JPH0511098B2 - - Google Patents

Info

Publication number
JPH0511098B2
JPH0511098B2 JP60294885A JP29488585A JPH0511098B2 JP H0511098 B2 JPH0511098 B2 JP H0511098B2 JP 60294885 A JP60294885 A JP 60294885A JP 29488585 A JP29488585 A JP 29488585A JP H0511098 B2 JPH0511098 B2 JP H0511098B2
Authority
JP
Japan
Prior art keywords
ethyl acetate
exchange resin
type
diethyl acetal
distillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60294885A
Other languages
Japanese (ja)
Other versions
JPS62153248A (en
Inventor
Shizuo Midori
Keiji Fujita
Tatsuaki Kobayashi
Kazuaki Hayashi
Tadakazu Tsuji
Sumio Hatsutori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KH Neochem Co Ltd
Original Assignee
Kyowa Yuka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyowa Yuka Co Ltd filed Critical Kyowa Yuka Co Ltd
Priority to JP60294885A priority Critical patent/JPS62153248A/en
Publication of JPS62153248A publication Critical patent/JPS62153248A/en
Publication of JPH0511098B2 publication Critical patent/JPH0511098B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は酢酸エチルの精製法に関する。高純度
に精製された酢酸エチルは特にウレタン樹脂、試
薬、銀塩写真フイルム等の用途に用いられる。 従来の技術 従来、酢酸エチルの工業的製法として、アセト
アルデヒドを原料としてアルミニウムアルコラー
トを主体とした触媒によりテイツシエンコ反応を
行つて粗酢酸エチルを製造し、次いで未反応アセ
トアルデヒドや副正エタノール、ジエチルアセタ
ール等を蒸溜により除いて製造するのが一般的で
ある(製造工程図全集第2巻422〜423ページ昭和
43年初版 化学工業社)。通常の蒸留後の酢酸エ
チルになお残存する不純物としてはごく微量のア
セトアルデヒド、エチルビニルエーテル、エチタ
ノール、ジエチルアセタール、クロトンアルデヒ
ド、その他があり、ウレタン樹脂、試薬、銀塩写
真フイルム等の用途によつては微量に不飽和化合
物、アルデヒド類、アセタール類、アルコール類
の不純物でも問題になる場合がある。 酢酸エチル中の微量の不純物を除去する方法と
して、微量の不純物を含む酢酸エチルを酸性白
土、活性白土、ベントナイト、シリカアルミナ又
はゼオライトと接触させた後、低沸分離蒸溜とす
ることにより酢酸エチルを精製する方法が知られ
ている(特開昭57−81436号公報)。 発明が解決しようとする問題点 従来の方法において、酢酸エチル中の不純物と
して含有されるジエチルアセタールの除去はまだ
満足できるものではない。 問題点を解決するための手段 本発明方法によると、微量のジエチルアセター
ルを含有する酢酸エチルを、ジエチルアセタール
の2〜10倍モル量の水の存在下、酢酸性陽イオン
交換樹脂の交換基の2〜30%部分がH型である強
酸性陽イオン交換樹脂に接触させた後、蒸溜する
ことにより、ジエチルアセタールをほとんど含有
しない高純度(99.99%以上)の酢酸エチルを得
ることができる。 本発明方法の原料となる酢酸エチルとしては、
工業用として製造されている純度99.0%以上のも
のが用いられるが、不純物として含まれるジエチ
ルアセタールの量が500ppm以上の場合には、あ
らかじめ蒸溜で500ppm以下にしておくことが望
ましい。 強酸性陽イオン交換樹脂としては、Na型のも
の例えば市販のアンバーリスト15(MR型;ロー
ム アンド ハース社製)、ダイヤイオンHPK−
25(ハイポーラス型;三菱化成社製)、デユオライ
トC−26(ポーラス型;デユオライトインターナ
シヨナル社製)等あげられ、Na型の2〜30%、
好ましくは5〜15%の交換基をH型に部分再生し
たものが用いられる。 H型に部分再生してにいないNa型のみの強酸
性陽イオン交換樹脂の場合には反応はほとんど進
行しないし、又、30%以上部分再生されていると
酢酸エチルの加水分解が進行し損失となり好まし
くない。該イオン交換樹脂の型としては、ゲル、
ポーラス、ハイポーラス型等が用いられる。イオ
ン交換樹脂を充填する装置は形式に限定されるも
のではないが、固定床に充填して連続に通夜する
装置が工業上実用的である。通塔条件としては
LHSV(液流量L/H/触媒充填量L)が1.0〜
3.0で、その際の通塔液の温度としては10〜50℃、
好ましくは20〜35℃である。温度が低いと反応が
遅く、又、50℃を越えると酢酸エチルの加水分解
が無視できなくなる。 蒸溜条件としては、例えば蒸溜塔を2塔用い、
1塔目の段数20〜40段還流比5〜10及び低沸点留
分の割合5〜10%;2塔目の段数20〜40段還流比
0.5〜1.5及び高沸点留分の割合5〜15%である。 かかる蒸溜により、純度99.99%以上の酢酸エ
チルを得ることができる。 以下に実施例及び参考例を示す。 実施例 1 境酸性陽イオン交換樹脂アンドーリスト15
(MR型;ロームアンドハース社製)を塩酸で10
%SO3H型に部分再生したものを反応器に1充
填した常温で水を0.3g/H滴下し酢酸エチル
(市販:工業用一般)を1800g/Hで通夜し得る
(この液を反応器出口液と称す)。この反応器出口
液をそのまま2塔の連続蒸溜にかけ1塔目で低沸
点留分を還流比10で170g/H分離し、2塔目で
還流比1.0で1400g/Hの製品を得た。製品の各
種試験の第1表を示す。また製品を褐色ガラス瓶
に常温で15日放置しても過酸化物試験で合格であ
つた。
INDUSTRIAL APPLICATION FIELD The present invention relates to a method for purifying ethyl acetate. Ethyl acetate purified to a high degree of purity is particularly used for applications such as urethane resins, reagents, and silver salt photographic films. Conventional technology Conventionally, as an industrial method for producing ethyl acetate, crude ethyl acetate is produced by performing Teitsienko reaction using acetaldehyde as a raw material using a catalyst mainly composed of aluminum alcoholate, and then unreacted acetaldehyde, secondary ethanol, diethyl acetal, etc. It is generally manufactured by removing it by distillation.
