is a region where the characteristics are stable, and the effect of adding Nb causes the resistance to increase and the magnetoresistive effect rate to decrease remarkably. It has sufficient characteristics as a soft magnetic bias film of the magnetoresistive effect element. Further, the variation in characteristics of the obtained alloy film is very small. Next, as a result of examining the NiFe composition dependency, the Ni content in NiFe was 79-91 at.
Within the range up to%, it shows little change and low value,
The composition of the NiFe base alloy is 79-81 at.% Ni and Ta
Of 2 to 9 at.% And Nb of 0.5 to 5 at.% Have sufficient characteristics as a soft magnetic bias film of the magnetoresistive effect element.

【0021】実施例3 実施例2と同様にして、Nbの
代わりにTiを添加した場合でもNiFe基本合金の組
成が79−81at.%NiでRuが2−9at.%、Tiが
0.5−5at.%まで当該磁気抵抗効果型素子の軟磁性バ
イアス膜として十分な特性を有している。
Example 3 As in Example 2, even when Ti was added instead of Nb, the composition of the NiFe basic alloy was 79-81 at.% Ni, Ru was 2-9 at.% And Ti was 0.5. Up to -5 at.%, It has sufficient characteristics as a soft magnetic bias film of the magnetoresistive element.

【0022】実施例4 実施例2と同様にして、Nbの
代わりにIrを添加した場合でもNiFe基本合金の組
成が79−81at.%NiでTaが2−9at.%、Irが
0.5−5at.%まで当該磁気抵抗効果型素子の軟磁性バ
イアス膜として十分な特性を有している。
Example 4 As in Example 2, even when Ir was added instead of Nb, the composition of the NiFe basic alloy was 79-81 at.% Ni, Ta was 2-9 at.% And Ir was 0.5. Up to -5 at.%, It has sufficient characteristics as a soft magnetic bias film of the magnetoresistive element.

【0023】実施例5 実施例2と同様にして、Nbの
代わりにVを添加した場合でもNiFe基本合金の組成が7
9−81at.%NiでTaが2−9at.%、Vが0.5−
5at.% まで当該磁気抵抗効果型素子の軟磁性バイアス
膜として十分な特性を有している。
Example 5 Similar to Example 2, the composition of the NiFe basic alloy was 7 even when V was added instead of Nb.
9-81 at.% Ni, Ta 2-9 at.%, V 0.5-
Up to 5 at.%, It has sufficient characteristics as a soft magnetic bias film of the magnetoresistive element.

【0024】実施例6 実施例2と同様にして、Nbの
代わりにZrを添加した場合でもNiFe基本合金の組
成が79−81at.%NiでTaが2−9at.%、Zrが
0.5−5at.%まで当該磁気抵抗効果型素子の軟磁性バ
イアス膜として十分な特性を有している。
Example 6 Similar to Example 2, even when Zr was added instead of Nb, the composition of the NiFe basic alloy was 79-81 at.% Ni, Ta was 2-9 at.% And Zr was 0.5. Up to -5 at.%, It has sufficient characteristics as a soft magnetic bias film of the magnetoresistive element.

【0025】実施例7 実施例2と同様にして、Nbの
代わりにRuを添加した場合でもNiFe基本合金の組
成が79−81at.%NiでTaが2−8at.%、Ruが
1−5at.% まで当該磁気抵抗効果型素子の軟磁性バイ
アス膜として十分な特性を有している。
Example 7 Similar to Example 2, even when Ru was added instead of Nb, the composition of the NiFe basic alloy was 79-81 at.% Ni, Ta was 2-8 at.% And Ru was 1-5 at. Up to.%, It has sufficient characteristics as a soft magnetic bias film of the magnetoresistive effect element.

