JPH05114415A - Fuel cell power generation system - Google Patents

Fuel cell power generation system

Info

Publication number
JPH05114415A
JPH05114415A JP3272476A JP27247691A JPH05114415A JP H05114415 A JPH05114415 A JP H05114415A JP 3272476 A JP3272476 A JP 3272476A JP 27247691 A JP27247691 A JP 27247691A JP H05114415 A JPH05114415 A JP H05114415A
Authority
JP
Japan
Prior art keywords
desulfurizer
fuel
raw fuel
fuel cell
reformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3272476A
Other languages
Japanese (ja)
Other versions
JP3259291B2 (en
Inventor
Hideaki Miyoshi
英明 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP27247691A priority Critical patent/JP3259291B2/en
Publication of JPH05114415A publication Critical patent/JPH05114415A/en
Application granted granted Critical
Publication of JP3259291B2 publication Critical patent/JP3259291B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To provide a fuel cell power generation device in which absorbent changing frequency can be reduced by improving a utilization efficiency of absorbent in a desulfurizer. CONSTITUTION:A first piping line to introduce material fuel from the upstream of a desulfurizer 3 through the downstream of the desulfurizer 3 to a reformer 2 is provided. A second piping line to introduce the material fuel from the downstream of the desulfurizer 3 through the upstream of the desulfurizer 3 to the reformer is provided. The first piping line and the second piping line are changed between each other to introduce the material fuel to the desulfurizer 3 based on a sulfur density at the exit of the desulfurizer 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、燃料電池発電装置に
関し、特に原燃料中の硫黄分を除去する脱硫器構成に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell power generator, and more particularly to a desulfurizer structure for removing sulfur in raw fuel.

【0002】[0002]

【従来の技術】近年、燃料電池発電装置はエネルギーの
高効率利用およびクリーン環境化を目指すコジェネレー
ションシステムの有力候補として注目されている。燃料
電池の燃料源としては、一般に天然ガス、都市ガス、ナ
フサ等の主成分である炭化水素を改質装置で水蒸気と反
応させて得られる水素に富む改質ガスが使用される。こ
の場合、改質装置の反応部に収めた触媒の硫黄被毒を避
ける目的で、改質装置の上流側には脱硫器を設置するの
が通例である。このような燃料電池発電装置の従来技術
として、例えば昭和63年9月新エネルギー総合開発機
構発行「昭和62年度研究成果報告年報[II]」P3
50〜P361に開示されたものがあり、その概略を図
4に示す。図4において、1は燃料極1a、空気極1
b、冷却器1cからなる燃料電池本体、2は原燃料中の
炭化水素燃料を水蒸気と反応させて水素を多く含む改質
ガスを生成する改質装置であり、反応部2aとバーナ部
2bとから構成される。3は原燃料中の硫黄分を除去す
る脱硫器、4は原燃料を水蒸気と混合昇圧するエジェク
タ、5は水蒸気分離器、6は電池冷却水循環ポンプ、7
は空気ブロワ、8、9は原燃料供給管である。
2. Description of the Related Art In recent years, fuel cell power generators have been attracting attention as promising candidates for cogeneration systems aiming at highly efficient use of energy and a clean environment. As a fuel source of a fuel cell, generally, a hydrogen-rich reformed gas obtained by reacting a main component hydrocarbon such as natural gas, city gas, or naphtha with steam in a reformer is used. In this case, it is customary to install a desulfurizer upstream of the reformer in order to avoid sulfur poisoning of the catalyst contained in the reaction section of the reformer. As a conventional technology of such a fuel cell power generator, for example, “New Research Report Annual Report 1994 [II]” published by New Energy Development Agency in September 1988, P3
50 to P361, and an outline thereof is shown in FIG. In FIG. 4, 1 is a fuel electrode 1a and an air electrode 1
b, a fuel cell main body composed of a cooler 1c, and 2 are reforming devices for reacting the hydrocarbon fuel in the raw fuel with steam to generate a reformed gas containing a large amount of hydrogen, and a reaction part 2a and a burner part 2b. Composed of. 3 is a desulfurizer for removing the sulfur content in the raw fuel, 4 is an ejector for mixing and boosting the raw fuel with steam, 5 is a steam separator, 6 is a cell cooling water circulation pump, 7
Is an air blower, and 8 and 9 are raw fuel supply pipes.