First edition in 1943 (Kagaku Kogyosha). Impurities that still remain in ethyl acetate after normal distillation include very small amounts of acetaldehyde, ethyl vinyl ether, ethitanol, diethyl acetal, crotonaldehyde, and others. Even small amounts of impurities such as unsaturated compounds, aldehydes, acetals, and alcohols can cause problems. As a method for removing trace amounts of impurities in ethyl acetate, ethyl acetate containing trace amounts of impurities is brought into contact with acid clay, activated clay, bentonite, silica alumina, or zeolite, and then ethyl acetate is removed by low-boiling separation distillation. A purification method is known (Japanese Unexamined Patent Publication No. 81436/1983). Problems to be Solved by the Invention In the conventional methods, the removal of diethyl acetal contained as an impurity in ethyl acetate is not yet satisfactory. Means for Solving the Problems According to the method of the present invention, ethyl acetate containing a trace amount of diethyl acetal is added to the exchange groups of an acetic acid cation exchange resin in the presence of water in an amount of 2 to 10 times the molar amount of diethyl acetal. High purity (99.99% or more) ethyl acetate containing almost no diethyl acetal can be obtained by bringing it into contact with a strongly acidic cation exchange resin in which 2 to 30% of the product is in the H type and then distilling it. Ethyl acetate, which is a raw material for the method of the present invention, is as follows:
A product manufactured for industrial use with a purity of 99.0% or more is used, but if the amount of diethyl acetal contained as an impurity is 500 ppm or more, it is desirable to reduce it to 500 ppm or less by distillation in advance. Strongly acidic cation exchange resins include Na-type ones, such as commercially available Amberlyst 15 (MR type; manufactured by Rohm and Haas), Diaion HPK-
25 (high porous type; made by Mitsubishi Kasei Corporation), Duolite C-26 (porous type; made by Duolite International Co., Ltd.), etc., and 2 to 30% of the Na type,
Preferably, 5 to 15% of the exchange groups are partially regenerated into H type. In the case of a strongly acidic cation exchange resin with only Na type that has not been partially regenerated to H type, the reaction will hardly proceed, and if more than 30% is partially regenerated, hydrolysis of ethyl acetate will proceed and loss will occur. This is undesirable. Examples of the ion exchange resin type include gel,
Porous, high porous types, etc. are used. Although the type of equipment for filling the ion exchange resin is not limited, it is industrially practical to use equipment that packs the ion exchange resin into a fixed bed and allows it to stay overnight continuously. As for the tower passage conditions,
LHSV (liquid flow rate L/H/catalyst filling amount L) is 1.0~
3.0, the temperature of the flowing liquid at that time is 10 to 50℃,
Preferably it is 20-35°C. If the temperature is low, the reaction is slow, and if the temperature exceeds 50°C, the hydrolysis of ethyl acetate cannot be ignored. As for the distillation conditions, for example, using two distillation towers,
The number of plates in the first column is 20 to 40, the reflux ratio is 5 to 10, and the proportion of low boiling point fraction is 5 to 10%; the number of plates in the second column is 20 to 40, and the reflux ratio is 5 to 10.
0.5-1.5 and the proportion of high-boiling fractions is 5-15%. Through such distillation, ethyl acetate with a purity of 99.99% or more can be obtained. Examples and reference examples are shown below. Example 1 Acidic cation exchange resin Andorist 15
(MR type; manufactured by Rohm and Haas) with hydrochloric acid for 10 minutes.
%SO 3 H-form partially regenerated into a reactor, 0.3 g/H of water was added dropwise at room temperature, and ethyl acetate (commercially available: general industrial use) was charged overnight at 1800 g/H. (referred to as outlet liquid). This reactor outlet liquid was subjected to continuous distillation in two columns as it was, and in the first column, a low boiling point fraction was separated at a reflux ratio of 10 to 170 g/H, and in the second column, a product of 1400 g/H was obtained at a reflux ratio of 1.0. Table 1 shows various tests for the product. The product also passed the peroxide test even after being left in a brown glass bottle at room temperature for 15 days.

