JPH05155612A - Ion-exchange method of zeolite - Google Patents

Ion-exchange method of zeolite

Info

Publication number
JPH05155612A
JPH05155612A JP34865491A JP34865491A JPH05155612A JP H05155612 A JPH05155612 A JP H05155612A JP 34865491 A JP34865491 A JP 34865491A JP 34865491 A JP34865491 A JP 34865491A JP H05155612 A JPH05155612 A JP H05155612A
Authority
JP
Japan
Prior art keywords
zeolite
ion exchange
ion
adsorbent
adsorption capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34865491A
Other languages
Japanese (ja)
Inventor
Atsushi Harada
敦 原田
Wataru Inaoka
亘 稲岡
Isao Tosawa
勇雄 東沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP34865491A priority Critical patent/JPH05155612A/en
Publication of JPH05155612A publication Critical patent/JPH05155612A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PURPOSE:To obtain a zeolite adsorbent for ion exchange having a high adsorption capacity by bringing zeolite into contact with an aq. soln. contg. >=2-valence metal ion while specifying the pH of the soln. CONSTITUTION:Zeolite is brought into contact with an aq. soln. contg. a >=2-valence metal ion to exchange the cation contained in the zeolite crystal. In this case, the pH of the soln. is controlled to <=4. Either the batch process or the circulation process is exemplified as the ion-exchange method, and both processes can be used. When the zeolite powder is subjected to such ion exchange, the powder is compacted by the ordinary method, and the compact is activated and used as an adsorbent. Besides, when the preformed zeolite is subjected to ion exchange, the deposited moisture is dried off at room temp. to 150 deg.C, and the zeolite is activated at 350-600 deg.C. The adsorption of this adsorbent is increased by >=10% as compared with the one kept at >=pH 5.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ゼオライトのイオン交
換方法に関するものである。このイオン交換により、例
えば窒素と酸素を主成分とする混合ガスから吸着法によ
って酸素を分離し、精製し、濃縮する等の目的で使用す
るのに好適なゼオライト吸着剤を製造することができ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zeolite ion exchange method. By this ion exchange, for example, a zeolite adsorbent suitable for use for the purpose of separating, purifying, and concentrating oxygen from a mixed gas containing nitrogen and oxygen as main components by an adsorption method can be manufactured.

【0002】[0002]

【従来の技術】例えば、細孔径5オングストロームのA
型ゼオライトは、通常次の様にして製造されている。ま
ず、合成Na−A型ゼオライト結晶粉末を塩化カルシウ
ム水溶液と接触させて、0.67当量分率以上のナトリ
ウムイオンをカルシウムイオンで交換して細孔径を5オ
ングストロームに調整する。イオン交換終了後、母液と
分離し、適当量の洗浄水で洗浄する。成形体として用い
る場合にはさらに結合剤を加えて成形する。この場合、
イオン交換は成形の後に行っても何等影響はない。成形
に使用する結合剤としては粘土系結合剤が多く使用され
ている。その他、カルボキシメチルセルロース等の成形
助剤等を加えた後に水を混合し充分混練して、押出成形
等の通常の成形法で成形する。450℃〜700℃の温
度で焼成を行ない、工業的使用に耐え得る物理的強度を
有する細孔径5オングストロームのA型ゼオライトの成
形体がつくられる。
2. Description of the Related Art For example, A having a pore size of 5 Å
Type zeolite is usually produced as follows. First, a synthetic Na-A type zeolite crystal powder is brought into contact with an aqueous solution of calcium chloride, and sodium ions of 0.67 equivalent fraction or more are exchanged with calcium ions to adjust the pore diameter to 5 angstrom. After the ion exchange is completed, it is separated from the mother liquor and washed with an appropriate amount of washing water. When it is used as a molded body, a binder is further added for molding. in this case,
Ion exchange has no effect even if it is performed after molding. Clay-based binders are often used as binders for molding. In addition, after adding a molding aid such as carboxymethyl cellulose and the like, water is mixed and sufficiently kneaded, and molding is carried out by a usual molding method such as extrusion molding. By firing at a temperature of 450 ° C. to 700 ° C., a molded product of A-type zeolite having a pore size of 5 Å and physical strength capable of withstanding industrial use is produced.

