JPH05145080A - Nonvolatile storage device - Google Patents

Nonvolatile storage device

Info

Publication number
JPH05145080A
JPH05145080A JP30917991A JP30917991A JPH05145080A JP H05145080 A JPH05145080 A JP H05145080A JP 30917991 A JP30917991 A JP 30917991A JP 30917991 A JP30917991 A JP 30917991A JP H05145080 A JPH05145080 A JP H05145080A
Authority
JP
Japan
Prior art keywords
memory
gate
memory device
gate electrode
storage device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30917991A
Other languages
Japanese (ja)
Inventor
Kaoru Maekawa
薫 前川
Masanori Iwahashi
正憲 岩橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP30917991A priority Critical patent/JPH05145080A/en
Publication of JPH05145080A publication Critical patent/JPH05145080A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Volatile Memory (AREA)

Abstract

PURPOSE:To provide the title nonvolatile storage device having even and stable storage characteristics attaining the high integration. CONSTITUTION:The title nonvolatile storage device is composed of a structure wherein memory gate electrode 7 are provided on a pair of multiple gate insulating films 6 independently formed on a channel region of a semiconductor substrate 1 while an address gate electrode 9 is formed at least on a part between the memory gata electrode 7 and on the same through the intermediary of an insulating film 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、不揮発性記憶装置に係
り、特に、高集積化を達成し、均一で安定した記憶特性
を有する不揮発性記憶装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-volatile memory device, and more particularly to a non-volatile memory device which achieves high integration and has uniform and stable memory characteristics.

【0002】[0002]

【従来の技術】従来、一般的な不揮発性記憶装置とし
て、例えば、MNOS(Metal Nitride
Oxide Semiconductor)型や、MO
NOS(Metal Oxide Nitride O
xide Semiconductor)型等が知られ
ている。
2. Description of the Related Art Conventionally, as a general nonvolatile memory device, for example, an MNOS (Metal Nitride) is used.
Oxide Semiconductor type, MO
NOS (Metal Oxide Nitride O
Xide Semiconductor) type and the like are known.

【0003】前記不揮発性記憶装置のメモリセルには、
通常、ゲート酸化膜と多結晶シリコンゲートとの間に、
シリコン窒化膜を有するnMOS(n型−MetalO
xide Semiconductor)トランジスタ
が用いられている。そして、このようなメモリセルで
は、通常のメモリゲート(記憶装置のゲート)におい
て、書き込み後は、エンハンスメント型、消去後は、デ
ィプリーション型の特性を示す。従って、消去状態にあ
るメモリセルの非読み出し時に、チャネル領域が短絡し
ないように、前記不揮発性記憶装置は、1ビットセルが
メモリゲート及びエンハンスメント型特性を持つアドレ
スゲート(前記記憶装置が選択された時にのみ、ドレイ
ン電流を通過させるチャネルを形成するためのゲート)
を有した構造、即ち、実質的には、2つのトランジシタ
で1つの記憶装置を構成する構造をしている。
In the memory cell of the non-volatile memory device,
Normally, between the gate oxide film and the polycrystalline silicon gate,
NMOS (n-type-MetalO) having a silicon nitride film
A xide semiconductor (transistor) transistor is used. In such a memory cell, an ordinary memory gate (gate of a storage device) exhibits enhancement-type characteristics after writing and depletion-type characteristics after erasing. Therefore, in order to prevent the channel region from being short-circuited when the memory cell in the erased state is not read, the non-volatile memory device is configured such that the 1-bit cell has a memory gate and an address gate having an enhancement type characteristic (when the memory device is selected, Only a gate to form a channel that allows drain current to pass)
, That is, a structure in which one storage device is substantially composed of two transistors.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記不
揮発性記憶装置は、2つのトランジシタで1つの記憶装
置を構成する構造を有するため、ビット当たりの面積が
大きくなり、装置の小型化を図ることができないという
問題があった。そこで、この問題を解決するため、メモ
リセルを2つのメモリゲートと1つのアドレスゲートと
で構成し、前記メモリゲートとアドレスゲートとをオー
バーラップさせた構造とし、1セルに2ビット記憶させ
ることで、1ビット当たりの面積を縮小する不揮発性装
置が知られている。
However, since the non-volatile memory device has a structure in which two transistors form one memory device, the area per bit becomes large and the device can be miniaturized. There was a problem that I could not. Therefore, in order to solve this problem, a memory cell is configured by two memory gates and one address gate, and the memory gate and the address gate are overlapped to store two bits in one cell. Non-volatile devices that reduce the area per bit are known.