【0003】次に動作について説明する。燃料電池本体
1は燃料極1a、空気極1b、冷却器1cから構成さ
れ、燃料極1aに水素を多く含むガス、空気極1bに空
気を供給して酸化還元反応を行わせることにより電力を
取り出す。燃料極1aには反応用として水素を必要と
し、このため原燃料中の炭化水素燃料を水素リッチガス
に改質する改質装置2が組合わされる。まず、天然ガス
等の原燃料である炭化水素燃料が原燃料供給管8から脱
硫器3に供給される。原燃料の中に含まれる硫黄分が改
質触媒を被毒する恐れがあるため、脱硫器3が配置さ
れ、この脱硫器3で原燃料中の硫黄分が除去される。も
し、硫黄分の除去が不十分であると、改質触媒が被毒さ
れ、これによって改質触媒の活性が低下して触媒にカー
ボン析出を生じたりする恐れがあった。図4に示す脱硫
器3は常温吸着型脱硫器であり、原燃料中の硫黄分の吸
着剤として活性炭や金属系の吸着剤などが使用される。
脱硫器3を出た原燃料は原燃料供給管9を経てエジェク
タ4に送られる。エジェクタ4は水蒸気分離器5から供
給される高圧のスチームを駆動力として、原燃料を混合
昇圧する機能を有する。エジェクタ4において、原燃料
とスチームが混合した後、その混合ガスは改質装置2の
反応部2aに送られる。反応部2aには改質触媒が充填
され、そこで混合ガスはバーナ部2bより熱を与えられ
て改質反応を生じ、水素を主成分とする改質ガスに変換
される。得られた改質ガスは、燃料電池本体1の燃料極
1aに供給され、そこで反応によって消費される。消費
された残りの余剰燃料は、改質装置2のバーナ部2bに
送られ、そこで空気ブロワ7からの空気と一緒に燃焼さ
れて反応部2aに対し熱が与えられる。空気ブロワ7か
らの空気の一部は燃料電池本体1の空気極1bに供給さ
れそこで酸化反応に供される。前述の燃料極1aへの改
質ガス供給および空気極1bへの空気の供給によって燃
料電池本体1内で酸化還元反応が行われ、電力が外部に
取り出させる。空気極1bで消費された残りの空気はバ
ーナ部2bからの燃焼排ガスと合流して大気に放出され
る。
Next, the operation will be described. The fuel cell main body 1 is composed of a fuel electrode 1a, an air electrode 1b, and a cooler 1c. The fuel electrode 1a is supplied with a gas containing a large amount of hydrogen, and the air electrode 1b is supplied with air to perform an oxidation-reduction reaction, thereby taking out electric power. .. The fuel electrode 1a requires hydrogen for reaction, and therefore the reformer 2 for reforming the hydrocarbon fuel in the raw fuel into a hydrogen-rich gas is combined. First, a hydrocarbon fuel, which is a raw fuel such as natural gas, is supplied to the desulfurizer 3 from the raw fuel supply pipe 8. Since the sulfur content contained in the raw fuel may poison the reforming catalyst, the desulfurizer 3 is arranged and the sulfur content in the raw fuel is removed by the desulfurizer 3. If the sulfur content is not sufficiently removed, the reforming catalyst may be poisoned, which may reduce the activity of the reforming catalyst and cause carbon deposition on the catalyst. The desulfurizer 3 shown in FIG. 4 is a room temperature adsorption type desulfurizer, and activated carbon, a metal-based adsorbent, or the like is used as the adsorbent for the sulfur content in the raw fuel.
The raw fuel exiting the desulfurizer 3 is sent to the ejector 4 via the raw fuel supply pipe 9. The ejector 4 has a function of mixing and boosting the raw fuel by using high-pressure steam supplied from the water vapor separator 5 as a driving force. After the raw fuel and steam are mixed in the ejector 4, the mixed gas is sent to the reaction section 2 a of the reformer 2. The reaction section 2a is filled with a reforming catalyst, where the mixed gas is given heat from the burner section 2b to cause a reforming reaction and is converted into a reformed gas containing hydrogen as a main component. The obtained reformed gas is supplied to the fuel electrode 1a of the fuel cell body 1 and consumed there by reaction. The remaining excess fuel that has been consumed is sent to the burner section 2b of the reformer 2 where it is burned together with the air from the air blower 7 and heat is given to the reaction section 2a. Part of the air from the air blower 7 is supplied to the air electrode 1b of the fuel cell main body 1 and is used for the oxidation reaction there. By the above-mentioned supply of the reformed gas to the fuel electrode 1a and the supply of air to the air electrode 1b, an oxidation-reduction reaction is performed in the fuel cell main body 1 and electric power is taken out. The remaining air consumed in the air electrode 1b merges with the combustion exhaust gas from the burner section 2b and is released to the atmosphere.