【0003】[0003]

【発明が解決しようとする課題】このような方法で製造
したCa−A型ゼオライトの吸着容量は必ずしも高いも
のではなく、これよりも吸着容量の大きな吸着剤が製造
できれば、吸着剤の使用量を低減でき、吸着装置の小型
化が可能となる。その結果、動力コストを低下させるこ
ともできる。しかし、吸着容量を増加させることは容易
ではなく、これまでは、成形時に加える結合剤の量を低
減したり、バインダーレス化技術の開発等に努力が払わ
れてきたが、さらに吸着容量の増加を図るためにはゼオ
ライトの吸着能力を本質的に高める必要が生じている。
本発明は、この吸着容量の大きなゼオライトの製造を目
的としてなされたものである。
The adsorption capacity of the Ca-A type zeolite produced by such a method is not always high. If an adsorbent having a larger adsorption capacity than this can be produced, the amount of adsorbent used will be reduced. It is possible to reduce the size, and it is possible to downsize the adsorption device. As a result, the power cost can be reduced. However, it is not easy to increase the adsorption capacity, and until now, efforts have been made to reduce the amount of binder added at the time of molding and to develop a binderless technology. In order to achieve this, it is necessary to essentially increase the adsorption capacity of zeolite.
The present invention was made for the purpose of producing a zeolite having a large adsorption capacity.

【0004】すなわち、本発明の目的は、より吸着容量
の大きな吸着剤をうることができる、ゼオライトの陽イ
オンをCaなどの2価以上の金属イオンとイオン交換さ
せる方法の提供にある。
That is, an object of the present invention is to provide a method for exchanging the cation of zeolite with a metal ion having a valence of 2 or more, such as Ca, which makes it possible to obtain an adsorbent having a larger adsorption capacity.

【0005】[0005]

【課題を解決するための手段】窒素等の吸着容量は、ゼ
オライト結晶中の陽イオンの種類やイオン交換率に密接
な関係がある。従って、目的とする吸着質(例えば窒
素)に選択性の高い陽イオンにイオン交換を行えば、吸
着容量も大きくなるであろうことは容易に類推できる。
しかし、本発明者らは、イオン交換率が全く同じ吸着剤
でも吸着容量に差を生じる場合があり得ることを見出
し、そして、ゼオライトのイオン交換方法について鋭意
検討を重ねた結果、イオン交換に用いる水溶液のpHと
吸着容量の密接な関係を見出し、本発明に至った。
Means for Solving the Problems The adsorption capacity of nitrogen and the like is closely related to the type of cations in the zeolite crystals and the ion exchange rate. Therefore, it can be easily inferred that if the cation having high selectivity to the target adsorbate (for example, nitrogen) is ion-exchanged, the adsorption capacity will be increased.
However, the present inventors have found that even the adsorbents having exactly the same ion exchange rate may cause a difference in adsorption capacity, and as a result of earnest studies on the ion exchange method of zeolite, they are used for ion exchange. The inventors have found a close relationship between the pH of the aqueous solution and the adsorption capacity, and completed the present invention.

【0006】すなわち、本発明は、ゼオライトと2価以
上の金属イオンを含む水溶液とを接触させて、ゼオライ
ト結晶に含まれる陽イオンをイオン交換するにあたり、
上記水溶液のpHを4以下にした上で上記の接触を行わ
せることによる、ゼオライトのイオン交換方法、を要旨
とするものである。
That is, according to the present invention, when the zeolite is brought into contact with an aqueous solution containing a metal ion having a valence of 2 or more, the cations contained in the zeolite crystals are ion-exchanged.
The gist of the present invention is a method for ion-exchanging zeolite by bringing the pH of the aqueous solution to 4 or less and then performing the contact.

【0007】以下、本発明を詳細に説明する。The present invention will be described in detail below.