【0026】実施例8 実施例1から実施例7で述べた
結晶性軟磁性膜を用いて、図10で示す構造の磁気抵抗
効果型ヘッドを作製した。まず、非磁性絶縁基板1上に
磁気シールド膜2としてNi−Fe膜を1μmスパッタ
法で堆積し、所定の形状に微細加工したのち絶縁膜であ
るAl23膜3を0.2μm堆積し、この上に(Ni−1
9at.%Fe)−5at.%Ta 膜4を50nm堆積し、引
き続き高比抵抗金属であるNb−10at.%Ta 合金膜
5を10nm堆積し、引き続き磁気抵抗効果膜6である
Ni−19at.%Fe 膜を50nm堆積したのち、所定
の形状に微細加工し、電極7を形成した。次に絶縁膜で
あるAl23膜8を0.2μm 堆積し、この上に磁気シ
ールド膜9であるNi−Fe膜を1μmスパッタ法で堆
積した。この上にさらにAl23膜を2μm堆積してか
ら、記録用の誘導型薄膜ヘッドを形成した。このヘッド
とCo−Pt−Crスパッタ媒体を用いて記録・再生特
性を測定したところ、バイアス膜にNbあるいはTi膜
を使用したシャントバイアス型磁気抵抗効果型ヘッドの
出力に比較して約8倍の再生出力が得られた。
Example 8 Using the crystalline soft magnetic film described in Examples 1 to 7, a magnetoresistive head having the structure shown in FIG. 10 was produced. First, a Ni—Fe film is deposited as a magnetic shield film 2 on the non-magnetic insulating substrate 1 by a 1 μm sputtering method, finely processed into a predetermined shape, and then an Al 2 O 3 film 3 which is an insulating film is deposited by 0.2 μm. , On top of this (Ni-1
9 at.% Fe) -5 at.% Ta film 4 is deposited to 50 nm, Nb-10 at.% Ta alloy film 5 which is a high specific resistance metal is subsequently deposited to 10 nm, and subsequently a magnetoresistive film 6 is made to be Ni-19 at. After depositing a 50% Fe 2 film by 50 nm, the electrode 7 was formed by microfabrication into a predetermined shape. Next, an Al 2 O 3 film 8 as an insulating film was deposited to a thickness of 0.2 μm, and a Ni—Fe film as a magnetic shield film 9 was deposited thereon by a sputtering method of 1 μm. An Al 2 O 3 film was further deposited thereon to a thickness of 2 μm, and then an inductive thin film head for recording was formed. When the recording / reproducing characteristics were measured using this head and a Co-Pt-Cr sputter medium, it was about 8 times as high as the output of a shunt bias type magnetoresistive head using Nb or Ti film as a bias film. A playback output was obtained.

【0027】図11に本実施例のヘッドで得られた再生
出力波形を示す。図12は素子電流とバイアス磁界との
関係で、バイアス磁界は素子電流の低い領域から十分に
印加されている。本磁気抵抗効果型素子は素子を構成す
る膜の電気抵抗を一定の値に制御できるので、定電流駆
動することができる。
FIG. 11 shows a reproduction output waveform obtained by the head of this embodiment. FIG. 12 shows the relationship between the device current and the bias magnetic field. The bias magnetic field is sufficiently applied from the region where the device current is low. Since the magnetoresistive effect element can control the electric resistance of the film forming the element to a constant value, it can be driven with a constant current.