【0005】しかしながら、この従来例は、1ビット当
たりの面積を縮小することができる反面、メモリゲート
をアドレスゲートの一部にオーバーラップさせているた
め、メモリゲート長に対するメモリ領域長が小さくなっ
ている。従って、実質的に有効なメモリ領域が小さく、
メモリ動作が不安定になるという問題があった。一方、
安定したメモリ動作を得るためには、実質的なメモリ領
域を拡げる、即ち、メモリゲート長を大きくしなければ
ならず高集積化に支障を来すという問題があった。さら
に、前記メモリゲートとアドレスゲートとをオーバーラ
ップさせる技術は、フォト工程が複雑なため、位置合わ
せ誤差が生じ、メモリ領域長にばらつきが生じ易く、メ
モリ動作が不安定になるという問題があった。また、コ
ストの増大を招くという問題もあった。
However, in this conventional example, while the area per bit can be reduced, since the memory gate overlaps a part of the address gate, the memory area length with respect to the memory gate length becomes small. There is. Therefore, the effective memory area is small,
There was a problem that the memory operation became unstable. on the other hand,
In order to obtain a stable memory operation, the substantial memory area must be expanded, that is, the memory gate length must be increased, which poses a problem of impeding high integration. Further, the technique of overlapping the memory gate and the address gate has a problem in that the photo-process is complicated, so that an alignment error occurs, the memory region length easily varies, and the memory operation becomes unstable. .. There is also a problem that the cost is increased.

【0006】本発明は、このような問題を解決すること
を課題とするものであり、高集積化を達成し、均一で安
定した記憶特性を有する不揮発性記憶装置を提供するこ
とを目的とする。
An object of the present invention is to solve such a problem, and it is an object of the present invention to provide a nonvolatile memory device which achieves high integration and has uniform and stable memory characteristics. ..

【0007】[0007]

【課題を解決するための手段】この目的を達成するため
に、本発明は、半導体基板のチャネル領域上に独立して
形成した一対の多層ゲート絶縁膜上に、メモリゲート電
極を設け、当該メモリゲート電極間及びメモリゲート電
極上の少なくとも一部に、絶縁膜を介してアドレスゲー
ト電極を形成したことを特徴とする不揮発性記憶装置を
提供するものである。
In order to achieve this object, the present invention provides a memory gate electrode on a pair of multi-layered gate insulating films independently formed on a channel region of a semiconductor substrate, and the memory concerned. The present invention provides a non-volatile memory device characterized in that an address gate electrode is formed between gate electrodes and at least a part of the memory gate electrode via an insulating film.

【0008】[0008]

【作用】本発明に係る不揮発性記憶装置は、前記メモリ
ゲート電極間及びメモリゲート電極上の少なくとも一部
に、前記アドレスゲート電極を形成した構造としたた
め、メモリゲート長が直接メモリ領域長となる。従っ
て、1ビット当たりの面積に対するメモリ領域を最大限
に大きくすることができるため、メモリ動作が安定す
る。このため、1ビット当たりの面積を従来の不揮発性
記憶装置の前記面積より縮小しても、従来の不揮発性記
憶装置と同様の安定したメモリ動作を確保することがで
きる。このため、高集積化が可能となる。また、前記メ
モリゲートは、前記アドレスゲートの下(半導体基板
側)に形成されているため、従来のように、フォト工程
の位置合わせ誤差に影響されることがない。従って、メ
モリ領域の寸法精度を向上することができるため、均一
で安定したメモリ特性を有する不揮発性記憶装置とな
る。
Since the nonvolatile memory device according to the present invention has a structure in which the address gate electrodes are formed between the memory gate electrodes and at least a part of the memory gate electrodes, the memory gate length becomes the memory region length directly. .. Therefore, the memory area can be maximized with respect to the area per bit, and the memory operation becomes stable. Therefore, even if the area per bit is smaller than the area of the conventional nonvolatile memory device, a stable memory operation similar to that of the conventional nonvolatile memory device can be ensured. Therefore, high integration is possible. Further, since the memory gate is formed below the address gate (on the side of the semiconductor substrate), it is not affected by the alignment error in the photo process unlike the conventional case. Therefore, the dimensional accuracy of the memory region can be improved, and the nonvolatile memory device has uniform and stable memory characteristics.