【0004】[0004]

【発明が解決しようとする課題】しかしながら上述した
従来の燃料電池発電装置では、脱硫器3の吸着剤への硫
黄分の吸着量が飽和すると、除去されなかった硫黄分に
よって改質触媒が被毒され、カーボン析出等の不具合を
生ずるため、定期的に吸着剤を交換しなければならな
い。従って、吸着剤の交換たびにプラントを停止する必
要があった。また、硫黄吸着は吸着剤の上流側より飽和
が進行するため、下流側の吸着剤が有効に利用されない
という欠点があった。さらに、従来のシステムでは硫黄
の吸着飽和による硫黄分の改質触媒への流出が自動で検
出されないため、吸着剤の交換時期が分からず、改質触
媒の被毒によりカーボン析出等の不具合をもたらせるお
それがあった。
However, in the above-described conventional fuel cell power generator, when the amount of adsorbed sulfur in the adsorbent of the desulfurizer 3 becomes saturated, the reforming catalyst is poisoned by the unremoved sulfur. As a result, problems such as carbon deposition will occur, so the adsorbent must be replaced regularly. Therefore, it was necessary to stop the plant each time the adsorbent was replaced. Further, sulfur adsorption has a drawback in that the adsorbent on the downstream side is not effectively used because the saturation progresses from the upstream side of the adsorbent. In addition, in the conventional system, the outflow of sulfur to the reforming catalyst due to the saturation of adsorption of sulfur is not automatically detected, so it is not possible to know when to replace the adsorbent, and poisoning of the reforming catalyst may cause problems such as carbon deposition. There was a risk of dripping.

【0005】この発明は上記のような課題を解決するた
めになされたものであり、脱硫器内の吸着剤の利用率を
向上することにより吸着剤の交換頻度を低減できる燃料
電池発電装置を提供することを目的とする。
The present invention has been made in order to solve the above problems, and provides a fuel cell power generator capable of reducing the frequency of adsorbent replacement by improving the utilization rate of the adsorbent in the desulfurizer. The purpose is to do.

【0006】また、脱硫器内の吸着剤の交換をプラント
を停止することなく行うことができる燃料電池発電装置
を提供することを目的とする。
It is another object of the present invention to provide a fuel cell power generator capable of exchanging the adsorbent in the desulfurizer without stopping the plant.

【0007】また、脱硫器内の吸着剤の交換時期を自動
的に検出することができる燃料電池発電装置を提供する
ことを目的とする。
It is another object of the present invention to provide a fuel cell power generator capable of automatically detecting the replacement time of the adsorbent in the desulfurizer.

【0008】[0008]

【課題を解決するための手段】この発明に係る燃料電池
発電装置は、原燃料を脱硫器の上流側から導入し脱硫器
の下流側から改質装置側へ導出する第1配管ラインと、
原燃料を脱硫器の下流側から導入し脱硫器の上流側から
改質装置側へ導出する第2配管ラインとを設けたもので
ある。
A fuel cell power generator according to the present invention includes a first piping line for introducing raw fuel from an upstream side of a desulfurizer and leading it from a downstream side of the desulfurizer to a reformer side.
A second piping line for introducing the raw fuel from the downstream side of the desulfurizer and leading it from the upstream side of the desulfurizer to the reformer side is provided.

【0009】また、脱硫器を、通常運転時に動作され原
燃料中の硫黄分を除去する大容量脱硫器と、大容量脱硫
器の吸着剤交換時に動作され原燃料中の硫黄分を除去す
る小容量脱硫器とから構成したものである。
Further, the desulfurizer is operated during normal operation to remove the sulfur content in the raw fuel, and the small capacity desulfurizer is operated during the adsorbent exchange of the large capacity desulfurizer to remove the sulfur content in the raw fuel. It is composed of a capacity desulfurizer.

【0010】また、脱硫器の下流側に配置され、原燃料
中の硫黄濃度を分析し出力する硫黄分析装置を設けたも
のである。
Further, a sulfur analyzer which is arranged on the downstream side of the desulfurizer and analyzes and outputs the sulfur concentration in the raw fuel is provided.

【0011】[0011]

【作用】この発明における燃料電池発電装置は、原燃料
の脱硫器への導入を、第1配管ラインと第2配管ライン
とを切り換えて行うことにより、脱硫器内の吸着剤を有
効に利用する。
In the fuel cell power generator of the present invention, the adsorbent in the desulfurizer is effectively used by introducing the raw fuel into the desulfurizer by switching the first piping line and the second piping line. ..

【0012】また、通常運転時には大容量脱硫器により
原燃料中の硫黄分を除去し、大容量脱硫器の吸着剤交換
時は小容量脱硫器により原燃料中の硫黄分を除去するこ
とにより、プラントを停止することなく吸着剤を交換で
きる。
Further, during normal operation, the sulfur content in the raw fuel is removed by the large-capacity desulfurizer, and when the adsorbent of the large-capacity desulfurizer is replaced, the sulfur content in the raw-fuel is removed by the small-capacity desulfurizer. The adsorbent can be replaced without shutting down the plant.