【0008】イオン交換に供するゼオライトは、天然に
産出するものまたは公知の方法で合成されたもののいず
れをも使用することができる。例えば、A型ゼオライ
ト、フォ−ジャサイト型ゼオライトなどを挙げることが
できる。以下の説明では、合成Na−A型ゼオライトお
よびX型ゼオライトを例にして説明する。イオン交換に
供するゼオライトの形態は、粉末や破砕品でもかまわな
いし、特開昭55−104913号公報,特開平2−1
60616号公報などに示されるイオン交換方法のよう
に予め成形体に成形されたものでもよい。さらにバイン
ダーレス化の処理が行われたものであれば、いっそう効
果的である。このようなゼオライトの粉末または成形体
を、カルシウムなどの2価以上の金属の塩を溶解した水
溶液と接触させてイオン交換する。アルカリ土類金属の
塩は、最も一般的に使用される塩化物のほか、硝酸塩,
硫酸塩,炭酸水素塩,酢酸塩,水酸化物,酸化物等の塩
の内十分な溶解度をもつものが使用できる。イオン交換
に使用する水溶液の濃度は、1N以下,とくに0.7N
以下の濃度で実施されることがこのましい。イオン交換
の温度は、格別の制限はないが、イオン交換速度等の効
率面から40℃以上,好ましくは60℃以上の温度が望
ましい。ゼオライトと溶液との比率は、溶液の濃度,温
度等に依存するので限定することはできないが、目的の
イオン交換率にイオン交換するのに十分な比率であれば
よい。そして、イオン交換に用いる水溶液のpHは4以
下でなくてはならないが、1以下のpHではA型ゼオラ
イトはその結晶が容易に崩壊するので、またX型ゼオラ
イトはそれよりは崩壊しにくいもののそのおそれがある
ので、実用上pHは約2以上とするのがよい。
As the zeolite to be subjected to the ion exchange, any of naturally occurring zeolite and synthesized zeolite by a known method can be used. For example, A-type zeolite and faujasite-type zeolite can be mentioned. In the following description, synthetic Na-A type zeolite and X type zeolite will be described as examples. The zeolite used for ion exchange may be in the form of powder or crushed product, and it may be in the form of powder or crushed product.
It may be molded into a molded body in advance, such as the ion exchange method disclosed in Japanese Patent No. 60616. Further, it is more effective if it is subjected to a binderless treatment. The zeolite powder or molded body is contacted with an aqueous solution in which a salt of a metal having a valence of 2 or more, such as calcium, is dissolved to carry out ion exchange. Alkaline earth metal salts include most commonly used chlorides, nitrates,
Of the salts such as sulfates, hydrogen carbonates, acetates, hydroxides and oxides, those having sufficient solubility can be used. The concentration of the aqueous solution used for ion exchange is 1N or less, especially 0.7N
It is preferable to carry out the following concentrations. The temperature of ion exchange is not particularly limited, but a temperature of 40 ° C. or higher, preferably 60 ° C. or higher is desirable from the viewpoint of efficiency such as ion exchange rate. The ratio of the zeolite to the solution cannot be limited because it depends on the concentration of the solution, the temperature, etc., but it may be a ratio sufficient to carry out ion exchange to a desired ion exchange rate. The pH of the aqueous solution used for ion exchange must be 4 or less, but at a pH of 1 or less, the crystals of the A-type zeolite easily disintegrate, and the X-type zeolite is more difficult to disintegrate than that. Therefore, the pH should be practically set to about 2 or higher.

【0009】このような条件でゼオライト結晶に含まれ
る交換可能な陽イオンを所望の金属イオンでイオン交換
する。イオン交換の方法には、回分法(バッチ法),カ
ラム流通法等があるが、いずれの方法でも良い。
Under such conditions, the exchangeable cations contained in the zeolite crystals are ion-exchanged with desired metal ions. The ion exchange method includes a batch method (batch method), a column flow method, and the like, but any method may be used.

【0010】ゼオライトの粉末をこの様にしてイオン交
換を行った場合は、通常の方法で成形され、活性化して
吸着剤として用いられる。また、予め成形したゼオライ
トをイオン交換に供した場合は、室温〜150℃で予め
付着した水分を乾燥し、350〜600℃の温度で活性
化が行われる。
When the zeolite powder is subjected to ion exchange in this way, it is molded by a usual method, activated and used as an adsorbent. Further, when the preformed zeolite is subjected to ion exchange, the previously attached water is dried at room temperature to 150 ° C. and activated at a temperature of 350 to 600 ° C.

【0011】この方法でゼオライト吸着剤を製造すれ
ば、同じイオン交換率でも、イオン交換に用いた水溶液
のpHを5としたものよりも10%以上吸着容量を増加
させることができる。
When the zeolite adsorbent is produced by this method, the adsorption capacity can be increased by 10% or more as compared with the case where the pH of the aqueous solution used for ion exchange is 5 even with the same ion exchange rate.

【0012】[0012]

【作用】塩化カルシウム水溶液は、pH調整をしなけれ
ば、加水分解などの作用でpHは約5になっている。従
来は、この溶液がイオン交換に用いられていた。この溶
液には、Ca2+イオンのみならずCa(OH)イオ
ンがかなりの割合で含まれており、イオン交換処理によ
りこれらがそのままゼオライトの陽イオンとイオン交換
され、Ca(OH)イオンはゼオライトの吸着能には
不活性であって、それによって従来法では吸着容量の高
いゼオライトがえられない;いっぽう、pH4以下の溶
液では、たとえばカルシウムの場合Ca(OH)イオ
ンが存在しないないしはその含有比率が小さいことによ
って、本発明の方法でえられたゼオライトは吸着容量の
高いものとなる、と推定される。
The calcium chloride aqueous solution has a pH of about 5 due to the action of hydrolysis and the like unless the pH is adjusted. Conventionally, this solution has been used for ion exchange. This solution contains not only Ca 2+ ions but also Ca (OH) + ions in a considerable proportion, and these are directly ion-exchanged with the cations of the zeolite by the ion exchange treatment, and Ca (OH) + ions are It is inactive in the adsorption capacity of zeolites, which makes it impossible to obtain zeolites having a high adsorption capacity by the conventional method; on the other hand, in the case of a solution having a pH of 4 or less, for example, in the case of calcium, Ca (OH) + ions are not present or It is presumed that the zeolite obtained by the method of the present invention has a high adsorption capacity due to the small content ratio.

