JPH0512680Y2 - - Google Patents

Info

Publication number
JPH0512680Y2
JPH0512680Y2 JP1984127567U JP12756784U JPH0512680Y2 JP H0512680 Y2 JPH0512680 Y2 JP H0512680Y2 JP 1984127567 U JP1984127567 U JP 1984127567U JP 12756784 U JP12756784 U JP 12756784U JP H0512680 Y2 JPH0512680 Y2 JP H0512680Y2
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
sensing element
expansion valve
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1984127567U
Other languages
Japanese (ja)
Other versions
JPS6144170U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12756784U priority Critical patent/JPS6144170U/en
Publication of JPS6144170U publication Critical patent/JPS6144170U/en
Application granted granted Critical
Publication of JPH0512680Y2 publication Critical patent/JPH0512680Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Temperature-Responsive Valves (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

【考案の詳細な説明】 本考案は冷却器に冷媒を給液する場合の膨脹弁
に対し、これに制御信号を与えるための制御セン
サーに関するものであつて、冷媒圧力検知素子と
冷媒温度検知素子とを同一保護管内に収納一体化
し、同一点に於ける冷媒の蒸気圧特性を検出し、
これらの出力で冷媒液膨脹弁を制御させるように
したものである。
[Detailed Description of the Invention] The present invention relates to a control sensor for giving a control signal to an expansion valve when refrigerant is supplied to a cooler, and the invention relates to a control sensor that provides a control signal to an expansion valve when refrigerant is supplied to a cooler. are housed in the same protection tube, and the vapor pressure characteristics of the refrigerant at the same point are detected.
These outputs are used to control the refrigerant liquid expansion valve.

従来、膨脹弁にはセンサーとアクチユエター機
能とが機械的に一体化した温度式膨脹弁と、セン
サーとアクチユエターとが分離され電気信号で結
合される分離型膨脹弁とがあるが、本考案は後者
の型式に属するものの一つである。
Conventionally, there are two types of expansion valves: temperature-type expansion valves in which the sensor and actuator functions are mechanically integrated, and separate type expansion valves in which the sensor and actuator functions are separated and connected by electrical signals, but the present invention is based on the latter. It is one of the types.

膨脹弁により冷却器内に冷媒を給液する場合に
冷却器内の冷媒液が過剰の場合には、冷却器内に
冷媒が貯溜され、この過剰の貯溜分だけ冷却器の
熱交換面積を減少させて冷却器の冷却能力を低下
させることになり、更に圧縮機の吸入側に液冷媒
として返還され、圧縮機運転に支障を起こしてし
まうことになる。これに反して冷媒の給液が不足
の場合には冷媒液は冷却器の出口側に近い熱交換
部分で、既にガス化し、いわゆる過熱化した冷媒
が単に通過するのみとなり、冷却面積が減少し、
圧縮機側でも過熱ガスの圧縮となつて圧縮機の能
力を低下させる結果となり、冷却系の能力低下を
もたらしてしまうものである。
When refrigerant is supplied into the cooler using an expansion valve, if there is an excess of refrigerant in the cooler, the refrigerant is stored in the cooler, and the heat exchange area of the cooler is reduced by this excess storage. This will reduce the cooling capacity of the cooler, and furthermore, it will be returned to the suction side of the compressor as liquid refrigerant, causing trouble in compressor operation. On the other hand, when the refrigerant supply is insufficient, the refrigerant liquid has already been gasified in the heat exchange section near the outlet side of the cooler, and the so-called superheated refrigerant simply passes through, reducing the cooling area. ,
On the compressor side, the superheated gas is also compressed, resulting in a reduction in the capacity of the compressor, resulting in a reduction in the capacity of the cooling system.