【0013】また、脱硫器の下流側に配置した硫黄分析
装置によって原燃料中の硫黄濃度を分析し出力すること
により、吸着剤の交換時期を自動的に検出する。
Further, the sulfur analyzer in the downstream side of the desulfurizer analyzes and outputs the sulfur concentration in the raw fuel to automatically detect the adsorbent replacement time.

【0014】[0014]

【実施例】実施例1.以下この発明の実施例1を図1に
基づいて説明する。図1において、1〜9は上述した従
来装置の構成と同様である。10は原燃料を脱硫器3の
上流側から導入し脱硫器3の下流側から改質装置2側へ
導出する第1配管ラインであり、原燃料供給管8と脱硫
器3の上流側とに連設された分岐管11と、脱硫器3の
下流側と原燃料供給管9とに連設された分岐管12と、
分岐管11、12にそれぞれ配置された遮断弁13、1
4とにより構成されている。15は原燃料を脱硫器3の
下流側から導入し脱硫器3の上流側から改質装置2側の
原燃料供給管9へ導出する第2配管ラインであり、原燃
料供給管8と脱硫器3の下流側とに連設された分岐管1
6と、脱硫器3の上流側と原燃料供給管9とに連設され
た分岐管17と、分岐管16、17にそれぞれ配置され
た遮断弁18、19とにより構成されている。
EXAMPLES Example 1. The first embodiment of the present invention will be described below with reference to FIG. In FIG. 1, 1 to 9 have the same configuration as the conventional device described above. Reference numeral 10 is a first piping line that introduces the raw fuel from the upstream side of the desulfurizer 3 and guides it from the downstream side of the desulfurizer 3 to the reformer 2 side, and connects it to the raw fuel supply pipe 8 and the upstream side of the desulfurizer 3. A branch pipe 11 continuously provided, a branch pipe 12 continuously provided at the downstream side of the desulfurizer 3 and the raw fuel supply pipe 9,
Shut-off valves 13, 1 respectively arranged in the branch pipes 11, 12
4 and. Reference numeral 15 is a second piping line for introducing the raw fuel from the downstream side of the desulfurizer 3 and leading it from the upstream side of the desulfurizer 3 to the raw fuel supply pipe 9 on the reformer 2 side, and the raw fuel supply pipe 8 and the desulfurizer Branch pipe 1 connected to the downstream side of 3
6, a branch pipe 17 connected to the upstream side of the desulfurizer 3 and the raw fuel supply pipe 9, and shutoff valves 18 and 19 arranged in the branch pipes 16 and 17, respectively.

【0015】次に動作について説明する。運転中の動作
は上述した従来装置の動作と同様であり、ここでは相違
点のみについて説明する。原燃料供給管8、脱硫器3、
原燃料供給管9への原燃料供給回路は、最初、第1配管
ライン10の分岐管11の遮断弁13を開、分岐管12
の遮断弁14を開、第2配管ライン15の分岐管16の
遮断弁18を閉、分岐管17の遮断弁19を閉とし、原
燃料は原燃料供給管8から分岐管11を経て脱硫器3に
導入し、脱硫器3から分岐管12を経て原燃料供給管9
へ導出する。脱硫器3の出口側の硫黄濃度が上昇した場
合は、第1配管ライン10の分岐管11の遮断弁13を
閉、分岐管12の遮断弁14を閉、第2配管ライン15
の分岐管16の遮断弁18を開、分岐管17の遮断弁1
9を開とし、原燃料を原燃料供給管8から分岐管16を
経て脱硫器3に導入し、脱硫器3から分岐管17を経て
原燃料供給管9へ導出する。以上のように、脱硫器3へ
の原燃料の導入方向を脱硫器3の出口側の硫黄濃度に応
じて切り換えて行うようにしているので、上述したで従
来装置で問題となっていた吸着剤の寿命が短い欠点を解
消できる。このように吸着剤を有効に利用することがで
き吸着剤の交換頻度を低減できるので、長期間安定に運
転ができる燃料電池発電装置を得ることができる。
Next, the operation will be described. The operation during operation is similar to the operation of the above-described conventional device, and only the differences will be described here. Raw fuel supply pipe 8, desulfurizer 3,
In the raw fuel supply circuit to the raw fuel supply pipe 9, first, the shutoff valve 13 of the branch pipe 11 of the first piping line 10 is opened, and the branch pipe 12 is opened.
The shut-off valve 14 of the second pipe line 15 is closed, the shut-off valve 18 of the branch pipe 16 of the second piping line 15 is closed, the shut-off valve 19 of the branch pipe 17 is closed, and the raw fuel is fed from the raw fuel supply pipe 8 through the branch pipe 11 to the desulfurizer. 3 into the raw fuel supply pipe 9 from the desulfurizer 3 through the branch pipe 12.
Derive to. When the sulfur concentration on the outlet side of the desulfurizer 3 rises, the shutoff valve 13 of the branch pipe 11 of the first piping line 10 is closed, the shutoff valve 14 of the branch pipe 12 is closed, and the second piping line 15
Open the shutoff valve 18 of the branch pipe 16 of the
9 is opened, the raw fuel is introduced from the raw fuel supply pipe 8 to the desulfurizer 3 via the branch pipe 16, and is led to the raw fuel supply pipe 9 from the desulfurizer 3 via the branch pipe 17. As described above, since the introduction direction of the raw fuel to the desulfurizer 3 is switched according to the sulfur concentration on the outlet side of the desulfurizer 3, the adsorbent which has been a problem in the conventional device as described above. It is possible to solve the shortcoming of short life. In this way, the adsorbent can be effectively used and the frequency of exchanging the adsorbent can be reduced, so that it is possible to obtain a fuel cell power generator that can be stably operated for a long period of time.