【0013】[0013]

【発明の効果】本発明の方法によれば、従来の吸着剤よ
りも吸着容量の大きなゼオライト吸着剤を製造すること
ができる。
According to the method of the present invention, it is possible to produce a zeolite adsorbent having a larger adsorption capacity than conventional adsorbents.

【0014】以上の説明から明らかなように本発明の方
法にによれば (1)吸着容量の大きな吸着剤を製造することができ、 (2)その結果、吸着剤の使用量を低減できるので吸着
装置などを小型化することが可能となる。
As is clear from the above description, according to the method of the present invention, (1) an adsorbent having a large adsorption capacity can be produced, and (2) as a result, the amount of adsorbent used can be reduced. It is possible to downsize the adsorption device and the like.

【0015】[0015]

【実施例】実施例および比較例に於ける各測定方法は以
下の通りである。 <静的吸着容量測定方法>静的吸着容量の測定は、容量
法で行った。前処理は、0.01mmHg以下の圧力
下、350℃で2時間活性化を行った。窒素ガスを導入
後、吸着温度及び吸着圧力をそれぞれ−10℃,700
mmHgに保ち、十分平衡に達した後に吸着容量(Nc
c/g)を測定した。 <動的評価方法>第1図に示した動的評価装置を用いて
製品酸素ガスの取出量とその酸素濃度を以下の操作手順
にしたがって求めた。操作は25℃で行った。
EXAMPLES Each measuring method in Examples and Comparative Examples is as follows. <Static adsorption capacity measuring method> The static adsorption capacity was measured by the capacitance method. As the pretreatment, activation was performed at 350 ° C. for 2 hours under a pressure of 0.01 mmHg or less. After introducing the nitrogen gas, the adsorption temperature and the adsorption pressure were set to −10 ° C. and 700, respectively.
After holding at mmHg and reaching sufficient equilibrium, the adsorption capacity (Nc
c / g) was measured. <Dynamic Evaluation Method> Using the dynamic evaluation apparatus shown in FIG. 1, the amount of product oxygen gas taken out and its oxygen concentration were determined according to the following operating procedure. The operation was performed at 25 ° C.

【0016】吸着塔(7)にゼオライト吸着分離剤を約
1300g充填する。吸着工程時には、ブロワー(1)
で0.2kg/cmGに圧縮した空気を電磁弁(2,
4,5)を開にして吸着塔内を流通させる。その時の流
量は流量計(9)で調整した。再生工程時には電磁弁
(2,4,5)は閉じ、電磁弁(3)を開にして真空ポ
ンプ(12)で減圧した。この時の到達圧力は180m
mHg一定にした。復圧工程時には電磁弁(3)は閉
じ、電磁弁(4)を開にして蓄圧塔(8)内の製品酸素
ガスで吸着塔内を復圧する。各工程の時間は1分間と
し、電磁弁の作動はシーケンサーにより制御した。製品
酸素ガスの酸素濃度は、その値が定常になった後、酸素
濃度計(10)で読取り、積算流量計(11)の値から
正確な製品酸素ガスの取出量を算出した。圧力は圧力計
(8)で読取った。
The adsorption tower (7) is filled with about 1300 g of a zeolite adsorption separating agent. Blower (1) during adsorption process
Air compressed to 0.2 kg / cm 2 G with a solenoid valve (2,
4, 5) are opened and flowed in the adsorption tower. The flow rate at that time was adjusted by a flow meter (9). During the regeneration process, the solenoid valves (2, 4, 5) were closed, the solenoid valve (3) was opened, and the pressure was reduced by the vacuum pump (12). The ultimate pressure at this time is 180 m
The mHg was kept constant. During the pressure recovery step, the solenoid valve (3) is closed, the solenoid valve (4) is opened, and the product oxygen gas in the pressure accumulator (8) is used to restore the pressure in the adsorption tower. The time of each step was 1 minute, and the operation of the solenoid valve was controlled by a sequencer. The oxygen concentration of the product oxygen gas was read by the oxygen concentration meter (10) after the value became steady, and the accurate amount of product oxygen gas taken out was calculated from the value of the integrated flow meter (11). The pressure was read with a pressure gauge (8).