従つて冷却器の出口側の点に於て始めて冷媒液
が完全に気化する様に冷媒の給液の制御を行われ
なければならないものであるが、冷却器の出口側
の冷媒の圧力センサーと冷媒温度センサーの、両
者はそれぞれ個々に取りつけられ、それらの出力
で絞り膨脹弁の制御を行わせているものであつ
た。この場合に冷媒圧力センサーと冷媒温度セン
サーの検出は同一点で行われていないため冷媒蒸
気圧特性を充分把握し検出することが出来ず、高
精度の制御信号を膨脹弁に出力し制御させること
に難点があり、また両者の取付構造などにも充分
とは云い得ないものがあつた。
Therefore, the refrigerant supply must be controlled so that the refrigerant liquid is completely vaporized only at the point on the outlet side of the cooler. Both refrigerant temperature sensors were installed individually, and their outputs were used to control the throttle expansion valve. In this case, since the refrigerant pressure sensor and the refrigerant temperature sensor are not detected at the same point, it is not possible to fully understand and detect the refrigerant vapor pressure characteristics, and it is necessary to output a highly accurate control signal to the expansion valve to control it. There were some drawbacks to both, and the mounting structures for both were not satisfactory.

本考案はこのような点に鑑み行われたもので、 その特徴とする所は、冷却器に冷媒を給液する
為の膨脹弁の制御を冷媒の過熱度の検出により制
御可能に構成した膨脹弁制御用センサーにおい
て、 圧縮機吸入側の冷媒と直接対面可能な受圧面を
有する保護管を具え、 前記受圧面の裏面に夫々接触させて冷媒圧力検
知素子と冷媒温度の検知素子とを前記保護管内に
収納一体化するとともに、 前記冷媒圧力検知素子と三つの固定抵抗により
電橋(ブリツジ回路)を形成し且つ前記圧力検知
素子の入力端子側に電橋の電源電圧を印加し、該
圧力検知素子の出力端子側より取り出される電橋
の出力電圧に基づいて圧力検知可能に構成すると
共に、 前記圧力検知素子の出力端子側に前記温度検知
素子の入力端子側を接続させ、前記電源電圧の分
圧抵抗として機能させた事を特徴とする。
The present invention was developed in view of these points, and its feature is that the expansion valve for supplying refrigerant to the cooler can be controlled by detecting the degree of superheating of the refrigerant. The valve control sensor includes a protection tube having a pressure-receiving surface that can directly face the refrigerant on the suction side of the compressor, and the refrigerant pressure sensing element and the refrigerant temperature sensing element are respectively brought into contact with the back surface of the pressure-receiving surface to protect the refrigerant pressure sensing element and the refrigerant temperature sensing element. The refrigerant pressure sensing element and the three fixed resistors form an electric bridge (bridge circuit), and the power supply voltage of the electric bridge is applied to the input terminal side of the pressure sensing element to detect the pressure. The pressure sensing element is configured to be able to detect pressure based on the output voltage of the electric bridge taken out from the output terminal side of the element, and the input terminal side of the temperature sensing element is connected to the output terminal side of the pressure sensing element, so that the voltage component of the power supply voltage is connected to the output terminal side of the pressure sensing element. It is characterized by functioning as a piezoresistor.

この場合前記受圧面は保護管の尖頭部に設けた
ダイヤフラムで形成してもよく又他の手段で構成
してもよい。
In this case, the pressure receiving surface may be formed by a diaphragm provided at the pointed end of the protective tube, or may be constructed by other means.

更に膨脹弁制御のための演算を保護管内で行わ
せれば調節器内での回路構造も簡素化を計ること
ができ保護管の取付けも容易となり出力導線の本
数も減少でき経済的にも有利となる。
Furthermore, if the calculations for controlling the expansion valve are performed within the protection tube, the circuit structure within the regulator can be simplified, the protection tube can be easily installed, and the number of output conductors can be reduced, which is economically advantageous. Become.