【0016】実施例2.図2はこの発明の実施例2を示
し、図2において、1、2、4〜9は上述した従来装置
の構成と同様である。20は通常運転時に動作され原燃
料中の硫黄分を除去する大容量脱硫器、21はこの大容
量脱硫器20の吸着剤交換時に動作され原燃料中の硫黄
分を除去する小容量脱硫器、22は原燃料供給管8と大
容量脱硫器20の上流側とに連設された分岐管、23は
大容量脱硫器20の下流側と原燃料供給管9とに連設さ
れた分岐管、24、25は分岐管22、23にそれぞれ
配置された遮断弁、26は原燃料供給管8と小容量脱硫
器21の上流側とに連設された分岐管、27は小容量脱
硫器21の下流側と原燃料供給管9とに連設された分岐
管、28、29は分岐管26、27にそれぞれ配置され
た遮断弁である。
Example 2. FIG. 2 shows a second embodiment of the present invention. In FIG. 2, reference numerals 1, 2, 4 to 9 have the same configuration as the conventional device described above. Reference numeral 20 denotes a large-capacity desulfurizer that is operated during normal operation to remove the sulfur content in the raw fuel, and 21 is a small-capacity desulfurizer that operates when the adsorbent of the large-capacity desulfurizer 20 is replaced to remove the sulfur content from the raw fuel, Reference numeral 22 denotes a branch pipe connected to the raw fuel supply pipe 8 and the upstream side of the large-capacity desulfurizer 20. Reference numeral 23 denotes a branch pipe connected to the downstream side of the large-capacity desulfurizer 20 and the raw fuel supply pipe 9. Numerals 24 and 25 are cutoff valves respectively arranged in the branch pipes 22 and 23, 26 is a branch pipe connected to the raw fuel supply pipe 8 and the upstream side of the small capacity desulfurizer 21, and 27 is a small capacity desulfurizer 21. Branch pipes 28, 29 connected to the downstream side and the raw fuel supply pipe 9 are cut-off valves arranged in the branch pipes 26, 27, respectively.