【0017】実施例1 市販のナトリウムA型ゼオライト(東ソー株式会社製ゼ
オラムA4)の粉末(約150μ以下)100重量部、
粘土系結合剤20重量部、有機系成形助剤(カルボキシ
メチルセルロースナトリウム塩)5重量部および水酸化
ナトリウム1重量部を混合し、更に水を加えて混練し、
通常の押出し成形機を使用して、直径1.5mmのダイ
スを通過させて押出し成形し、長さ約5〜15mmの成
形体を得た。この成形体を通風乾燥器中60℃の温度
で、成形体の水分含有率が30重量%以下になるまで乾
燥した。次に550℃の炉中で2時間焼成した。焼成し
た成形体の水分含有率は、2重量%であった。この成形
体を、水分含有率約20重量%になるまで水和させた。
この成形体を特開平2−157119号公報に記載され
ているように、1.6mol/リットルの水酸化ナトリ
ウム水溶液と接触させて、加えた粘土系結合剤をA型ゼ
オライトに結晶化させた。これを直径60mm×200
mmのカラムに約300g充填した。このカラムに1N
の塩化カルシウム水溶液に、1Nの塩酸を適当量滴下し
て、pHを4に調整した後に80℃に加温してカラム下
部より上部へ4.2cc/分の流速で流通した。流通時
間は12時間であった。塩化カルシウム水溶液流通終了
後、カラム内の塩化カルシウム水溶液を液抜きし、蒸留
水で洗浄した。蒸留水は、室温(約20℃)のまま30
cc/分の流速で2時間カラム下部より上部へ流通し洗
浄を終えた。つぎにカラムより抜き出して、通風乾燥器
中25℃の温度で、成形体の水分含有率が40重量%以
下になるまで15時間乾燥した。乾燥を終えた成形体の
カルシウムイオン交換率を原子吸光光度法によって、測
定した結果、ゼオライト結晶に含まれるアルミニウム原
子との比率(2×Ca/Al)は0.94であった。ま
た、乾燥後に、内径40mm,長さ900mmの管状炉
に乾燥重量約500gを充填し、8リットル/分の空気
を流通しながら500℃で1時間活性化した。その後、
先に記した方法で窒素吸着容量を測定したところ、2
6.0Ncc/gであった。また、動的評価の結果によ
ると、93%の酸素が吸着剤1kg当り1時間に64.
9リットル得られた。
Example 1 100 parts by weight of a powder of commercially available sodium A type zeolite (Zeorum A4 manufactured by Tosoh Corporation) (about 150 μ or less),
20 parts by weight of a clay-based binder, 5 parts by weight of an organic molding aid (carboxymethyl cellulose sodium salt) and 1 part by weight of sodium hydroxide are mixed, and water is further added and kneaded,
Using a usual extrusion molding machine, a die having a diameter of 1.5 mm was passed through for extrusion molding to obtain a molded body having a length of about 5 to 15 mm. The molded body was dried in a ventilation dryer at a temperature of 60 ° C. until the moisture content of the molded body became 30% by weight or less. Then, it was baked in a furnace at 550 ° C. for 2 hours. The water content of the fired compact was 2% by weight. The molded body was hydrated until the water content became about 20% by weight.
As described in JP-A-2-157119, this molded product was brought into contact with a 1.6 mol / liter aqueous sodium hydroxide solution to crystallize the added clay-based binder into A-type zeolite. This is 60mm in diameter x 200
The column of mm was packed with about 300 g. 1N in this column
1N hydrochloric acid was added dropwise to the calcium chloride aqueous solution (1) to adjust the pH to 4, then heated to 80 ° C., and circulated from the lower part of the column to the upper part at a flow rate of 4.2 cc / min. The distribution time was 12 hours. After the circulation of the aqueous calcium chloride solution was completed, the aqueous calcium chloride solution in the column was drained and washed with distilled water. Distilled water remains at room temperature (about 20 ° C) 30
Flowing was performed from the lower part of the column to the upper part at a flow rate of cc / min for 2 hours to complete the washing. Next, the product was taken out from the column and dried in a ventilation dryer at a temperature of 25 ° C. for 15 hours until the moisture content of the molded product was 40% by weight or less. The calcium ion exchange rate of the dried molded body was measured by the atomic absorption photometry, and as a result, the ratio with the aluminum atoms contained in the zeolite crystals (2 × Ca / Al) was 0.94. After drying, a tubular furnace having an inner diameter of 40 mm and a length of 900 mm was charged with a dry weight of about 500 g, and activated at 500 ° C. for 1 hour while flowing 8 liters / minute of air. afterwards,
When the nitrogen adsorption capacity was measured by the method described above, it was 2
It was 6.0 Ncc / g. Further, according to the result of the dynamic evaluation, 93% of oxygen is 64.
9 liters were obtained.

【0018】実施例2 実施例1において溶液のpHを3に調整してイオン交換
を行った以外は実施例1と同一の条件で操作を行った。
この様にして調製したサンプルのイオン交換率は0.9
1であった。また、実施例1と全く同じ条件で管状炉で
活性化した後に、先に記した方法で窒素吸着容量を測定
したところ、26.7Ncc/gであった。また、動的
評価の結果によると、93%の酸素が吸着剤1kg当り
1時間に65.3リットル得られた。
Example 2 An operation was carried out under the same conditions as in Example 1 except that the pH of the solution was adjusted to 3 and ion exchange was carried out.
The ion exchange rate of the sample thus prepared was 0.9.
It was 1. Further, when the nitrogen adsorption capacity was measured by the method described above after the activation in the tubular furnace under exactly the same conditions as in Example 1, it was 26.7 Ncc / g. Further, according to the result of dynamic evaluation, 93% of oxygen was obtained in an amount of 65.3 liters per hour of 1 kg of the adsorbent.