【0009】[0009]

【実施例】次に、本発明に係る実施例について、図面を
参照して説明する。図1ないし図4は、本発明の実施例
に係る不揮発性記憶装置(MONOS型)の製造工程を
示す一部断面図である。図1に示す工程では、p型の半
導体基板1上に、公知の方法で、20Å程度の膜厚でシ
リコン酸化膜2を堆積した後、この上に、70〜150
Å程度の膜厚でシリコン窒化膜3を堆積し、さらに、4
0〜80Å程度の膜厚でシリコン酸化膜4を堆積する。
その後、前記シリコン酸化膜4上に、3000〜500
0Å程度の膜厚で、多結晶シリコン膜5を堆積する。
Embodiments of the present invention will now be described with reference to the drawings. 1 to 4 are partial cross-sectional views showing a manufacturing process of a nonvolatile memory device (MONOS type) according to an embodiment of the present invention. In the step shown in FIG. 1, after a silicon oxide film 2 having a film thickness of about 20 Å is deposited on a p-type semiconductor substrate 1 by a known method, 70 to 150
Deposit silicon nitride film 3 with a thickness of about Å, and
A silicon oxide film 4 is deposited with a film thickness of about 0 to 80Å.
After that, 3000 to 500 are formed on the silicon oxide film 4.
A polycrystalline silicon film 5 is deposited with a film thickness of about 0Å.

【0010】次に、図2に示す工程では、図1に示す工
程で得た半導体基板1をパターニングして、多結晶シリ
コン膜5及び、シリコン酸化膜4と、シリコン窒化膜3
と、シリコン酸化膜2と、からなる多層ゲート絶縁膜6
を選択的にエッチングする。このようにして、半導体基
板1上に、独立した2つ(一対)のメモリゲート電極7
を、多層ゲート絶縁膜6を介して形成する。このよう
に、メモリゲート電極7は、従来の複雑なフォト工程を
行わずに形成することができるため、メモリ領域の寸法
精度を向上することができる。
Next, in the step shown in FIG. 2, the semiconductor substrate 1 obtained in the step shown in FIG. 1 is patterned to form a polycrystalline silicon film 5, a silicon oxide film 4, and a silicon nitride film 3.
And a silicon oxide film 2
Are selectively etched. In this way, two independent (a pair) memory gate electrodes 7 are formed on the semiconductor substrate 1.
Are formed through the multi-layer gate insulating film 6. In this way, the memory gate electrode 7 can be formed without performing the conventional complicated photo process, so that the dimensional accuracy of the memory region can be improved.