これを図について説明する。第1図イは従来の
冷却器の系統図、ロは本考案の膨脹弁制御センサ
ーを使用した冷却器の系統図である。図において
1は冷却扇を設けた冷却器で2は冷媒液量を絞り
制御する冷媒液膨脹弁、3は冷却された空気温度
を検出する空気温度センサー、4は圧縮機(図に
於いては省略)により冷却器1の冷媒ガスを吸入
する吸入管、5は吸入管4に取付けられ、冷媒の
圧力を検出する冷媒圧力検知素子、6は吸入管4
に取付けられ冷媒の温度を検出する冷媒温度検知
素子、7は冷却器1の入口側に設けられた冷媒温
度検出センサー、8は調節器である。イ図に於い
て冷媒圧力検知素子5と冷媒温度検知素子6とは
個々に独立した変換素子であるために吸入管4に
個別に挿入され、または吸入管4より枝管を設け
たりして冷媒の温度、圧力を検出していることに
なる。従つて前述のように冷媒の姿態をそのまま
把握するためには必ずしも理想的のものではない
ことが判る。
This will be explained with reference to the diagram. FIG. 1A is a system diagram of a conventional cooler, and FIG. 1B is a system diagram of a cooler using the expansion valve control sensor of the present invention. In the figure, 1 is a cooler equipped with a cooling fan, 2 is a refrigerant expansion valve that throttles and controls the amount of refrigerant, 3 is an air temperature sensor that detects the cooled air temperature, and 4 is a compressor (in the diagram, 5 is a refrigerant pressure sensing element attached to the suction pipe 4 and detects the pressure of the refrigerant; 6 is the suction pipe 4;
7 is a refrigerant temperature detection sensor provided on the inlet side of the cooler 1, and 8 is a regulator. In Figure A, the refrigerant pressure sensing element 5 and the refrigerant temperature sensing element 6 are individually independent conversion elements, so they are inserted into the suction pipe 4 individually, or a branch pipe is provided from the suction pipe 4 to detect the refrigerant. This means that the temperature and pressure are being detected. Therefore, as mentioned above, it is clear that this is not necessarily ideal for understanding the state of the refrigerant as it is.

第1図ロは本考案によるもので圧縮機で吸入さ
れる吸入管4の冷媒の圧力、温度を検出する冷媒
圧力検知素子5及び冷媒温度検知素子6は同一保
護管内に収納されているので吸入管4内の冷媒の
姿態を高精度で把握し検出することができ、膨脹
弁の制御信号を出力させることが出来るものであ
る。
Figure 1(b) is based on the present invention, and the refrigerant pressure detection element 5 and refrigerant temperature detection element 6, which detect the pressure and temperature of the refrigerant in the suction pipe 4 taken in by the compressor, are housed in the same protection tube. It is possible to grasp and detect the state of the refrigerant in the pipe 4 with high precision, and output a control signal for the expansion valve.

第2図イは冷媒圧力、冷媒温度の各変換素子
5,6を同一保護管9内に収納した膨脹弁制御セ
ンサーの一例の姿図、ロはその変換素子部の拡大
図である。図に於いて冷媒圧力検知素子5は半導
体シリコン薄膜或いはストレンゲージの如きもの
で、保護管9の尖頭部に設けられたダイヤフラム
10の裏面に貼りつけられる。吸入管4内の冷媒
圧力でダイヤフラム10に歪が生じて抵抗値が変
化し、冷媒圧力検知素子5としての圧力信号が出
力される。
FIG. 2A is a view of an example of an expansion valve control sensor in which converting elements 5 and 6 for refrigerant pressure and refrigerant temperature are housed in the same protection tube 9, and FIG. 2B is an enlarged view of the converting element portion. In the figure, a refrigerant pressure sensing element 5 is a semiconductor silicon thin film or a strain gauge, and is attached to the back surface of a diaphragm 10 provided at the pointed end of a protective tube 9. The diaphragm 10 is strained by the refrigerant pressure in the suction pipe 4, its resistance value changes, and a pressure signal is output as the refrigerant pressure sensing element 5.

冷媒温度検知素子6には熱電対或いはサーミス
タの如きものを利用するものとすれば、前記ダイ
ヤフラム10の裏面にその接合部を貼りつけて前
記圧力検知素子5に配置され温度信号が出力され
る。従つて両変換素子5,6は同一点で冷媒姿態
を高精度に検出して出力させることが出来るよう
になる訳である。
If a thermocouple or thermistor is used as the refrigerant temperature sensing element 6, its joint is attached to the back surface of the diaphragm 10 and placed on the pressure sensing element 5 to output a temperature signal. Therefore, both conversion elements 5 and 6 can detect and output the state of the refrigerant with high precision at the same point.