【0019】実施例3 実施例1において溶液のpHを2に調整してイオン交換
を行った以外は実施例1と同一の条件で操作を行った。
この様にして調製したサンプルのイオン交換率は0.9
6であった。また、実施例1と全く同じ条件で管状炉で
活性化した後に、先に記した方法で窒素吸着容量を測定
したところ、25.8Ncc/gであった。また、動的
評価の結果によると、93%の酸素が吸着剤1kg当り
1時間に65.0リットル得られた。
Example 3 An operation was carried out under the same conditions as in Example 1 except that the pH of the solution was adjusted to 2 and ion exchange was carried out.
The ion exchange rate of the sample thus prepared was 0.9.
It was 6. Further, when the nitrogen adsorption capacity was measured by the above-mentioned method after activating in a tubular furnace under exactly the same conditions as in Example 1, it was 25.8 Ncc / g. According to the results of dynamic evaluation, 93% of oxygen was obtained in an amount of 65.0 liters per 1 kg of the adsorbent.

【0020】実施例4 ナトリムA型ゼオライトの代りにナトリウムX型ゼオラ
イト(ゼオラムF−9、東ソー株式会社製)を用い、実
施例1と同様に成形し、SiOを2wt%含む2.2
mol/リットルの水酸化ナトリウムと接触させて、加
えた粘土系結合剤をX型ゼオライトに結晶化させた。実
施例1と同様にカラムに充填し、このカラムに1.0N
の塩化カルシウム水溶液のpHを1N塩酸溶液を適当量
滴下してpHを4に調整して80℃に加温してカラム下
部より上部へ4.2cc/分の流速で流通した。流通時
間は12時間であった。塩化カルシウム水溶液流通終了
後、カラム内の塩化カルシウム水溶液を液抜きし、実施
例1と同様にして洗浄し、25℃の温度で15時間乾燥
した。乾燥を終えた成形体のカルシウムイオン交換率を
原子吸光光度法によって測定した結果、0.95であっ
た。また、実施例1と全く同じ条件で管状炉で活性化し
た後に、先に記した方法で窒素吸着容量を測定したとこ
ろ、27.5Ncc/gであった。また、動的評価の結
果によると、93%の酸素が吸着剤1kg当り1時間に
66.1Nl得られた。
Example 4 A sodium X type zeolite (Zeorum F-9, manufactured by Tosoh Corporation) was used in place of the sodium A type zeolite, and the molding was performed in the same manner as in Example 1 to contain 2 wt% of SiO 2 2.2.
The added clay-based binder was crystallized into X-type zeolite by contacting with mol / l sodium hydroxide. The column was packed as in Example 1 and the column was charged with 1.0N.
An appropriate amount of 1N hydrochloric acid solution was added dropwise to the above calcium chloride aqueous solution to adjust the pH to 4, heated to 80 ° C., and circulated from the lower part of the column to the upper part at a flow rate of 4.2 cc / min. The distribution time was 12 hours. After the completion of circulation of the calcium chloride aqueous solution, the calcium chloride aqueous solution in the column was drained, washed in the same manner as in Example 1, and dried at a temperature of 25 ° C. for 15 hours. The calcium ion exchange rate of the dried compact was 0.95 as a result of measurement by an atomic absorption photometry. Further, when the nitrogen adsorption capacity was measured by the method described above after activating in a tubular furnace under exactly the same conditions as in Example 1, it was 27.5 Ncc / g. According to the result of dynamic evaluation, 93% of oxygen was obtained in an amount of 66.1 Nl per 1 kg of the adsorbent.

【0021】実施例5 実施例4において溶液のpHを3に調整してイオン交換
を行った以外は実施例4と同一の条件で操作を行った。
この様にして調製したサンプルのイオン交換率は0.9
7であった。また、実施例1と全く同じ条件で管状炉で
活性化した後に、先に記した方法で窒素吸着容量を測定
したところ、27.7Ncc/gであった。また、動的
評価の結果によると、93%の酸素が吸着剤1kg当り
1時間に66.7リットル得られた。
Example 5 The procedure of Example 4 was repeated except that the pH of the solution was adjusted to 3 and ion exchange was performed.
The ion exchange rate of the sample thus prepared was 0.9.
It was 7. Further, the nitrogen adsorption capacity was measured by the method described above after the activation in the tubular furnace under the same conditions as in Example 1, and it was 27.7 Ncc / g. According to the results of dynamic evaluation, 93% of oxygen was obtained in an amount of 66.7 liters per hour of 1 kg of the adsorbent.