【0011】次いで、図3に示す工程では、図2に示す
工程で得た半導体基板1にゲート酸化を行い、200Å
程度の膜厚で絶縁膜8を堆積する。この時、メモリゲー
ト電極7上に堆積した絶縁膜8の膜厚は、300〜80
0Å程度となる。次に、絶縁膜8上に、多結晶シリコン
を3000〜5000Å程度の膜厚で堆積した後、パタ
ーニングして、当該多結晶シリコン膜を選択的にエッチ
ングし、アドレスゲート電極9を形成する。ここで、ア
ドレスゲート電極9を形成するためのパターニングは、
アドレスゲート電極9が、前記2つのメモリゲート電極
7の一方から他方へオーバーラップするように行う。こ
のようにして、メモリゲート電極7間及びメモリゲート
電極7上の少なくとも一部に、アドレスゲート電極9を
形成した。この構造を有する不揮発性記憶装置は、メモ
リ領域が従来の不揮発性記憶装置に比べ、極めて大きく
なっている。
Next, in the step shown in FIG. 3, gate oxidation is performed on the semiconductor substrate 1 obtained in the step shown in FIG.
The insulating film 8 is deposited to a film thickness of about this. At this time, the thickness of the insulating film 8 deposited on the memory gate electrode 7 is 300 to 80.
It will be about 0Å. Next, polycrystalline silicon is deposited on the insulating film 8 to a film thickness of about 3000 to 5000 Å, and then patterned to selectively etch the polycrystalline silicon film to form the address gate electrode 9. Here, the patterning for forming the address gate electrode 9 is
The address gate electrode 9 is formed so as to overlap from one of the two memory gate electrodes 7 to the other. In this way, the address gate electrodes 9 were formed between the memory gate electrodes 7 and at least a part of the memory gate electrodes 7. The nonvolatile memory device having this structure has a memory area extremely larger than that of the conventional nonvolatile memory device.

【0012】次に、図4に示す工程では、前記2つのメ
モリゲート7及びアドレスゲート電極11がチャネル領
域上に形成されるように、図3に示す工程で得た半導体
基板1に、公知の方法によりソース10、ドレイン11
を形成する。その後、通常工程により、配線等を形成
し、不揮発性記憶装置を完成する。尚、本実施例では、
p型の半導体基板上に、n型のメモリセルを形成した
が、これに限らず、n型の半導体基板を用いてもよいこ
とは勿論である。
Next, in the step shown in FIG. 4, a known semiconductor substrate 1 obtained in the step shown in FIG. 3 is formed so that the two memory gates 7 and the address gate electrodes 11 are formed on the channel region. Source 10 and drain 11 depending on the method
To form. After that, wiring and the like are formed by a normal process to complete the nonvolatile memory device. In this example,
Although the n-type memory cell is formed on the p-type semiconductor substrate, the present invention is not limited to this, and it goes without saying that an n-type semiconductor substrate may be used.

【0013】また、本実施例では、MONOS型の不揮
発性記憶装置について説明したが、これに限らず、MN
OS型の不揮発性記憶装置等に応用しても、同様の効果
を得ることができる。
Although the MONOS type non-volatile memory device has been described in the present embodiment, the present invention is not limited to this.
Even when applied to an OS type non-volatile memory device or the like, the same effect can be obtained.

【0014】[0014]

【発明の効果】以上説明したように、本発明によれば、
不揮発性記憶装置の構造を、メモリゲート電極間及びメ
モリゲート電極上の少なくとも一部に、アドレスゲート
電極を形成した構造としたため、メモリゲート長が直接
メモリ領域長となる結果、1ビット当たりの面積を縮小
しても、安定したメモリ動作を確保することができる。
従って、高集積化を達成し、均一で安定した記憶特性を
有する不揮発性記憶装置を提供することができる。
As described above, according to the present invention,
Since the structure of the non-volatile memory device is such that the address gate electrodes are formed between the memory gate electrodes and at least a part of the memory gate electrodes, the memory gate length directly becomes the memory region length, resulting in an area per bit. It is possible to secure a stable memory operation even if is reduced.
Therefore, it is possible to provide a nonvolatile memory device which achieves high integration and has uniform and stable memory characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る不揮発性記憶装置の製造
工程を示す一部断面図である。
FIG. 1 is a partial cross-sectional view showing a manufacturing process of a nonvolatile memory device according to an example of the invention.

【図2】本発明の実施例に係る不揮発性記憶装置の製造
工程を示す一部断面図である。
FIG. 2 is a partial cross-sectional view showing the manufacturing process of the nonvolatile memory device according to the example of the invention.

【図3】本発明の実施例に係る不揮発性記憶装置の製造
工程を示す一部断面図である。
FIG. 3 is a partial cross-sectional view showing the manufacturing process of the nonvolatile memory device according to the example of the invention.