【表】 分析法 JIS−K−8361を一部改訂した試験法である。 (1) 酸化物 試料20ml→共栓試験管にとる→ヨウ化カリウ
ム溶液2.5ml+水2.5ml→振る→1時間配置……
黄変しない。(合格) (2) アルデヒド 試料10ml→共栓試験管にとる→ネスラー溶液
10ml→10秒間激しく振る→1分間放置……水槽
が濁りを生じないし変色しない。(合格) (3) 硫黄着色物質(特開昭57−81436の方法に準
じた)試料5ml→10℃以下に冷却→30℃を越え
ないようにして硫酸5mlを10分間で滴下しなが
らかきまぜる→湯液中で50℃±1℃に1時間保
つ→冷却後色相を判定 (4) 各成分分析のうちでは水分はカールフイツシ
ヤー法、酢散は中和滴定法、その他はガスクロ
マトグラフイーによる。 (以下の表においても単位、略称及び分析法は
同じ) 実施例 2 実施例1のおいて、使用するイオン交換樹脂を
強酸性陽イオン交換樹脂ダイヤイオンHPK−25
(ハイポーラス型;三菱化成社製)を5%SO3H
型に部分再生したものを用いる以外は実施例1と
同様に行い製品を得た。部品の分析結果を第2表
に示す。
[Table] Analysis method This test method is a partially revised version of JIS-K-8361. (1) Oxide sample 20ml → Transfer to a stoppered test tube → Potassium iodide solution 2.5ml + water 2.5ml → Shake → Place for 1 hour...
Does not yellow. (Passed) (2) Aldehyde sample 10ml → Transfer to a stoppered test tube → Nessler solution
10ml → Shake vigorously for 10 seconds → Leave for 1 minute...The aquarium will not become cloudy or discolored. (Passed) (3) 5 ml sample of sulfur colored substance (according to the method of JP-A-57-81436) → Cool to below 10°C → Stir while dropping 5 ml of sulfuric acid over 10 minutes without exceeding 30°C → Keep at 50℃±1℃ for 1 hour in hot water → Determine the hue after cooling (4) For each component analysis, water content is determined by Karl Fischer method, vinegar powder is determined by neutralization titration method, and other components are determined by gas chromatography. (Units, abbreviations, and analytical methods are the same in the tables below.) Example 2 In Example 1, the ion exchange resin used was the strongly acidic cation exchange resin Diaion HPK-25.
(high porous type; manufactured by Mitsubishi Kasei Corporation) in 5% SO 3 H
A product was obtained in the same manner as in Example 1 except that a partially recycled mold was used. Table 2 shows the analysis results of the parts.