【0022】実施例6 実施例4において溶液のpHを2に調整してイオン交換
を行った以外は実施例4と同一の条件で操作を行った。
この様にして調製したサンプルのイオン交換率は0.9
1であった。また、実施例1と全く同じ条件で管状炉で
活性化した後に、先に記した方法で窒素吸着容量を測定
したところ、26.6Ncc/gであった。また、動的
評価の結果によると、93%の酸素が吸着剤1kg当り
1時間に63.1リットル得られた。
Example 6 The procedure of Example 4 was repeated except that the pH of the solution was adjusted to 2 and ion exchange was performed.
The ion exchange rate of the sample thus prepared was 0.9.
It was 1. Further, when the nitrogen adsorption capacity was measured by the method described above after activating in a tubular furnace under exactly the same conditions as in Example 1, it was 26.6 Ncc / g. According to the results of dynamic evaluation, 93% of oxygen was obtained in an amount of 63.1 liters per hour of 1 kg of the adsorbent.

【0023】比較例1 実施例1において溶液のpHを8に調整してイオン交換
を行った以外は実施例4と同一の条件で操作を行った。
この様にして調製したサンプルのイオン交換率は0.9
3であった。また、実施例1と全く同じ条件で管状炉で
活性化した後に、先に記した方法で窒素吸着容量を測定
したところ、23.Ncc/gであった。また、動的評
価の結果によると、93%の酸素が吸着剤1kg当り1
時間に60.3リットル得られた。
Comparative Example 1 The procedure of Example 4 was repeated except that the pH of the solution was adjusted to 8 and ion exchange was performed.
The ion exchange rate of the sample thus prepared was 0.9.
It was 3. Moreover, when the nitrogen adsorption capacity was measured by the method described above after activation in a tubular furnace under exactly the same conditions as in Example 1, 23. It was Ncc / g. Moreover, according to the result of the dynamic evaluation, 93% of oxygen is 1% per 1 kg of the adsorbent.
Obtained 60.3 liters per hour.

【0024】比較例2 実施例1において溶液のpHを10に調整してイオン交
換を行った以外は実施例4と同一の条件で操作を行っ
た。この様にして調製したサンプルのイオン交換率は
0.94であった。また、実施例1と全く同じ条件で管
状炉で活性化した後に、先に記した方法で窒素吸着容量
を測定したところ、21.1Ncc/gであった。ま
た、動的評価の結果によると、93%の酸素が吸着剤1
kg当り1時間に57.1Nl得られた。
Comparative Example 2 The procedure of Example 4 was repeated except that the pH of the solution was adjusted to 10 and ion exchange was performed. The ion exchange rate of the sample thus prepared was 0.94. Moreover, after activating in a tubular furnace under exactly the same conditions as in Example 1, the nitrogen adsorption capacity was measured by the method described above, and was 21.1 Ncc / g. Moreover, according to the results of the dynamic evaluation, 93% of oxygen is adsorbent 1
57.1 Nl was obtained per hour per kg.

【0025】比較例3 実施例4において溶液のpHを8に調整してイオン交換
を行った以外は実施例4と同一の条件で操作を行った。
この様にして調製したサンプルのイオン交換率は0.9
6であった。また、実施例1と全く同じ条件で管状炉で
活性化した後に、先に記した方法で窒素吸着容量を測定
したところ、22.5Ncc/gであった。また、動的
評価の結果によると、93%の酸素が吸着剤1kg当り
1時間に61.1リットル得られた。
Comparative Example 3 The procedure of Example 4 was repeated except that the pH of the solution was adjusted to 8 and ion exchange was performed.
The ion exchange rate of the sample thus prepared was 0.9.
It was 6. Moreover, after activating in a tubular furnace under exactly the same conditions as in Example 1, the nitrogen adsorption capacity was measured by the method described above, and was 22.5 Ncc / g. According to the results of dynamic evaluation, 93% of oxygen was obtained in an amount of 61.1 liters per hour of 1 kg of the adsorbent.

【0026】比較例4 実施例4において溶液のpHを10に調整してイオン交
換を行った以外は実施例4と同一の条件で操作を行っ
た。この様にして調製したサンプルのイオン交換率は
0.94であった。また、実施例1と全く同じ条件で管
状炉で活性化した後に、先に記した方法で窒素吸着容量
を測定したところ、20.8Ncc/gであった。ま
た、動的評価の結果によると、93%の酸素が吸着剤1
kg当り1時間に58.3Nl得られた。
Comparative Example 4 The procedure of Example 4 was repeated except that the pH of the solution was adjusted to 10 and ion exchange was performed. The ion exchange rate of the sample thus prepared was 0.94. Moreover, after activating in a tubular furnace under exactly the same conditions as in Example 1, the nitrogen adsorption capacity was measured by the method described above, and was 20.8 Ncc / g. Moreover, according to the results of the dynamic evaluation, 93% of oxygen is adsorbent 1
58.3 Nl was obtained per hour per kg.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例および比較例における、吸着分離剤の動
的評価装置の系統図である。
FIG. 1 is a system diagram of a dynamic evaluation device for an adsorption separation agent in Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