第3図は両変換素子5,6の出力の処理回路図
の一例である。冷媒圧力検知素子5は一般に半導
体が使用されるので、その出力はダイヤフラムの
歪によるだけでなく温度の影響も受け易い。
FIG. 3 is an example of a processing circuit diagram of the outputs of both conversion elements 5 and 6. Since a semiconductor is generally used for the refrigerant pressure sensing element 5, its output is susceptible not only to diaphragm distortion but also to temperature.

この補正に温度検知素子6を利用して補償させ
るもので電橋11(以下ブリツジ回路という)に
よつて行われる。
This correction utilizes the temperature sensing element 6 and is performed by an electric bridge 11 (hereinafter referred to as a bridge circuit).

以下同図に基づいてその詳細構成を説明する。 The detailed configuration will be explained below based on the same figure.

図中11a,11b,11cは固定抵抗で、冷
媒圧力検知素子5とによりブリツジ回路11を構
成する。13c/13dは演算回路12内の回路
電圧電源より引出されたブリツジ回路11の電圧
入力線で、プラス側の入力線である13cは冷媒
圧力検知素子5の入力端子側に、13dは抵抗1
1a,11b間の接続点に接続されている。
In the figure, fixed resistors 11a, 11b, and 11c constitute a bridge circuit 11 together with the refrigerant pressure sensing element 5. 13c/13d are voltage input lines of the bridge circuit 11 drawn out from the circuit voltage power source in the arithmetic circuit 12, 13c, which is a positive input line, is connected to the input terminal side of the refrigerant pressure detection element 5, and 13d is connected to the resistor 1.
It is connected to the connection point between 1a and 11b.

13a,13bは前記冷媒圧力検知素子5の出
力端子側と抵抗11b,11c間の接続点間より
引出されたブリツジ回路の出力信号線である。
Reference numerals 13a and 13b are output signal lines of the bridge circuit drawn out between the connection points between the output terminal side of the refrigerant pressure sensing element 5 and the resistors 11b and 11c.

かかる構成によれば13c/13dを介して前
記ブリツジ回路に定電圧電源を印加した場合、ダ
イヤフラム10に歪が生じて前記冷媒圧力検知素
子5の抵抗値が変化した場合、これに追従して1
3a,13bの出力電圧が変化し、従つて該演算
回路12側で前記出力電圧を検知する事によりダ
イヤフラム10を介して吸入管4内の冷媒圧力を
検知し得る。
According to this configuration, when a constant voltage power source is applied to the bridge circuit through 13c/13d, when distortion occurs in the diaphragm 10 and the resistance value of the refrigerant pressure sensing element 5 changes, the resistance value of the refrigerant pressure sensing element 5 changes accordingly.
The output voltages of 3a and 13b change, and by detecting the output voltages on the arithmetic circuit 12 side, the refrigerant pressure in the suction pipe 4 can be detected via the diaphragm 10.

しかしながら前記検知素子5は半導体を用いて
いるために、吸入管4内の冷媒温度の変化によつ
ても冷媒圧力検知素子5の抵抗値、即ちブリツジ
回路11の出力電圧が変化してしまう為に、これ
を補償しなければ精度よい圧力検知が不可能であ
る。
However, since the detection element 5 uses a semiconductor, the resistance value of the refrigerant pressure detection element 5, that is, the output voltage of the bridge circuit 11, changes even when the temperature of the refrigerant in the suction pipe 4 changes. , it is impossible to accurately detect pressure unless this is compensated for.

そこで本実施例は、前記冷媒圧力検知素子5の
出力端子側に冷媒温度検知素子6の入力端子側を
接続し、更に該冷媒温度検知素子6の出力端子側
に接続した信号線13eを演算回路側に導いてい
る。
Therefore, in this embodiment, the input terminal side of the refrigerant temperature sensing element 6 is connected to the output terminal side of the refrigerant pressure sensing element 5, and the signal line 13e connected to the output terminal side of the refrigerant temperature sensing element 6 is connected to the arithmetic circuit. leading to the side.