【0028】実施例9 実施例1から実施例7で述べた
結晶性軟磁性膜を用いて、図10で示す構造の磁気抵抗
効果型ヘッドを作製した。まず、非磁性絶縁基板上に磁
気シールド膜としてNi−Fe膜を1μmスパッタ法で
堆積し、所定の形状に微細加工したのち絶縁膜であるA
23膜を0.2μm 堆積し、この上に(Ni−19a
t.%Fe)−4at.%Ta 膜を50nm堆積し、引き続
き絶縁膜であるAl23膜を20nm堆積し、引き続き
磁気抵抗効果膜であるNi−19at.%Fe 膜を50n
m堆積したのち、所定の形状に微細加工した。以後の工
程等は実施例8と同じにして記録・再生ヘッドとした。
このヘッドとCo−Pt−Crスパッタ媒体を用いて記
録・再生特性を測定したところ、バイアス膜にNbある
いはTi膜を使用したシャントバイアス型磁気抵抗効果
型ヘッドの出力に比較して約10倍の再生出力が得られ
た。実施例8との差は軟磁性膜と磁気抵抗効果膜を絶縁
膜で分離した結果、軟磁性膜に分流する素子電流が零に
なったため、この分流電流分だけ出力が増大したもので
ある。
Example 9 A magnetoresistive head having a structure shown in FIG. 10 was produced using the crystalline soft magnetic film described in Examples 1 to 7. First, a Ni—Fe film as a magnetic shield film is deposited on a non-magnetic insulating substrate by a 1 μm sputtering method, finely processed into a predetermined shape, and then an insulating film A is formed.
An l 2 O 3 film is deposited to a thickness of 0.2 μm, and (Ni-19a
t.% Fe) -4 at.% Ta film is deposited to a thickness of 50 nm, then an Al 2 O 3 film that is an insulating film is deposited to 20 nm, and then a Ni-19 at.% Fe film that is a magnetoresistive film is deposited to 50 n.
After being deposited, it was finely processed into a predetermined shape. The subsequent steps were the same as in Example 8 to form a recording / reproducing head.
When the recording and reproducing characteristics were measured using this head and a Co-Pt-Cr sputter medium, the output was about 10 times that of the shunt bias type magnetoresistive head using Nb or Ti film as the bias film. A playback output was obtained. The difference from Example 8 is that the element current shunted to the soft magnetic film became zero as a result of separating the soft magnetic film and the magnetoresistive effect film by the insulating film, so that the output increased by this shunt current.

【0029】実施例10 磁気抵抗効果型素子の構造を
基板側から順にNiFe磁気抵抗効果膜/スペーサ金属
膜/軟磁性バイアス膜とした磁気ヘッドにおいても、実
施例8および実施例9と同様の結果が得られた。
Example 10 In the magnetic head in which the structure of the magnetoresistive element is a NiFe magnetoresistive film / spacer metal film / soft magnetic bias film in this order from the substrate side, the same results as in Examples 8 and 9 are obtained. was gotten.

【0030】実施例11 実施例8,実施例9,実施例
10と同じ構造の磁気抵抗効果型ヘッドにおいて、磁気
抵抗効果膜を巨大磁気抵抗効果膜であるCo/Cu超格
子膜とした場合もシャント膜にNbを用いたシャントバ
イアス型ヘッドに比較して出力が約1桁増大した。
Example 11 In the magnetoresistive head having the same structure as in Examples 8, 9 and 10, the magnetoresistive film may be a Co / Cu superlattice film which is a giant magnetoresistive film. The output was increased by about one digit as compared with the shunt bias type head using Nb for the shunt film.

【0031】実施例12 実施例8,実施例9,実施例
10と同じ構造の磁気抵抗効果型ヘッドにおいて、磁気
抵抗効果膜を巨大磁気抵抗効果膜であるNiFe/Cu
超格子膜とした場合もシャント膜にNbを用いたシャン
トバイアス型ヘッドに比較して出力が約1桁増大した。
Embodiment 12 In the magnetoresistive head having the same structure as in Embodiments 8, 9 and 10, the magnetoresistive film is a giant magnetoresistive film of NiFe / Cu.
Even when the superlattice film is used, the output is increased by about one digit as compared with the shunt bias type head using Nb for the shunt film.

【0032】実施例13 実施例8,実施例9,実施例
10と同じ構造の磁気抵抗効果型ヘッドにおいて、磁気
抵抗効果膜を巨大磁気抵抗効果膜であるNiFe/Cu
/Co超格子膜とした場合もシャント膜にNbを用いた
シャントバイアス型ヘッドに比較して出力が約1桁増大
した。
Example 13 In the magnetoresistive head having the same structure as in Examples 8, 9 and 10, the magnetoresistive film was a giant magnetoresistive film of NiFe / Cu.
Even when the / Co superlattice film is used, the output is increased by about one digit as compared with the shunt bias type head using Nb for the shunt film.