1:ブロアー 2〜5:電磁弁 6:圧力計 7:吸着塔 8:蓄圧塔 9:流量計 10:酸素濃度計 11:積算流量計 12:真空ポンプ 1: Blower 2-5: Solenoid valve 6: Pressure gauge 7: Adsorption tower 8: Accumulation tower 9: Flow meter 10: Oxygen concentration meter 11: Integrated flow meter 12: Vacuum pump

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ゼオライトと2価以上の金属イオンを含む
水溶液とを接触させて、ゼオライト結晶に含まれる陽イ
オンをイオン交換するにあたり、上記水溶液のpHを4
以下にした上で上記の接触を行わせることを特徴とす
る、ゼオライトのイオン交換方法。
1. When the zeolite is brought into contact with an aqueous solution containing divalent or higher valent metal ions to ion-exchange the cations contained in the zeolite crystals, the pH of the aqueous solution is set to 4
An ion exchange method for zeolite, characterized in that the above contact is carried out after the following.
JP34865491A 1991-12-06 1991-12-06 Ion-exchange method of zeolite Pending JPH05155612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34865491A JPH05155612A (en) 1991-12-06 1991-12-06 Ion-exchange method of zeolite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34865491A JPH05155612A (en) 1991-12-06 1991-12-06 Ion-exchange method of zeolite

Publications (1)

Publication Number Publication Date
JPH05155612A true JPH05155612A (en) 1993-06-22

Family

ID=18398464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34865491A Pending JPH05155612A (en) 1991-12-06 1991-12-06 Ion-exchange method of zeolite

Country Status (1)

Country Link
JP (1) JPH05155612A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104148010A (en) * 2013-05-16 2014-11-19 中国石油化工股份有限公司 High-silicon MFI zeolite adsorbent without adhesive and preparation method thereof
JP2020015651A (en) * 2018-07-26 2020-01-30 東ソー株式会社 Method for producing silver ion-exchange zeolite

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104148010A (en) * 2013-05-16 2014-11-19 中国石油化工股份有限公司 High-silicon MFI zeolite adsorbent without adhesive and preparation method thereof
JP2020015651A (en) * 2018-07-26 2020-01-30 東ソー株式会社 Method for producing silver ion-exchange zeolite

Similar Documents

Publication Publication Date Title
US4748013A (en) Adsorbent for recovery of bromine and bromine-recovering process using same
US5868818A (en) Adsorbent for air separation, production method thereof, and air-separation method using it
US6051051A (en) Binder-free molecular sieve zeolite granules which contain zeolites of the type lithium zeolite A and lithium zeolite X
US4153429A (en) Selective adsorption of NOx from gas streams
KR100480219B1 (en) Argon/oxygen selective x-zeolite
GB2109359A (en) Preparation of binderless 3a zeolite adsorbents
JPH1176810A (en) Agglomerated zeolite adsorbent, its production and use in separation of industrial gas at not extermely low temperature
US3033642A (en) Method of removing hydrogen and oxygen from gaseous mixtures
EP0685430A2 (en) Lithium-exchanged low silica EMT-containing metallosilicates
DE19528188C1 (en) Oxygen generation by pressure swing adsorption
JP3050147B2 (en) Adsorbent for air separation, production method thereof and air separation method using the same
US4069172A (en) Adsorbent for aromatic hydrocarbon mixture separation
US6090738A (en) Process for the preparation of a molecular sieve adsorbent for selectively adsorbing methane from a gaseous mixture
US6030916A (en) Process for the preparation of a molecular sieve adsorbent for selectively adsorbing nitrogen from a gaseous mixture
JPH05155612A (en) Ion-exchange method of zeolite
US3679604A (en) Ultra-stable 3-angstrom molecular sieve
JP2002003215A (en) Binderless molded body of high purity low silica x type zeolite and method for separating gas using the same
JPH03295805A (en) X-type zeolite molded body and its production
JPH0739752A (en) Adsorbent of carbon dioxide and manufacture thereof
JP2639562B2 (en) Zeolite adsorbent for hydrogen PSA and method for producing the same
AU594436B2 (en) Process for preparation of molded zeolite body, adsorbing separating agent and oxygen-separating method
EP0490037A1 (en) Adsorbent and cleaning method of waste gas containing ketonic organic solvents
JP3143920B2 (en) Method for producing zeolite adsorbing and separating agent
JPH11246216A (en) Activated low-silica x-zeolite compact
JP2756568B2 (en) Method for producing A-type zeolite molded body