かかる実施例によれば冷媒温度検知素子6が冷
媒圧力検知素子5との間で入力線13cを介して
印加される回路電圧電源の分圧抵抗として実質的
に機能し、従つて吸入管4内の冷媒温度の変化に
より冷媒圧力検知素子5の抵抗値が変化しても、
これに比例して冷媒温度検知素子6の素子抵抗が
変化する為に、前記ブリツジ回路11に印加され
る入力電圧はほぼ一定になり、これにより温度補
償が可能になる。
According to this embodiment, the refrigerant temperature sensing element 6 substantially functions as a voltage dividing resistor of the circuit voltage power source applied via the input line 13c between the refrigerant temperature sensing element 5 and the refrigerant pressure sensing element 5. Even if the resistance value of the refrigerant pressure sensing element 5 changes due to a change in refrigerant temperature,
Since the element resistance of the refrigerant temperature sensing element 6 changes in proportion to this, the input voltage applied to the bridge circuit 11 becomes approximately constant, thereby making temperature compensation possible.

そして更に本実施例は、前記ブリツジ回路11
の出力信号線13a,13bを介して得られる圧
力検知出力と冷媒温度検知素子6の信号線13e
を介して得られる温度検知出力は演算回路12で
膨脹弁2を制御するための演算、即ち冷媒の過熱
度を演算して出力される。一方冷却器1のよりの
冷却風の空気温度センサー3の出力の温度設定を
行い、前記演算回路12の出力と比較させ、温度
調節器7の出力で膨脹弁2を制御させる。
Furthermore, in this embodiment, the bridge circuit 11
The pressure detection output obtained through the output signal lines 13a, 13b and the signal line 13e of the refrigerant temperature detection element 6
The temperature detection output obtained through the calculation circuit 12 calculates the degree of superheat of the refrigerant and outputs the calculation for controlling the expansion valve 2. On the other hand, the temperature of the output of the air temperature sensor 3 of the cooling air of the cooler 1 is set and compared with the output of the arithmetic circuit 12, and the expansion valve 2 is controlled by the output of the temperature controller 7.

本考案は以上の様に冷媒圧力検知素子を冷媒温
度検知素子とを一体化するように一つの保護管内
に収納し、これにより冷媒の特性を同時に同一点
で検出出来るようにしたために、高精度の検出が
可能となり、その取付も単に1個のセンサーのた
め容易となり、冷媒圧力変換素子の温度補償、吸
入管を通過する冷媒の特性即ち過熱度の演算も補
償管内で行わせることにより、調節器を簡素化さ
せ或いは膨脹弁に至る導線数も減少するので経済
的であり冷却器の運転効率を発揮させることが出
来るのである。
As described above, the present invention integrates the refrigerant pressure sensing element and the refrigerant temperature sensing element into one protective tube, thereby making it possible to detect the characteristics of the refrigerant at the same time and at the same point, resulting in high accuracy. It is possible to detect the temperature of the refrigerant, and its installation is easy because it is just a single sensor, and the temperature compensation of the refrigerant pressure conversion element and the calculation of the characteristics of the refrigerant passing through the suction pipe, that is, the degree of superheat, can be adjusted within the compensation pipe. It is economical because the device is simplified and the number of conductors leading to the expansion valve is reduced, and the operating efficiency of the cooler can be maximized.

そして更に本考案においては、前記冷媒圧力検
知素子をブリツジ回路の一部として構成しつつ該
冷媒圧力検知素子の温度変動に起因する出力誤差
を温度検知素子を利用して補償可能に構成した為
に、回路構成の簡素化を図りつつ温度の影響や前
記変換素子取付け部のノイズの影響を排除して精
度よい圧力検出が可能となる。
Furthermore, in the present invention, the refrigerant pressure sensing element is configured as a part of the bridge circuit, and the output error caused by temperature fluctuations of the refrigerant pressure sensing element can be compensated for by using the temperature sensing element. This makes it possible to simplify the circuit configuration and eliminate the influence of temperature and the influence of noise from the conversion element mounting portion, thereby making it possible to detect pressure with high accuracy.