【0033】実施例14 実施例8,実施例9,実施例
10と同じ構造の磁気抵抗効果型ヘッドにおいて、磁気
抵抗効果膜を巨大磁気抵抗効果膜であるNiFe/Ag
超格子膜とした場合もシャント膜にNbを用いたシャン
トバイアス型ヘッドに比較して出力が約1桁増大した。
Example 14 In the magnetoresistive head having the same structure as in Examples 8, 9 and 10, the magnetoresistive film was a giant magnetoresistive film of NiFe / Ag.
Even when the superlattice film is used, the output is increased by about one digit as compared with the shunt bias type head using Nb for the shunt film.

【0034】実施例15 実施例8,実施例9,実施例
10と同じ構造の磁気抵抗効果型ヘッドにおいて、磁気
抵抗効果膜の厚さを5−80nmに変えて最適バイアス
が得られるように上記軟磁性膜の厚さを2−90nmに
変えて作製したヘッドにおいても、同様の結果が得られ
た。磁気抵抗効果膜の厚さは5nm以下および60nm
以上になるとノイズが増大するので5−60nmがよ
い。この場合、磁気抵抗効果膜の磁気異方性は厚さによ
って変化するので、軟磁性膜の厚さも最適バイアスとな
るように決めなければならない。図13に最適バイアス
を得るための磁気抵抗効果膜と軟磁性膜の厚さの関係の
一例を示す。
Fifteenth Embodiment In the magnetoresistive head having the same structure as in the eighth, ninth and tenth embodiments, the thickness of the magnetoresistive film is changed to 5-80 nm so that the optimum bias can be obtained. Similar results were obtained with a head manufactured by changing the thickness of the soft magnetic film to 2-90 nm. The thickness of the magnetoresistive film is 5 nm or less and 60 nm
If it is above, noise increases, so 5-60 nm is preferable. In this case, since the magnetic anisotropy of the magnetoresistive film changes depending on the thickness, the thickness of the soft magnetic film must be determined so as to have the optimum bias. FIG. 13 shows an example of the relationship between the thickness of the magnetoresistive film and the soft magnetic film for obtaining the optimum bias.

【0035】実施例16 実施例1から実施例7で示し
た軟磁性膜の耐食性を調べるために相対湿度90%,温
度80℃の環境に放置して、磁気特性の変化を測定し
た。図14は放置時間3000時間後の代表的な試料に
おける飽和磁化と膜組成の関係で、Ni−19at.%F
e膜に比較して2at.%のTaの添加により飽和磁化の
減少が少なく、Taの添加により耐食性の向上したこと
がわかる。Taのほかに第4元素としてNb等を添加し
た膜の耐食性はTa単独添加膜より若干劣るが、Ni−
19at.%Fe 膜に比較して優れている。第4元素とし
てRu,Rh,Ir,Crを添加した場合には、耐食性
は更に向上する。磁気ヘッドにおいては、媒体対向面に
素子の断面が露出するので、この状態のヘッドについて
も上記雰囲気中に3000時間放置したのち再生出力の
変化を測定したが、出力変動やノイズの増大などは一切
観察されなかった。
Example 16 In order to examine the corrosion resistance of the soft magnetic films shown in Examples 1 to 7, the magnetic properties were measured by leaving them in an environment of 90% relative humidity and 80 ° C. temperature. FIG. 14 shows the relationship between the saturation magnetization and the film composition of a typical sample after leaving for 3000 hours.
It can be seen that the addition of 2 at.% Ta reduces the saturation magnetization less than that of the e film, and that the addition of Ta improves the corrosion resistance. The corrosion resistance of the film in which Nb or the like is added as the fourth element in addition to Ta is slightly inferior to the film in which Ta alone is added.
It is superior to the 19 at.% Fe film. When Ru, Rh, Ir and Cr are added as the fourth element, the corrosion resistance is further improved. In the magnetic head, the cross section of the element is exposed on the medium facing surface. Therefore, with respect to the head in this state as well, the change in reproduction output was measured after being left in the above atmosphere for 3000 hours, but there was no output fluctuation or noise increase. Not observed.