【0017】次に動作について説明する。運転中の動作
は上述した従来装置の動作と同様であり、ここでは相違
点のみについて説明する。通常の運転時は、分岐管22
の遮断弁24を開、分岐管23の遮断弁25を開、分岐
管26の遮断弁28を閉、分岐管27の遮断弁29を閉
とし、原燃料は原燃料供給管8から分岐管22を経て大
容量脱硫器20に導入し、大容量脱硫器20から分岐管
23を経て原燃料供給管9へ導出する。大容量脱硫器2
0の吸着剤を交換する場合は、分岐管22の遮断弁24
を閉、分岐管23の遮断弁25を閉、分岐管26の遮断
弁28を開、分岐管27の遮断弁29を開とし、原燃料
を原燃料供給管8から分岐管26を経て小容量脱硫器2
1に導入し、小容量脱硫器21から分岐管27を経て原
燃料供給管9へ導出する。この小容量脱硫器21を使用
して原燃料中の硫黄分を除去している間に、プラントを
停止することなく大容量脱硫器20の吸着剤を交換する
ことができる。吸着剤の交換後は、通常の運転時の原燃
料供給パターンとなるよう各遮断弁を開閉調整する。こ
れにより小容量脱硫器21側の吸着剤の量は少なくて済
み、したがって、装置をコンパクトにすることができ、
燃料電池発電装置で重要視されているコンパクト性を十
分に満足させることができる。
Next, the operation will be described. The operation during operation is similar to the operation of the above-described conventional device, and only the differences will be described here. Branch pipe 22 during normal operation
The shutoff valve 24 of the branch pipe 23, the shutoff valve 25 of the branch pipe 23, the shutoff valve 28 of the branch pipe 26, and the shutoff valve 29 of the branch pipe 27 are closed. And is introduced into the large-capacity desulfurizer 20 via the branch pipe 23 to the raw fuel supply pipe 9. Large capacity desulfurizer 2
When replacing the adsorbent of 0, the shutoff valve 24 of the branch pipe 22
Closed, the shutoff valve 25 of the branch pipe 23 is closed, the shutoff valve 28 of the branch pipe 26 is opened, the shutoff valve 29 of the branch pipe 27 is opened, and the raw fuel is supplied from the raw fuel supply pipe 8 through the branch pipe 26 in a small capacity. Desulfurizer 2
1 is introduced into the raw fuel supply pipe 9 from the small capacity desulfurizer 21 through the branch pipe 27. The adsorbent of the large capacity desulfurizer 20 can be replaced without stopping the plant while the sulfur content in the raw fuel is being removed using the small capacity desulfurizer 21. After exchanging the adsorbent, each shut-off valve is adjusted to open and close so as to obtain the raw fuel supply pattern during normal operation. As a result, the amount of adsorbent on the side of the small-capacity desulfurizer 21 can be small, and therefore the device can be made compact,
The compactness, which is regarded as important in the fuel cell power generator, can be sufficiently satisfied.

【0018】実施例3.図3はこの発明の実施例3を示
し、図3において、1〜9は上述した従来装置の構成と
同様である。30は脱硫器3の下流側に、即ち、脱硫器
3とエジェクタ4とに連設された原燃料供給管9にその
の途中から分岐したサンプリング管31を介して配置さ
れ、原燃料中の硫黄濃度を分析し出力する硫黄分析装置
であり、例えばガスクロマトグラフが使用されるが、特
にこの分析法に限定されるものではなく、0.1ppmオーダ
の分析精度が得られるものであればどのようなものであ
ってもよい。設けたものである。
Example 3. FIG. 3 shows a third embodiment of the present invention. In FIG. 3, 1 to 9 have the same configuration as the conventional device described above. 30 is disposed on the downstream side of the desulfurizer 3, that is, via the sampling pipe 31 branched from the middle of the raw fuel supply pipe 9 connected to the desulfurizer 3 and the ejector 4, and the sulfur in the raw fuel is removed. It is a sulfur analyzer that analyzes and outputs the concentration, for example, a gas chromatograph is used, but it is not particularly limited to this analysis method, as long as analysis accuracy of 0.1 ppm order can be obtained May be It is provided.

【0019】次に動作について説明する。硫黄分析装置
30には、原燃料中の硫黄濃度を分析しその分析値が予
め設定した値以上のとき、警報を出力するようにしてい
るので、脱硫器3の処理能力が低下し、除去できなかっ
た硫黄分によって改質触媒が被毒され、その結果、カー
ボン析出等の不具合が生じるのを未然に防止することが
できる。
Next, the operation will be described. The sulfur analyzer 30 analyzes the sulfur concentration in the raw fuel and outputs an alarm when the analyzed value is equal to or higher than a preset value, so that the processing capacity of the desulfurizer 3 is lowered and the sulfur can be removed. It is possible to prevent the reforming catalyst from being poisoned by the unreacted sulfur, resulting in problems such as carbon deposition.

【0020】[0020]