又温度検知素子が冷媒圧力検知素子の出力補償
回路を構成するために、その分回路構成が簡単化
すると共に、該補償回路自体も保護管内に収納す
る事も可能である。
Furthermore, since the temperature sensing element constitutes the output compensation circuit of the refrigerant pressure sensing element, the circuit configuration is simplified accordingly, and the compensation circuit itself can also be housed within the protective tube.

そして本考案は特に圧縮機吸入側の冷媒と直接
対面可能な受圧面を有する保護管を設け、該受圧
面裏面に前記両検知素子一体的に取付ける事によ
り簡単な歪ゲージ等を用いて温度検知と共に圧力
検知も精度よく行なう事が出来、而も該受圧面の
歪による補償も、前記温度検知素子の一部を利用
して構成するブリツジ回路を用いて容易に行なう
事が出来、高精度な検知精度を維持できる。
In particular, the present invention provides a protection tube with a pressure-receiving surface that can directly face the refrigerant on the suction side of the compressor, and by integrally attaching both of the sensing elements to the back of the pressure-receiving surface, temperature can be detected using a simple strain gauge or the like. At the same time, pressure detection can be performed with high precision, and compensation for distortion of the pressure receiving surface can be easily performed using a bridge circuit configured using a part of the temperature sensing element, resulting in high precision. Detection accuracy can be maintained.

等の種々の著効を有する。It has various effects such as

【図面の簡単な説明】[Brief explanation of drawings]

第1図イは従来の冷却器の系統図、ロは本考案
の冷却器の系統図、第2図イは膨脹弁制御センサ
ーの姿図、ロは変換素子部の拡大図、第3図は変
換素子処理回路の一例を示す。 1……冷却器、2……冷媒液膨脹弁、3……空
気温度センサー、4……吸入管、5……冷媒圧力
検知素子、6……冷媒温度検知素子、7……冷媒
温度検出センサー、8……調節器、9……膨脹弁
制御センサー、10……ダイヤフラム、11……
電橋、12……演算回路。
Fig. 1A is a system diagram of a conventional cooler, B is a system diagram of a cooler of the present invention, Fig. 2A is a diagram of the expansion valve control sensor, B is an enlarged view of the conversion element section, and Fig. 3 is a system diagram of a conventional cooler. An example of a conversion element processing circuit is shown. 1...Cooler, 2...Refrigerant liquid expansion valve, 3...Air temperature sensor, 4...Suction pipe, 5...Refrigerant pressure detection element, 6...Refrigerant temperature detection element, 7...Refrigerant temperature detection sensor , 8...Adjuster, 9...Expansion valve control sensor, 10...Diaphragm, 11...
Electric bridge, 12... Arithmetic circuit.

Claims (1)