【0036】[0036]

【発明の効果】磁気的に高性能で耐食性に優れ、かつ価
格の低い(Ni−Fe)−Ta膜および(Ni−Fe)−T
a−M(M:第4元素)を磁気抵抗効果型ヘッドのバイ
アス磁界印加用軟磁性膜として適用することにより、高
性能でかつ安価な磁気抵抗効果型ヘッドを提供すること
ができる。
The (Ni-Fe) -Ta film and the (Ni-Fe) -T film which are magnetically high in performance, excellent in corrosion resistance, and low in cost.
By applying aM (M: fourth element) as a soft magnetic film for applying a bias magnetic field of a magnetoresistive head, it is possible to provide a high-performance and inexpensive magnetoresistive head.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示すグラフ図。FIG. 1 is a graph showing an embodiment of the present invention.

【図2】本発明の実施例を示すグラフ図。FIG. 2 is a graph showing an embodiment of the present invention.

【図3】本発明の実施例を示すグラフ図。FIG. 3 is a graph showing an embodiment of the present invention.

【図4】本発明の実施例を示すグラフ図。FIG. 4 is a graph showing an embodiment of the present invention.

【図5】本発明の実施例を示すグラフ図。FIG. 5 is a graph showing an embodiment of the present invention.

【図6】本発明の実施例を示すグラフ図。FIG. 6 is a graph showing an example of the present invention.

【図7】本発明の実施例を示すグラフ図。FIG. 7 is a graph showing an example of the present invention.

【図8】本発明の実施例を示すグラフ図。FIG. 8 is a graph showing an example of the present invention.

【図9】本発明の実施例を示すグラフ図。FIG. 9 is a graph showing an embodiment of the present invention.

【図10】本発明の実施例をヘッドの断面を示すグラフ
図。
FIG. 10 is a graph showing a cross section of a head according to an embodiment of the present invention.

【図11】本発明の実施例を示すグラフ図。FIG. 11 is a graph showing an example of the present invention.

【図12】本発明の実施例を示すグラフ図。FIG. 12 is a graph showing an example of the present invention.

【図13】本発明の実施例を示すグラフ図。FIG. 13 is a graph showing an example of the present invention.

【図14】本発明の実施例を示すグラフ図。FIG. 14 is a graph showing an example of the present invention.

【符号の説明】[Explanation of symbols]