【図4】本発明の実施例に係る不揮発性記憶装置の製造
工程を示す一部断面図である。
FIG. 4 is a partial cross-sectional view showing the manufacturing process of the nonvolatile memory device according to the example of the invention.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 シリコン酸化膜 3 シリコン窒化膜 4 シリコン酸化膜 5 多結晶シリコン膜 6 多層ゲート絶縁膜 7 メモリゲート電極 8 絶縁膜 9 アドレスゲート電極 10 ソース 11 ドレイン 1 Semiconductor Substrate 2 Silicon Oxide Film 3 Silicon Nitride Film 4 Silicon Oxide Film 5 Polycrystalline Silicon Film 6 Multilayer Gate Insulation Film 7 Memory Gate Electrode 8 Insulation Film 9 Address Gate Electrode 10 Source 11 Drain

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板のチャネル領域に独立して形
成した一対の多層ゲート絶縁膜上に、メモリゲート電極
を設け、当該メモリゲート電極間及びメモリゲート電極
上の少なくとも一部に、絶縁膜を介してアドレスゲート
電極を形成したことを特徴とする不揮発性記憶装置。
1. A memory gate electrode is provided on a pair of multi-layer gate insulating films independently formed in a channel region of a semiconductor substrate, and an insulating film is provided between the memory gate electrodes and at least a part of the memory gate electrode. A non-volatile memory device characterized in that an address gate electrode is formed through the non-volatile memory device.
JP30917991A 1991-11-25 1991-11-25 Nonvolatile storage device Pending JPH05145080A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30917991A JPH05145080A (en) 1991-11-25 1991-11-25 Nonvolatile storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30917991A JPH05145080A (en) 1991-11-25 1991-11-25 Nonvolatile storage device

Publications (1)

Publication Number Publication Date
JPH05145080A true JPH05145080A (en) 1993-06-11

Family

ID=17989885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30917991A Pending JPH05145080A (en) 1991-11-25 1991-11-25 Nonvolatile storage device

Country Status (1)