【実用新案登録請求の範囲】 1) 冷却器に冷媒を給液する為の膨脹弁の制御
を冷媒の過熱度の検出により制御可能に構成し
た膨脹弁制御用センサーにおいて、 圧縮機吸入側の冷媒と直接対面可能な受圧面
を有する保護管を具え、 前記受圧面の裏面に夫々接触させて冷媒圧力
検知素子と冷媒温度の検知素子とを前記保護管
内に収納一体化するとともに、 前記冷媒圧力検知素子と三つの固定抵抗によ
り電橋(ブリツジ回路)を形成し且つ前記圧力
検知素子の入力端子側に電橋の電源電圧を印加
し、該圧力検知素子の出力端子側より取り出さ
れる電橋の出力電圧に基づいて圧力検知可能に
構成すると共に、 前記圧力検知素子の出力端子側に前記温度検
知素子の入力端子側を接続させた事を特徴とす
る膨脹弁制御用センサー。 2) 前記受圧面が保護管の尖頭部に設けたダイ
ヤフラムである請求項1記載の膨脹弁制御用セ
ンサー。
[Scope of Claim for Utility Model Registration] 1) In an expansion valve control sensor configured to be able to control an expansion valve for supplying refrigerant to a cooler by detecting the degree of superheat of the refrigerant, refrigerant on the suction side of the compressor a protection tube having a pressure-receiving surface that can directly face the pressure-receiving surface, a refrigerant pressure detection element and a refrigerant temperature detection element are housed and integrated within the protection tube by being brought into contact with the back surface of the pressure-reception surface, respectively, and the refrigerant pressure detection element is integrated. An electric bridge (bridge circuit) is formed by the element and three fixed resistors, and the power supply voltage of the electric bridge is applied to the input terminal side of the pressure sensing element, and the output of the electric bridge is taken out from the output terminal side of the pressure sensing element. 1. A sensor for controlling an expansion valve, which is configured to be capable of detecting pressure based on voltage, and further comprising: an input terminal side of the temperature sensing element connected to an output terminal side of the pressure sensing element. 2) The expansion valve control sensor according to claim 1, wherein the pressure-receiving surface is a diaphragm provided at the tip of the protection tube.
JP12756784U 1984-08-24 1984-08-24 Expansion valve control sensor Granted JPS6144170U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12756784U JPS6144170U (en) 1984-08-24 1984-08-24 Expansion valve control sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12756784U JPS6144170U (en) 1984-08-24 1984-08-24 Expansion valve control sensor

Publications (2)

Publication Number Publication Date
JPS6144170U JPS6144170U (en) 1986-03-24
JPH0512680Y2 true JPH0512680Y2 (en) 1993-04-02

Family

ID=30686209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12756784U Granted JPS6144170U (en) 1984-08-24 1984-08-24 Expansion valve control sensor

Country Status (1)

Country Link
JP (1) JPS6144170U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0420045U (en) * 1990-06-13 1992-02-19

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5183258A (en) * 1975-01-20 1976-07-21 Mitsubishi Heavy Ind Ltd JOHATSUKYO BOCHOBENNOSEIGYOHO
JPS5744927A (en) * 1980-09-01 1982-03-13 Hitachi Ltd Superheating switch

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5699322U (en) * 1979-12-27 1981-08-05

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5183258A (en) * 1975-01-20 1976-07-21 Mitsubishi Heavy Ind Ltd JOHATSUKYO BOCHOBENNOSEIGYOHO
JPS5744927A (en) * 1980-09-01 1982-03-13 Hitachi Ltd Superheating switch

Also Published As

Publication number Publication date
JPS6144170U (en) 1986-03-24

Similar Documents

Publication Publication Date Title
US5070706A (en) Superheat sensor with single coupling to fluid line
US4571951A (en) Electronic control for expansion valve in refrigeration system
US6901794B2 (en) Multiple technology flow sensor
US5820262A (en) Smart refrigerant sensor
US20030192595A1 (en) Flow control valve with integral sensor and controller and related method
US4290404A (en) Fuel supply control system
KR0148558B1 (en) Process and device for controlling boost pressure
JPS61175458A (en) Controller for flow rate of refrigerant
US4890497A (en) Differential pressure gauge transmitter
WO2000039551A1 (en) Pressure sensor
US5349873A (en) Force transducer and pressure detecting circuit using the same
CA1213337A (en) Electropneumatic transducer system
EP2554953A1 (en) Thermal flow sensor
JP2002530635A (en) Position detection device
US5373737A (en) Sensor device for mass flow controller
US6164081A (en) Process for regulating a refrigerating system, refrigerating system and expansion valve
JPH0512680Y2 (en)
US5528940A (en) Process condition detecting apparatus and semiconductor sensor condition detecting circuit
US6539793B2 (en) Flow rate detector
KR20030053501A (en) Pressure sensor
US5674007A (en) Method for calculating PMV of air conditioning system
US5211056A (en) Thermal type intake air flow measuring instrument
JP3188752B2 (en) Pirani vacuum gauge
CN109252967B (en) Internal combustion engine, in particular as a drive engine for a vehicle
JP2600383Y2 (en) Pressure regulator