【発明の効果】この発明は以上説明した通り、原燃料を
脱硫器の上流側から導入し脱硫器の下流側から改質装置
側へ導出する第1配管ラインと、原燃料を脱硫器の下流
側から導入し脱硫器の上流側から改質装置側へ導出する
第2配管ラインとを設け、原燃料の脱硫器への導入を、
第1配管ラインと第2配管ラインとを切り換えて行うよ
うにしたので、吸着剤を有効に利用することができ吸着
剤の交換頻度を低減できるので、長期間安定に運転がで
きる燃料電池発電装置を得ることができる。また、脱硫
器を、通常運転時に動作され原燃料中の硫黄分を除去す
る大容量脱硫器と、大容量脱硫器の吸着剤交換時に動作
され原燃料中の硫黄分を除去する小容量脱硫器とから構
成し、通常運転時には大容量脱硫器により原燃料中の硫
黄分を除去し、大容量脱硫器の吸着剤交換時は小容量脱
硫器により原燃料中の硫黄分を除去するようにしたの
で、プラントを停止することなく吸着剤を交換できる燃
料電池発電装置を得ることができる。また、脱硫器の下
流側に配置した硫黄分析装置によって、原燃料中の硫黄
濃度を分析し出力するようにしたので、吸着剤の交換時
期を自動的に検出でき、改質触媒への被毒を未然に防止
することができる燃料電池発電装置を得ることができ
る。
As described above, the present invention introduces the raw fuel from the upstream side of the desulfurizer and leads it from the downstream side of the desulfurizer to the reformer side, and the raw fuel downstream of the desulfurizer. A second piping line that is introduced from the upstream side to the reformer side from the upstream side of the desulfurizer, and introduces the raw fuel into the desulfurizer.
Since the first piping line and the second piping line are switched to each other, the adsorbent can be effectively used and the frequency of exchanging the adsorbent can be reduced, so that the fuel cell power generator can be stably operated for a long period of time. Can be obtained. In addition, the desulfurizer is a large-capacity desulfurizer that is operated during normal operation to remove the sulfur content in the raw fuel, and a small-capacity desulfurizer that is operated when the adsorbent in the large-capacity desulfurizer is replaced to remove the sulfur content in the raw fuel. In the normal operation, the large-capacity desulfurizer removes the sulfur content from the raw fuel, and when the adsorbent of the large-capacity desulfurizer is replaced, the small-capacity desulfurizer removes the sulfur content from the raw fuel. Therefore, it is possible to obtain the fuel cell power generator in which the adsorbent can be replaced without stopping the plant. In addition, the sulfur analyzer located downstream of the desulfurizer analyzes and outputs the sulfur concentration in the raw fuel, so the time to replace the adsorbent can be automatically detected, and the reforming catalyst can be poisoned. It is possible to obtain a fuel cell power generation device capable of preventing the above.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1を示す系統図である。FIG. 1 is a system diagram showing a first embodiment of the present invention.

【図2】この発明の実施例2を示す系統図である。FIG. 2 is a system diagram showing a second embodiment of the present invention.

【図3】この発明の実施例3を示す系統図である。FIG. 3 is a system diagram showing a third embodiment of the present invention.

【図4】従来の燃料電池発電装置を示す系統図である。FIG. 4 is a system diagram showing a conventional fuel cell power generator.

【符号の説明】[Explanation of symbols]

1 燃料電池本体 2 改質装置 3 脱硫器 10 第1配管ライン 15 第2配管ライン 20 大容量脱硫器 21 小容量脱硫器 30 硫黄分析装置 1 Fuel Cell Main Body 2 Reforming Device 3 Desulfurizer 10 First Piping Line 15 Second Piping Line 20 Large Capacity Desulfurizer 21 Small Capacity Desulfurizer 30 Sulfur Analyzer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 原燃料中の硫黄分を除去する脱硫器と、
上記原燃料中の炭化水素燃料を水蒸気と反応させて水素
ガスを生成する改質装置と、この改質装置により改質さ
れた改質ガスと空気とを電気化学的に反応させて電力を
得る燃料電池本体とから構成される燃料電池発電装置に
おいて、上記原燃料を上記脱硫器の上流側から導入し上
記脱硫器の下流側から上記改質装置側へ導出する第1配
管ラインと、上記原燃料を上記脱硫器の下流側から導入
し上記脱硫器の上流側から上記改質装置側へ導出する第
2配管ラインとを設けたことを特徴とする燃料電池発電
装置。
1. A desulfurizer for removing sulfur in raw fuel,
A reformer that reacts the hydrocarbon fuel in the raw fuel with steam to generate hydrogen gas, and the reformed gas reformed by the reformer and air are electrochemically reacted to obtain electric power. In a fuel cell power generation device including a fuel cell main body, a first piping line that introduces the raw fuel from the upstream side of the desulfurizer and guides it from the downstream side of the desulfurizer to the reformer side; A fuel cell power generation device comprising: a second piping line for introducing fuel from a downstream side of the desulfurizer and leading it from an upstream side of the desulfurizer to the reformer side.
【請求項2】 原燃料中の硫黄分を除去する脱硫器と、
上記原燃料中の炭化水素燃料を水蒸気と反応させて水素
ガスを生成する改質装置と、この改質装置により改質さ
れた改質ガスと空気とを電気化学的に反応させて電力を
得る燃料電池本体とから構成される燃料電池発電装置に
おいて、上記脱硫器を、通常運転時に動作され上記原燃
料中の硫黄分を除去する大容量脱硫器と、上記大容量脱
硫器の吸着剤交換時に動作され上記原燃料中の硫黄分を
除去する小容量脱硫器とから構成したことを特徴とする
燃料電池発電装置。
2. A desulfurizer for removing sulfur in raw fuel,
A reformer that reacts the hydrocarbon fuel in the raw fuel with steam to generate hydrogen gas, and the reformed gas reformed by the reformer and air are electrochemically reacted to obtain electric power. In a fuel cell power generator configured with a fuel cell main body, the desulfurizer is a large-capacity desulfurizer that is operated during normal operation to remove sulfur in the raw fuel, and an adsorbent of the large-capacity desulfurizer is replaced. A fuel cell power generation device comprising a small-capacity desulfurizer that is operated to remove the sulfur content in the raw fuel.
【請求項3】 原燃料中の硫黄分を除去する脱硫器と、
上記原燃料中の炭化水素燃料を水蒸気と反応させて水素
ガスを生成する改質装置と、この改質装置により改質さ
れた改質ガスと空気とを電気化学的に反応させて電力を
得る燃料電池本体とから構成される燃料電池発電装置に
おいて、上記脱硫器の下流側に配置され、上記原燃料中
の硫黄濃度を分析し出力する硫黄分析装置を設けたこと
を特徴とする燃料電池発電装置。
3. A desulfurizer for removing sulfur in raw fuel,
A reformer that reacts the hydrocarbon fuel in the raw fuel with steam to generate hydrogen gas, and the reformed gas reformed by the reformer and air are electrochemically reacted to obtain electric power. In a fuel cell power generation device including a fuel cell main body, a fuel cell power generation device is provided which is arranged downstream of the desulfurizer and which analyzes and outputs a sulfur concentration in the raw fuel. apparatus.
JP27247691A 1991-10-21 1991-10-21 Fuel cell generator Expired - Fee Related JP3259291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27247691A JP3259291B2 (en) 1991-10-21 1991-10-21 Fuel cell generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27247691A JP3259291B2 (en) 1991-10-21 1991-10-21 Fuel cell generator