1…非磁性基板、2,9…磁気シールド膜、3,8…絶
縁膜、4…軟磁性膜、5…スペーサ金属膜、6…磁気抵
抗効果膜、7…電極。
1 ... Non-magnetic substrate, 2, 9 ... Magnetic shield film, 3, 8 ... Insulating film, 4 ... Soft magnetic film, 5 ... Spacer metal film, 6 ... Magnetoresistive film, 7 ... Electrode.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】合金組成が(M12)y・(M34)よりな
り、(M12)が磁性金属元素M1 およびM2 よりなり、
(M34)がTaを含み、x+y=100%としてその含
有量xは2−9at.% であり、付随する不可避の不純物
を含むことを特徴とする結晶性軟磁性膜をバイアス膜と
して用いたことを特徴とする磁気抵抗効果型ヘッド。
1. An alloy composition of (M 1 M 2 ) y · (M 3 M 4 ) and (M 1 M 2 ) of magnetic metal elements M 1 and M 2 .
(M 3 M 4 ) contains Ta, x + y = 100%, the content x is 2-9 at.%, And the crystalline soft magnetic film characterized by containing incidental incidental impurities is used as a bias film. A magnetoresistive head characterized by being used.
【請求項2】請求項1においてM3 がTa、M4 がN
b,Ti,V,Zr,Hf,Ru,Rh,Crから選ば
れる少なくとも1つなり、x=x3+x4(x3>x4)の関
係にあってx3がM3(=Ta)の含有量で2−9at.%、
4 がM4 の含有量で0.5−5at.%、xが2−14a
t.% であることを特徴とする結晶性軟磁性膜を用いた
ことを特徴とする磁気抵抗効果型ヘッド。
2. In claim 1, M 3 is Ta and M 4 is N.
At least one selected from b, Ti, V, Zr, Hf, Ru, Rh, and Cr has a relation of x = x 3 + x 4 (x 3 > x 4 ), and x 3 is M 3 (= Ta) Content of 2-9 at.%,
0.5-5at x 4 is at a content of M 4.%, x is 2-14a
A magnetoresistive effect head characterized by using a crystalline soft magnetic film characterized by being t.%.
【請求項3】軟磁性膜/スペーサ金属膜/磁気抵抗効果
膜からなる断面構造を有する磁気抵抗効果型素子の軟磁
性膜に請求項1または請求項2の合金膜を用いたことを
特徴とする磁気抵抗効果型ヘッド。
3. An alloy film according to claim 1 or 2 is used as a soft magnetic film of a magnetoresistive effect element having a sectional structure of a soft magnetic film / spacer metal film / magnetoresistive effect film. A magnetoresistive head.
【請求項4】軟磁性膜/スペーサ絶縁膜/磁気抵抗効果
膜からなる断面構造を有する磁気抵抗効果型素子の軟磁
性膜に請求項1または請求項2の合金膜を用いたことを
特徴とする磁気抵抗効果型ヘッド。
4. The alloy film of claim 1 or 2 is used as a soft magnetic film of a magnetoresistive effect element having a cross-sectional structure of a soft magnetic film / spacer insulating film / magnetoresistive effect film. A magnetoresistive head.
【請求項5】請求項3または請求項4において、(M1
2)がNiFe合金膜で、その組成がNi−18at.%F
eからNi−20at.%Feであることを特徴とする磁
気抵抗効果型ヘッド。
5. The method according to claim 3 or 4, wherein (M 1 M
2 ) is a NiFe alloy film, the composition of which is Ni-18 at.% F
e to Ni-20 at.% Fe. Magnetoresistive head.
【請求項6】請求項3または請求項4において、磁気抵
抗効果膜がNi,Co,Feの中の1−3元素からなる
原子層と、Au,Ag,Cu,Crからなる原子を含む
原子層との多層型磁気抵抗効果膜であることを特徴とす
る磁気抵抗効果型ヘッド。
6. The magnetoresistive film according to claim 3 or 4, wherein the magnetoresistive film includes an atomic layer made of 1-3 elements of Ni, Co, and Fe, and an atom containing atoms made of Au, Ag, Cu, Cr. A magnetoresistive head comprising a multi-layered magnetoresistive film with a layer.
【請求項7】請求項3または請求項4記載の磁気抵抗効
果型ヘッドにおいて絶縁膜を介して軟磁性膜/スペーサ
金属膜/磁気抵抗効果膜および軟磁性膜/スペーサ絶縁
膜/磁気抵抗効果膜が磁気シールド膜にはさまれた構造
であることを特徴とする磁気抵抗効果型ヘッド。
7. The magnetoresistive head according to claim 3 or 4, wherein a soft magnetic film / spacer metal film / magnetoresistive film and a soft magnetic film / spacer insulating film / magnetoresistive film are provided with an insulating film interposed therebetween. A magnetoresistive head having a structure in which is sandwiched between magnetic shield films.
【請求項8】請求項1から請求項7のうちいずれかに記
載の磁気抵抗効果型ヘッドに用いる軟磁性膜膜の厚さが
10乃至70nmであることを特徴とする磁気抵抗効果
型ヘッド。
8. A magnetoresistive head, wherein the soft magnetic film used in the magnetoresistive head according to claim 1 has a thickness of 10 to 70 nm.
【請求項9】請求項3から請求項8のうちいずれかに記
載の磁気抵抗効果型ヘッドを再生ヘッドとし、これを記
録用の誘導型ヘッドと組み合わせたことを特徴とする磁
気抵抗効果型ヘッド。
9. A magnetoresistive head, wherein the magnetoresistive head according to any one of claims 3 to 8 is used as a reproducing head and is combined with an inductive head for recording. ..
【請求項10】請求項3から請求項8のうちいずれかに
記載の磁気抵抗効果型ヘッドを定電圧駆動したことを特
徴とする磁気記憶装置。
10. A magnetic memory device comprising the magnetoresistive head according to claim 3 driven at a constant voltage.
JP3342696A 1991-11-25 1991-12-25 Magneto-resistance effect type head Pending JPH05174336A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3342696A JPH05174336A (en) 1991-12-25 1991-12-25 Magneto-resistance effect type head
US07/981,400 US5521005A (en) 1991-11-25 1992-11-25 Magnetoresistive head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3342696A JPH05174336A (en) 1991-12-25 1991-12-25 Magneto-resistance effect type head