【表】 実施例 3 実施例1において、使用するイオン交換樹脂を
強酸性陽イオン交換樹脂デユオライトC−26(ポ
ーラス型;デユオライトインターナシヨナル社
製)を8%SO3H型に部分再生したものを用いる
以外は実施例1と同様に行い、製品を得た。製品
の分析結果を第3表に示す。
[Table] Example 3 In Example 1, the strongly acidic cation exchange resin Duolite C-26 (porous type; manufactured by Duolite International) was partially regenerated into 8% SO 3 H type. A product was obtained in the same manner as in Example 1, except that the same material was used. The analysis results of the product are shown in Table 3.

【表】【table】

【表】 参考例 1 強酸性陽イオン交換樹脂アンバーリスト15を
SO3Na型のまま反応器に充填し実施例1と同様
に通夜及び蒸溜を行つた結果、蒸溜直後の製品は
過酸化物試験は合格であつたが、褐色ガラス瓶に
10日間室温放置後の過酸化物試験は不合格であつ
た。結果を第4表に示す。
[Table] Reference example 1 Strongly acidic cation exchange resin Amberlyst 15
As a result of filling the SO 3 Na form into the reactor and carrying out the overnight wake and distillation in the same manner as in Example 1, the product immediately after distillation passed the peroxide test, but it was stored in a brown glass bottle.
The peroxide test after standing at room temperature for 10 days failed. The results are shown in Table 4.

【表】 参考例 2 強酸性陽イオン交換樹脂アンバーリスト15を塩
酸で100%SO3H型にして反応器に充填し実施例
1と同様に通夜を行つた結果、反応器出口液の
HAcは3600ppmであつた。 発明の効果 本発明方法により、ジエチルアセタールとほと
んど含有しない高純度の酢酸エチルを得ることが
できる。
[Table] Reference Example 2 Strongly acidic cation exchange resin Amberlyst 15 was made into 100% SO 3 H form with hydrochloric acid and filled into a reactor and left overnight in the same manner as in Example 1. As a result, the reactor outlet liquid was
HAc was 3600ppm. Effects of the Invention By the method of the present invention, highly pure ethyl acetate containing almost no diethyl acetal can be obtained.