Country Link
JP (1) JPH05145080A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4422791A1 (en) * 1993-06-29 1995-01-12 Toshiba Kawasaki Kk Semiconductor device with inversion-inducing gate
WO2001018878A1 (en) * 1999-09-03 2001-03-15 Fujitsu Limited Semiconductor memory and method of manufacture thereof
WO2002043158A1 (en) * 2000-11-21 2002-05-30 Halo Lsi Design & Device Technology Inc. Dual bit multi-level ballistic monos memory, and manufacturing method, programming, and operation process for the memory
WO2002080283A1 (en) * 2001-03-19 2002-10-10 Halo Lsi Design & Device Technology Inc. Nonvolatile memory array structure and its operating method
JP2003508921A (en) * 1999-08-27 2003-03-04 マクロニックス・アメリカ・インコーポレーテッド New easily shrinkable non-volatile semiconductor storage device cell using split dielectric floating gate and method of manufacturing the same
JP2004247714A (en) * 2003-02-12 2004-09-02 Samsung Electronics Co Ltd Sonos storage cell and method for fabricating same
JP2005228957A (en) * 2004-02-13 2005-08-25 Nec Electronics Corp Nonvolatile memory element and its manufacturing method
US7511358B2 (en) * 2005-09-08 2009-03-31 Samsung Electronics Co., Ltd. Nonvolatile memory device having multi-bit storage and method of manufacturing the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5677556A (en) * 1993-06-29 1997-10-14 Kabushiki Kaisha Toshiba Semiconductor device having inversion inducing gate
DE4422791A1 (en) * 1993-06-29 1995-01-12 Toshiba Kawasaki Kk Semiconductor device with inversion-inducing gate
JP2003508921A (en) * 1999-08-27 2003-03-04 マクロニックス・アメリカ・インコーポレーテッド New easily shrinkable non-volatile semiconductor storage device cell using split dielectric floating gate and method of manufacturing the same
JP4969748B2 (en) * 1999-08-27 2012-07-04 マクロニックス・アメリカ・インコーポレーテッド Nonvolatile semiconductor memory device and method of manufacturing nonvolatile memory cell
WO2001018878A1 (en) * 1999-09-03 2001-03-15 Fujitsu Limited Semiconductor memory and method of manufacture thereof
US6750520B2 (en) 1999-09-03 2004-06-15 Fujitsu Limited Two-bit semiconductor memory with enhanced carrier trapping
KR100727445B1 (en) * 1999-09-03 2007-06-13 후지쯔 가부시끼가이샤 Semiconductor memory and method of manufacture thereof
WO2002043158A1 (en) * 2000-11-21 2002-05-30 Halo Lsi Design & Device Technology Inc. Dual bit multi-level ballistic monos memory, and manufacturing method, programming, and operation process for the memory
JP2002170891A (en) * 2000-11-21 2002-06-14 Halo Lsi Design & Device Technol Inc Manufacture of dual bit multi-level ballistic monos memory, programming, and operation process
KR100884788B1 (en) * 2000-11-21 2009-02-23 할로 엘에스아이, 인크. Dual bit multi-level ballistic monos memory, and manufacturing method, programming, and operation process for the memory
JP2009295995A (en) * 2001-03-19 2009-12-17 Halo Lsi Inc Nonvolatile memory, method of reading out data therefrom, and method of writing data therein
WO2002080283A1 (en) * 2001-03-19 2002-10-10 Halo Lsi Design & Device Technology Inc. Nonvolatile memory array structure and its operating method
JP2004247714A (en) * 2003-02-12 2004-09-02 Samsung Electronics Co Ltd Sonos storage cell and method for fabricating same
JP4550433B2 (en) * 2003-02-12 2010-09-22 三星電子株式会社 Method for forming a SONOS memory cell
JP4629982B2 (en) * 2004-02-13 2011-02-09 ルネサスエレクトロニクス株式会社 Nonvolatile memory element and manufacturing method thereof
JP2005228957A (en) * 2004-02-13 2005-08-25 Nec Electronics Corp Nonvolatile memory element and its manufacturing method
US7511358B2 (en) * 2005-09-08 2009-03-31 Samsung Electronics Co., Ltd. Nonvolatile memory device having multi-bit storage and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US8198153B2 (en) Process integration for flash storage element and dual conductor complementary MOSFETs
JP3236706B2 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
US20070063262A1 (en) NAND memory arrays
JP2000091450A (en) Nonvolatile semiconductor storage device and its manufacture
JPH0536991A (en) Semiconductor storage device
JPH05145080A (en) Nonvolatile storage device
US8093647B2 (en) Nonvolatile semiconductor memory having transistor with a diffusion blocking layer between the lower gate and fully silicided upper gate
JP3173907B2 (en) Nonvolatile memory element and method of manufacturing the same
JP2003046062A (en) Method for manufacturing semiconductor storage device
EP0339586B1 (en) Semiconductor device having improved gate capacitance and manufacturing method therefor
JPH07169865A (en) Non-volatile semiconductor memory
US8742512B2 (en) Border between semiconductor transistors with different gate structures
KR100593449B1 (en) Semiconductor Memory Devices and Manufacturing Methods Thereof
JP2581416B2 (en) Method for manufacturing semiconductor memory device
JPWO2009096083A1 (en) Floating gate type nonvolatile memory device and manufacturing method thereof
JPH03250669A (en) Mos-type semiconductor device and its manufacture
JPH04337672A (en) Semiconductor storage device and its manufacture
JPH04357879A (en) Nonvolatile semiconductor memory
JP4348962B2 (en) Nonvolatile memory element, semiconductor memory device, and method of manufacturing nonvolatile memory element
JPH08306808A (en) Nonvolatile semiconductor storage device
JP3425578B2 (en) Non-volatile memory
JP2918098B2 (en) Semiconductor nonvolatile memory
JPH01179369A (en) Manufacture of nonvolatile semiconductor memory
JPH1032271A (en) Non-volatile semiconductor memory device and manufacture thereof
JPH0689980A (en) Ferroelectric substance nonvolatile memory