Publications (1)

Publication Number Publication Date
JPH05174336A true JPH05174336A (en) 1993-07-13

Family

ID=18355791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3342696A Pending JPH05174336A (en) 1991-11-25 1991-12-25 Magneto-resistance effect type head

Country Status (1)

Country Link
JP (1) JPH05174336A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100356403B1 (en) * 1997-07-15 2003-03-17 가부시끼가이샤 히다치 세이사꾸쇼 Magnetic head

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100356403B1 (en) * 1997-07-15 2003-03-17 가부시끼가이샤 히다치 세이사꾸쇼 Magnetic head

Similar Documents

Publication Publication Date Title
JP2785678B2 (en) Spin valve film and reproducing head using the same
US5764445A (en) Exchange biased magnetoresistive transducer
JP2003162806A (en) Perpendicular magnetic recording medium and magnetic storage device
EP1399920A1 (en) Magnetic multilayered films with reduced magnetostriction
US6359760B2 (en) Thin film conductor layer, magnetoresistive element using the same and method of producing thin film conductor layer
US6372367B1 (en) Magnetic recording medium, method for producing the same and magnetic recording apparatus using the same
JPH08255342A (en) Production of magnetic recording medium
US5485333A (en) Shorted DMR reproduce head
JPH06314617A (en) Exchange connection film and magnetoresistance effect element
JP3426894B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP3522944B2 (en) Magnetic recording media
US5521005A (en) Magnetoresistive head
US6088196A (en) Magnetoresistive head and manufacturing method therefor
JPH05174336A (en) Magneto-resistance effect type head
JP3663289B2 (en) Magnetic recording medium and magnetic storage device
JPH05143936A (en) Magneto-resistance effect type head
JP3869550B2 (en) Magnetic recording medium and magnetic storage device
KR100639620B1 (en) Magnetic recording medium, method of manufacture thereof, and magnetic disk device
JP2001351226A (en) Magnetic recording medium, method for producing the same and magnetic recorder
JPH06200364A (en) Magnetic multilayer film and magneto-resistance effect element
JP2545935B2 (en) Magnetoresistive thin film and method of manufacturing the same
EP0694911A2 (en) Magnetic resistance type magnetic head and composite type magnetic head for recording/reproducing, and production method for the same
JPH10289421A (en) Production of magneto-resistive multilayered films
JP3658586B2 (en) Magnetic recording medium, method for manufacturing the same, and magnetic storage device
JPH11329838A (en) Magnetoresistive film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050616

A131 Notification of reasons for refusal

Effective date: 20050624

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051014