Claims (1)

【特許請求の範囲】[Claims] 1 微量のジエチルアセタールを含有する酢酸エ
チルを、ジエチルアセタールの2〜10倍モル量の
水の存在下、強酸性陽イオン交換樹脂の交換基の
2〜30%部分がH型である強酸性陽イオン交換樹
脂に接触させた後、蒸溜することを特徴とする酢
酸エチルの精製法。
1. Ethyl acetate containing a trace amount of diethyl acetal is added to a strongly acidic cation exchange resin in which 2 to 30% of the exchange groups are H type in the presence of water in an amount 2 to 10 times the molar amount of diethyl acetal. A method for purifying ethyl acetate, which comprises bringing it into contact with an ion exchange resin and then distilling it.
JP60294885A 1985-12-26 1985-12-26 Purification of ethyl acetate Granted JPS62153248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60294885A JPS62153248A (en) 1985-12-26 1985-12-26 Purification of ethyl acetate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60294885A JPS62153248A (en) 1985-12-26 1985-12-26 Purification of ethyl acetate

Publications (2)

Publication Number Publication Date
JPS62153248A JPS62153248A (en) 1987-07-08
JPH0511098B2 true JPH0511098B2 (en) 1993-02-12

Family

ID=17813506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60294885A Granted JPS62153248A (en) 1985-12-26 1985-12-26 Purification of ethyl acetate

Country Status (1)

Country Link
JP (1) JPS62153248A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3806304A1 (en) * 1988-02-27 1989-09-07 Basf Ag METHOD FOR PURIFYING CARBONIC ACID ESTERS CONTAINING ALDEHYDE, ACETALS AND / OR UNSATURATED COMPOUNDS
JP4995522B2 (en) * 2006-09-25 2012-08-08 千代田化工建設株式会社 Method for removing iodine compounds from organic acids
CN102452892B (en) * 2010-10-15 2015-01-14 中国石油化工股份有限公司 Purification method for pesticide residue-grade dichloromethane for extraction
CN102417450A (en) * 2011-12-26 2012-04-18 天津市康科德科技有限公司 Method for purifying chromatographic grade butyl acetate

Also Published As

Publication number Publication date
JPS62153248A (en) 1987-07-08

Similar Documents

Publication Publication Date Title
US5364987A (en) Process for the preparation of 1,3-propanediol
CA1157888A (en) Process for the preparation of ethanol
US7164044B2 (en) Process for producing high purity trialkanolamine
US9840455B2 (en) Process for purifying methyl acetate mixtures
JPS61197534A (en) Method of purifying crude 1,4-butanediol
US20130131391A1 (en) Method for obtaining ditrimethylolpropane and trimethylolpropane-enriched product streams from the side-streams in trimethylolpropane production
KR20110101209A (en) Methyl methacrylate purification process
EP0343583B1 (en) A process for purifying methyl methacrylate
JPH0511098B2 (en)
JPS606635A (en) Purification of 1,2-unsaturated carboxylic acid and/or its ester
JPH07206747A (en) Preparation of methyl tert- butyl ether
US5386065A (en) Methyl tertiary butyl ether process
KR880000112B1 (en) Method for the purification of metacylic acid
Laali et al. Copper (II) triflate, a new reagent for mild dehydration of alcohols: synthetic usefulness and mechanistic insight
EP0701985A1 (en) Method of purifying fluoromethyl 1,1,1,3,3,3-hexafluoroisopropyl ether
US2606933A (en) Production of unsaturateb
US4059632A (en) Process for the production of isophorone
CA1136148A (en) Process for the purification of nicotinic acid amide i i
JPH0572899B2 (en)
EP0169254B1 (en) Process for purification of 1,2-unsaturated carboxylic acids and/or esters thereof
GRESHAM et al. An improved synthesis of DL-glyceraldehyde
EP0215224B1 (en) Process for the preparation of epoxidated organosilicon compounds
JP2001072639A (en) Purification of methacrylic acid
CN1312101C (en) Acetic acid refining method for improving acetic acid potassium permanganate test time
US4434301A (en) Production of low color refined isophorone