Publications (2)

Publication Number Publication Date
JPH05114415A true JPH05114415A (en) 1993-05-07
JP3259291B2 JP3259291B2 (en) 2002-02-25

Family

ID=17514459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27247691A Expired - Fee Related JP3259291B2 (en) 1991-10-21 1991-10-21 Fuel cell generator

Country Status (1)

Country Link
JP (1) JP3259291B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007095708A (en) * 2006-12-28 2007-04-12 Aisin Seiki Co Ltd Fuel cell system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007095708A (en) * 2006-12-28 2007-04-12 Aisin Seiki Co Ltd Fuel cell system
JP4681537B2 (en) * 2006-12-28 2011-05-11 アイシン精機株式会社 Fuel cell system

Also Published As

Publication number Publication date
JP3259291B2 (en) 2002-02-25

Similar Documents

Publication Publication Date Title
US5248567A (en) Power generation plant including fuel cell
US9112201B2 (en) Hydrogen production apparatus, fuel cell system and operation method thereof
JP2005509261A (en) Stopping method for a fuel cell fuel processing system
KR100481425B1 (en) Fuel cell power generation system, and fuel cell power generation interrupting method
JP2006008459A (en) Hydrogen production apparatus and fuel cell system
KR100968580B1 (en) Fuel Process Apparatus of Multiple Desulfurizing Type and Fuel Cell System with the Same
JP2004284875A (en) Hydrogen production system, and fuel cell system
JPH0333191A (en) Desulfurizer
JP2001189165A (en) Fuel cell system, method of stopping and starting the same
JPH05114414A (en) Fuel cell power generation system
JP2972261B2 (en) Nitrogen purge method and heating method for fuel cell power generation system
JP4024543B2 (en) Fuel cell power generation system
CA2546439A1 (en) Generating syngas for nox regeneration combined with fuel cell auxiliary power generation
JP2008308351A (en) Pretreatment method and airtightness testing method for fuel reforming apparatus, operation pretreatment method for fuel cell power generation system
JP2002097001A (en) Fuel gas reformer and fuel-cell system
JP3259291B2 (en) Fuel cell generator
JPH0649469A (en) Desulfurizing apparatus and exchange of catalyst
JP2008186701A (en) Fuel cell power generation system and its operation method
JP2001146407A (en) Apparatus for purifying carbon monoxide, method for operating the same and method for stopping the same
JP2005179083A (en) Hydrogen producing apparatus, fuel cell system, and its operatin method
JP4041085B2 (en) Fuel gas production system and method for stopping the same
KR20220095417A (en) Fuel processor and fuel cell system including the same
JP2005179082A (en) Hydrogen producing apparatus, fuel cell system and method for driving the same
JP2769556B2 (en) Fuel cell generator
JP2007157481A (en) Desulfurizer and fuel cell power generator

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees